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Abstract

We introduce various homotopy structures on the category of operads, which shed some light into
the homotopy theoretic nature of the barconstructio® of an operad, the whiskering process for
operads and th&’'-freeness condition. Using the lifting property of cofibrant objects, we construct
E~ operadsA which are universal: any¥-structure lifts to an4-structure, canonically up to
homotopy through4-structures.

0 2003 Elsevier B.V. All rights reserved.

1. Introduction

Operads (for a definition see [15]) were originally introduced to study iterated loop
space structures [4,23,15,5] (they are already implicit in the work of Stasheff [20]). May
in his work combined the operad approach with ideas of Beck [3], such as the use of the
functorial twosided bar construction, which madesafold delooping in one step possible.

The key ingredient is his approximation theorem, which compares theGfresgebra
C, X on a connected space with 2" X" X, whereC,, is the little n-cubes operad of [4,
Chapter 2, Example 5].

This approach to iterated loop space theory made homotopy invariance considerations
redundant, which were in the center of the theory of Boardman and the author. To
tackle homotopy invariance we introduced the bar construdtias for operadsB. This
construction has been considered a bit mysterious in the past. In recent years it has
experienced a revival, implicitly through the works of Ginzburg and Kapranov [9], Getzler
and Jones [8], and Batanin [1], who used concepts of trees similar to the one in the
W-construction to obtain cotriple resolutions of operads, and explicitly in the works of
Markl et al. [14] and others. E.g., iB is a cellular operad and.(8B) the operad of its
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cellular chains, then Markl, Shnider, and Stasheff observed a close relationship between
D(D(C«(8B))) and C.(W®B), whereD is the dual operad construction of Ginzburg and
Kapranov [14, p. 129].

In the present paper we readdress Wieonstruction and show that the augmentation
¢: W8 — B can be considered as a cofibrant resolution of the op@radth respect to
a suitable homotopy structure @pr, the category of operads. The universal property of
cofibrant objects then provides explicit examples of univeksaloperads.

We start with a recollection of the bar constructidh8 and its basic properties in
Section 2. We then introduce a number of homotopy structure®nin Section 3.

In those the weak equivalences are maps of operads which are genuine homotopy
equivalences after forgetting part of the operad structure rather than weak homotopy
equivalences. So they differ from the known Quillen model category structuré¥pon

Our structures make CW-approximations redundant, which are usually very big and
destroy properties such as being quadratic. Apart from explaining the homotopy theoretic
nature of the bar constructid#i 8 they shed some light into the homotopy theoretic nature

of the whiskering process for operads and Byreeness condition. In the final section we
clarify the relationship between thH&-construction and the cotriple resolution of operads
mentioned above and we address the question of univEssaperads and give examples.

In our early work [4] we used the language of “categories of operators in standard form”
(called (topological) PROPs in [5] in reference to work of Mac Lane [11]), which precede
operads and are an equivalent notion.

The present paper is an extended version of [25]. Since the latter has been quoted in
recent publications | decided to supply the details.

2. Thebar construction

The bar construction, also callg#f-construction, is quite formal and, for example,
makes sense in the categories of spaces, simplicial Abelian groups, chain complexes, small
categories, and suitable module spectra, but for the sake of an easy presentation we restrict
ourselves to operads in the categ@iyp of k-spaces, i.e., compactly generated spaces in
the sense of [24, 5(ii)].

Consider the following diagram of categories and faithful forgetful functors.

2.1

X-Top

7

opr-2~ x.70¢ N-7op

BN

N-70

t\/
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The objects ofN-7op are collectionsX = {X,; n € N} of topological spaces, and the
morphismsf:X — Y are collections of mapg; : X, — Y, (in accordance with the
notation for operads we often writé(n) for X,,). The categoryN-7op is obtained from
N-7op by requiring thatX is based andi: X1 — Y1 preserves base pointE-7opis
obtained formN-7op and X-7op from N-7op by requiring that the symmetric group
X, acts from the right orX,, for all n and that the mapg;,, are equivariantOpr is the
category of operads. All these categories are topologically enriched: w&lgha(X, Y)

the product topology [ 7op(X,, ¥,,) and the morphism sets of the other categories the
k-subspace topology of this product induced by the faithful forgetful functors. So the
forgetful functors are continuous.

2.1. The operad of grown trees

A treed is a finite contractible directed planar graph except that the edges need not have
vertices on both ends. Each vertexas a finite set Ifv) of incoming edges and exactly
one outgoing edge. (n) = ¢ is allowed. Hence each tréehas a finite set I®) of inputs,
i.e., incoming edges with no start vertices, and exactly one output, i.e., edge with no end
vertex. We allow therivial tree with no vertex

(directed from top to bottom).

For X € N-7Top we define theperadT X of grown trees orX as follows. An element
of TX (n) is atriple(9, f, g) consisting of a treé@ with | Inf| =n, a functionf assigning
to each vertex of 6 an elementk € X|in,|, and a bijectiorg :In(0) - n ={1,2,...,n}.
Here|M| denotes the cardinality of the s&t. We interpreteg as the permutation which
sends to j, if j is the label of théth input (we order the inputs from left to right). We give
T X (n) the obvious product topology, more precisely the function space topology, induced
by the vertex labels.

We usually suppresg andg from the notation and think of an element®X (n) as a
tree with vertices labelled byx € X|in, and inputs labelled by,1. ., n according tog.
Composition inT X

TX() X TX(ry) % --- X TX(rg) = TX(r1+ -+ 4 1)
(9;1//17"'71//11)'_)(/)

is defined as follows: First relabel the inputf with labelk e r; by r1 + -+ - +ri_1 + k,
then sticky; with all its (new) labels onto the input éfwith label;.

There is a right=,-operation orll’ X (n) given by (0, f,g) -0 = (0, f,o Lo g). Itis
easy to check that these data mdke an operad.

2.2. Relations. If X € N-7op, X-7op, or X-7op we can impose relations dhx:

(1) ForX e N-7op or X-7op with base point € X1 the following relation makes sense
for subtrees
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P~ |

(2) ForX € ¥-Topor X-Top we consider the following relation: Letbe a vertex of a
grown treed € T X (n) andé, the subtree (including all labels) consistinguo&nd all
directed paths ending in If v has labek - o, o € X, then for subtrees

The proof of the following result is straightforward. For details see [5, p. 31ff].

2.3. Theorem. The following functors are left adjoint to the corresponding forgetful func-
tors

N-7op— Opr, X—TX,

N-7op — Opr, X — TX/relation(2.2.1)

X-Top— Opr, X +— T X/relation (2.2.2)

X-Top — Opr, X — T X/relations(2.2.1), (2.2.2)

2.2. The operad of trees

The operad TX of treesis a modified version off’X. An element of TX(n)
is a quadruple(, f, g,h) consisting of a grown tre€d, f, g) and alength function
h:Edgesd — [0, 1] such that the inputs and the outputéhave lengths 1. As before
we suppresy, g, A from the notation. We givéFX the obvious topology defined by the
edge lengths and the vertex labels. Composition and the actions of the symmetric groups
are defined as i X; the new edges obtained via composition by sticking trees on inputs
getlengths 1. These data define an operad. An elemé@hYiis a non-trivial composite iff
an internal edge has length 1. The operad can be identified with the suboperadﬁk
of all trees having only edges of lenght 1.

2.4. Relations.

(1) Relation (2.2.1) has to be modified: f6re N-7op or X-7op we consider the relation
(*x € X (1) is the base point)
131
C% * ~ ‘max(tl,tg)
to

(1 andr are the lengths of the edges).
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(2) If X € Opr, we consider the following relation: An edge of length 0 may be shrunk
away by composing its vertices using the compositiofGin

2.5. Example. Let M be the operad of monoids ang, € M (n) then-fold multiplication.
In T M (3) we can consider the relation

1 3
H2 2

O ~J
K2 Ha

2.6. Definition. The bar construction for operadalso calledW-constructionis the con-
tinuous functor

W : Opr — Opr,
B T B/ (relations (2.2.2), (2.4.1), (2.4.2))

The unit of the adjunction
X-Tog = Opr
extends to a continuous natural map of operads
e=¢e(B).WB — B,

calledaugmentationby forgetting the length functions and composing. The counitinduces
a continuous section df1(¢)

n=n(B):U1(B) - U1(WB),

which we call thestandard sectiownf ¢.
If F1 denotes the left adjoint df1, thenF1U1(8B) can be identified with the suboperad
of W8 represented by trees having only edges of lenght 1.

2.7. Proposition. Ui () : Ur(W8B) — Uy (B) is a homotopy equivalence iB-7op with
homotopy inverse.

Proof. The mapi,: U1(WB) — Uy (W B) which replaces the lenghbf an internal edge,
i.e., an edge which is neither an input nor the output, byaxdefines a homotopy from
the identity(s =0)tono U1(e) (s=1). O

3. Homotopy structures
Since7op, the category7op* of basedk-spaces, and the category Gfspacesi a

discrete group, are complete and cocomplete, so are the catageti€pr in diagram 2.1.
The same is true faPpr (we will prove this below), and we know more:
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3.1. Proposition. Each of the topologically enriched categori€sof diagram 2.1 is
topologically complete and cocomplete, i.e., all weighted limits and colimits @wist
definitions sed6, 6.6]). In particular, it is tensored and cotensored, i.e., there are
continuous functors

Cx7op—C, (X,K)—» X®K,
C x Top? — C, (X, K)— XK,

and natural homeomorphisms
C(X®K,Y)=Top(K,C(X,Y))=C(X, YX).

Proof. Let C # Opr. SinceC is complete and cocomplete, it suffices to show thas
tensored and cotensored [6, 6.6.16]. The coteXdoiis the collection of function spaces
{7Top(K, X,); n € N} in each case with the obvious action &f, on 7op(K, X,,) if

C = X-Top or X-Top, and the null map as base point dop(K, X1) if C = X-Top
or X-Top.

ForC = N-7opor X-7op, the tensoX ® K is the collectionX,, x K; n € N} with the
trivial action onK if C = X-7op. If C = N-7op or ¥-7op, the tensor is the collection of
X, x K forn#1andX; A (K4) forn=1, whereK, = K U {x} with base point.

To prove the statement f@Ppr we apply [7, VII, 2.10]. We consider the continuous
adjunction

T:N-TopZz Opr:U

Opr is the category of algebras of the continuous motiadl’ on N-7op. By the enriched
version of [12, VI.2, Ex. 2] the functal creates all weighted limits. In particula®pr is
complete.

For the existence of weighted colimits it suffices to show that7T preserves reflexive
coequalizers, i.e., coequalizers

f h
X=Y—7Z

8
for which there is a morphism:Y — X such thatf ot = g o r =idy [7, VII, 2.10].
Being a left adjoin preserves coequalizers. So it remains showlhpiteserves reflexive
coequalizers. We show that creates reflexive coequalizers, which is enough. Given maps
f, g andr of operads, we form the coequalizerY — Z in N-7op and claim that it is the
coequalizer irOpr. We define composition i@ by

Zk X Zi]_ X X Zik g Zi1+“'+ik7
(WLl w]) = [yo 1@ -+ @ y)],

where[y] is the element it represented by € Y. SinceZ x Z;, x --- x Z;, is a quotient
of Y(k) x Y (i1) x - - - x Y (i), it suffices to show that this map is well-defined. kar X (k)
we have to prove that

[f)o(1® - ®y)]=[sx) o (1D ® )],
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the argument for the other factors is the same.

[fo® - ®y)]=[f()o(foty) @& for(y)]
=[f(xo(tGn® - ®1()))]
=[g(xo(tGD @ - - ®1(3)))]
=[g@o(m@ ]

Since composition itZ is defined by composing representatives, it follows that — Z
is a coequalizeri@pr. O

This proposition provides the categories with canonical cylinder functogs/ and
path space functors-)’. Hence we have the notions of homotopy, cofibrations, fibrations
and homotopy equivalences. The natural homeomorphisms of 3.1 imply, that the homotopy
relation defined using cylinders coincides with the one defined using path objects, and that
homotopy means homotopy through morphisms in the category in the usual sense.

3.2. Lemma.

(1) Closed cofibrations, fibrations, and homotopy equivalences define a proper closed
model structure in Quillen’s sen$&8] on X'-7op andN-7op.

(2) For each of the categories of diagral, cofibrations and homotopy equivalences
define a cofibration structure in the sense of DefinitBo® below. Dually, fibrations
and homotopy equivalences define a fibration structure. Moreover, all objects are
fibrant and cofibrant.

(1) follows from [22, Theorem 3] and its equivariant version, (2) is standard elementary
homotopy theory.

3.3. Definition. A cofibration categoryis a categoryC with an initial objecty and
two subcategoriesof- and weg, whose morphisms are callembfibrationsand weak
equivalencesespectively. Morphisms iof; N wez are calledtrivial cofibrations An
objectA is calledcofibrant if # — A is a cofibration, anéibrant, if each trivial cofibration
A — X has a retraction. The following axioms hold:

(C1) GivenA 4 B c, iftwo of f. g, g0 f are inweg, so is the third. Isomorphisms

are trivial cofibrations.
(C2) Pushouts along cofibrationgxist.

A—"—

7 I
Xl*> Ua B

If i is a (trivial) cofibration, so is.
(C3) Every map factors into a cofibration followed by a weak equivalence.
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(C4) Any objectX has a fibrant resolutioRX, i.e., there is a trivial cofibratioay : X —
RX with RX fibrant.

We callC proper, if the following additional axiom holds.

(P) In the pushout diagram of (C2),ifis a cofibration angf a weak equivalence, thefi
is a weak equivalence.

3.4. Remark. Proper cofibration categories are studied extensively in [2], where they are
simply called cofibration categories. Our present definition without Axiom (P) is due to
Majewski [13].

Letu: A — B be a cofibration in a cofibration category. We form the pushout

.

A pushout BUsB—"-=B

S

We factorV into a cofibration followed by a weak equivalence

BU,B—>C,B-">B

and call the triplgC4 B, i, p) arelative cylinder ofB rel A. This construction gives rise to
aninternal homotopy relatiomel A between map® — X underA.

The proofs of the following two results in [2] do not use Axiom (P) and hence hold for
our notion of cofibration category.

3.5. Proposition. If u: A — B is a cofibration andX is fibrant, then all cylindersel A
define the same homotopy relatioel A on the set of morphism8 — X under A.
Moreover, this homotopy relation is an equivalence relaf@nl.2.2].

3.6. Lifting Lemma. LetC be a cofibration category and
f

A—=X

| I

B———>Y

a commutative diagram id with p a weak equivalence between fibrant objects aad
cofibration. Then there exists a morphigmB — X uniquely up to homotopiel A, such
thathoi = fandpoh >~grelA [2, I.1.1].

On the categories of diagram 2.1 we now have an internal homotopy relatiérariding
from the cofibration category structures of Lemma 3.2(2) and the usual one arising from
the cylinder functor. We show that the two agree:
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3.7. Proposition. Letu : A — B be a cofibration in any of the categories of diagr@m.
Then the pushout

u®l

AR B®I
AR@x=A CaB

with the natural map8 U4 B — C4 B — B is a cylinder ofB rel A in the internal homo-
topy structure.

Proof. By [19] u ® I and(B U B) Uaua) A® I =B ® SPU, g0 A®I — B® I are
cofibrations. Hence the induced mBp4 B — C4 B is a cofibration and the induced map
C4B — B a homotopy equivalence by [2, 11.1.2].0

For the remainder of the section &&andD be two categories of diagram 2.1 linked by
a forgetful functor (we allow Id)

U:.C—D.

Adopting the terminology of relative homological algebra we define
3.8. Definition. A morphismf in C is called

(1) aD-fibration respectively @-equivalenceif U(f) is a fibration respectively a ho-
motopy equivalence i®,

(2) atrivial D-fibration, if it is a D-fibration and eD-equivalence,

(3) aD-cofibration if it has the left lifting property (LLP) for all trivialD-fibrations, and
trivial cofibration, if it is a D-cofibration and &-equivalence.

3.9. Warning. Not all cofibrations inC are C-cofibrations. IfC = N-7op or ¥'-7op the
closed cofibrations are precisely tifecofibrations. IfC = N-7op or X-7op, closed
cofibrations ofwell-pointedobjects areC-cofibrations, but there might be more. (Recall
that a space isvell-pointedif the inclusion of the base point is a closed cofibration.
A collection X = {X,; n € N} will be calledwell-pointedif X1 is well-pointed.)

In each categorg of diagram 2.1 the objects afecofibrant, because trivigl-fibrations
in C have sections.

SinceD-cofibrations are defined by a LLP, we obtain

3.10. Lemma. The class of>-cofibrations inC is closed under pushouts, arbitrary sums,
sequential colimits, and retracts in the category of morphisms.

3.11. Lemma. Let F: D — C be left adjointtoU and letV : D — £ be another forgetful
functor of diagran®.1 Then

(1) U and F preserve the homotopy relation and hence homotopy equivalences.



78 R.M. Vogt / Topology and its Applications 133 (2003) 69-87

(2) Every fibration inC is a D-fibration, everyD-cofibration inC is a cofibration.
(3) If fis an&-cofibration inD, thenF (f) is an&-cofibration inC.

Proof. Since(F, U) is an enriched adjoint paify preserves tensors, hence cylinders and
the homotopy relation, antf preserves cotensors, hence path objects and the homotopy
relation. Passage to adjoints shows ttigpreserves fibrations. Cofibrations are precisely
those morphisms which have the LLP for all morphis#is: Z/ — Z, induced by the
inclusionig: {0} — I. SinceZ© is a trivial D-fibration, eachD-cofibration is a cofibration.
Passage to adjoints implies statement (3.

3.12.Lemma. Leti: K — L be aclosed cofibration ifop and;j : A — B aD-cofibration
inC. Then

(j,i):A®LUsexk BRK > BQ®L

is aD-cofibration inC.

Proof. FirstletU # Idop. If p: X — Y is a trivial D-fibration, then so is
pxt vl xyx XK

by the k-space version of [21, Theorem 10] and its equivariant analogue, be¢ause
preserves cotensors and limits. Hence the adjoint diagram of

A®LUsgx B®K — =X

| lp

B®L Y

has a fillerh: B — X% whose adjointH : B ® L — X is the required filler of the given
diagram.

If U = Idopr we replace [21, Theorem 10] in the argument by [19, Corollary 2.8 and
Add. 3.6]. O

3.13. Relative Lifting Lemma. Given a commutative diagram @h

A—tox

|

BT>Y

with j a D-cofibration andp a D-equivalence, then there exists a morphisnB — X
uniquely up to homotopel A, suchthatio j = fandpoh >~ grel A.

Proof. Using the mapping path spa@ p) of p we factorp

p:X—S>P(p)—r>Y
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into a homotopy equivalence and a fibrationr. Observe that admits a retraction
g:P(p) — X such thatg o s =idy ands o g >~ idp, relX. Sinces is also aD-
equivalence and a D-fibration, the latter is a triviaD-fibration. So there is a morphism
k:B — P(p) suchthatr ok =g andko j =so f. The morphismh =gok:B — X
satisfieshio j =goso f=fandpoh=rosoqgok ~rok=grelA. Supposé’ is a
second such, consider the diagram

A®IUsgyr BRI —L>x

(j,i)i ll’
G

B®I Y

whereG is composed of the two homotopigs h >~ g >~ p o h'rel A and F is defined by
the constant homotopy ofi and the morphisma and#”’. Since(j, i) is aD-cofibration
by 3.12, the above argument gives a fillér B ® I — X, which is a homotopy red from
htoh'. O

3.14.Corollary. If j: A — B is aD-cofibration and &D-equivalence there is a retraction
r:B — Asuchthatoj=id4 andjor ~idgrelA. In particular, all objects areD-fibrant
in the sense 08.3

3.15. Corollary. If f is aD-cofibration andD-equivalence, then any pushout6fs so.

Proof. Let f be a pushout of . By 3.10 it remains to show that is aD-equivalence. By
3.11 and 3.14f is a cofibration and homotopy equivalence. Si@cgith cofibrations and
homotopy equivalences is a cofibration category (see 3.2,a homotopy equivalence,
hence aD-equivalence. O

3.16. Proposition.

(1) If C # Opr andD = X-Top or N-7op, then(C, D-cofibrations,D-equivalenceksis a
cofibration category with all objects fibrant.
(2) If C # Opr andD = N-7op or X-7op, the same holds for the full subcategories of
well-pointed objectgérecall the definition fron8.9).
Proof. So far we have verified all axioms except of (C3). So let us consider a morphism
fiM—>X

in C. The pair(X, f) is an object in the under categodf/C, and we have a forgetful
functor

Uy:M/C—C— D, X, HiUX)
with a left adjoint

Fy:D—-C— M/C, Y= MUF(Y).
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Let Tyy = Uy o Fyy denote the associated monad@nThe Godement resolution ¢X, f)
is the map of simplicial objects i /C

€1Bo(X, f) = (X, f)e
where(X, f), is the constant simplicial object and
Bi(X, f)=FuoTyoUyX, f).

The simplicial structure maps and the simplicial naaggre induced by the adjunction maps
of the pair(Fys, Upr). Moreover,Uys (¢) has a natural section

n:Um(X, fle > UnBe(X, f),

and there is a simplicial homotoyo Uy, (¢) =~ id.
We take the usual topological realization and obtain a candidate for the factorization
axiom

M
i f
le]
|Be(X, )l ———— =X

If C is one of the equivariant cases, we have an induggdaction on thekth
space|B. (X, f)|(k) = |Bs(X, f)(k)| of the collection|B,(X, f)|. In the based cases
|Bo(X, f)|(1) has a natural base point given by the base poimBjaX, f)(1) = (M U
FUX)(1).

We haveUy(|B.(X, )|) = |Upy(Bo(X, f))|, because the realization is formed in
N-7op. Since the realization commutes with produéfg;|¢| is a homotopy equivalence
in D. Hencele|, considered as morphism(h is aD-equivalence.

Let |B,(X, f)|™ denote the:-skeleton ofl B, (X, f)|. The canonical morphism

M — |Bu(X, )|© =Bo(X, f)=MUFUX

is aC-cofibration by 3.10 and 3.11, becaug& is C-cofibrant.

It remains to show thdtB, (X, /)|~ — |B.(X, f)|™ is aD-cofibration.

Let i:sB,(X, f) — B,(X, f) denote the subobject of degenerate elements. Then
|B.(X, f)|™ is obtained from|B.(X, f)|"~Y by attachingB,(X, f) x A" along
sBy(X, f) x A" U B, (X, f) x dA" in N-7op, where A" is the standard-simplex. In
view of 3.12 it suffices to show thdtis a D-cofibration. Each degeneragy is of the
form Fy (s)) with s/ : Tiy Lo U (X, f) — T o Un(X, f). Letj:JT toUn(X, f) —

Ty o Un(X, f) be the subobject defined by the, so thati = Fy(j). Since these
subobjects are maps whose domains are iterated pushoutByaneserves pushouts,
it suffices to show thaf is aD-cofibration inD.

Eachs] is a closed cofibration, and, by Lillig’s union theorem for cofibrations [10] and
its equivariant analogue [5, App. 2.7],is a closed cofibration and hencéacofibration
in D if D is X¥-7op or N-7op by [22, Proposition 1] and its equivariant version. If
D = X-Top or N-7op the same argument applies to the spaces in all grades except of
grade 1. Direct inspection shows that

M) — |Bo(X, /)| = X(1)
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is the reduced mapping cylinder constructiotVit= Id x-7,,» or Uz and the unreduced one

in the other cases with base point frae(1), if a base point is required. |B, (X, f)|(1)

is the unreduced mapping cylinder, th&f1) — |B.(X, f)|(1) is D-cofibrant by [22,
Proposition 1]. The same is true for the reduced mapping cylinder by [22, Proposition 9],
providedM andX are well-pointed. O

If C = Opr, our result is not quite as nice as Proposition 3.16, because we do not know
whether the pushout of well-pointed operads aloriB-aofibration is well-pointed. But
our result is good enough for all practical purposes.

3.17. Proposition. Let f : M — X be a morphism irDpr and M be well-pointed.

(1) If D =N-7op or X-7op, then f factors into aD-cofibration followed by aD-
equivalence.
(2) If D=N-Top or X-7op andX is well-pointed, the same holds.

Proof. We consider the internal realization@pr
—_— n ~
[BeX, Plop =, 50 Br X, ) © A"/

with the usual relations. By the argument of [17, 4.4] the internal realization coincides with
the usual one so thaB, (X, f)|opr = |B+(X, f)|. We now apply the argument of the proof
of 3.16 to this internal realization. In particular,

©

M — |B.(X, f)|0pr:MUFUX

is aD-cofibration.

To ensure that ead] is aD-cofibration inD we need to know that — Uy (M U FY)
is aD-cofibration forY € D, and thatl, preserved-cofibrations.

If D is unbasedy — UFY is a closed cofibration and hencéDacofibration. In the
based cases induction over the number of internal edges in the tree descrigtioislobws
that the same is true providédis well-pointed (relation 2.2.1 makes this extra condition
necessary). Moreover, the induction also showsth@&vt is well-pointed. Since/ is well-
pointed, the inclusio®/ FY — U (M U FY) is aD-cofibration. This follows by a similar
induction using the tree description of a sum of operads (e.qg., see [5, (2.15)(i),(ii),(iii)]).
Again we find that/ (M U FY) is well-pointed.

Finally, given aD-cofibrationB c Y in D (of well-pointed objects ifD is based) and
a well-pointed operad/, induction over the number of vertices which are noBiin the
tree descriptions shows that

UMUFB)->UMUFY)

is aD-cofibration.
We now proceed as in the proof of 3.16 using Lillig’s union theorem and the observation
that any cofibration is also a based cofibratiom
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3.18. Corallary. (Opr, D-cofibrations,D-equivalencessatisfies all axioms of a cofibra-
tion category except of possibly the factorization ax{@8), which is replaced by Propo-
sition 3.17. All operads areD-fibrant.

3.19. Definition. A D-cofibrant resolutiorof X in C is aD-cofibrant objectD X together
with aD-equivalenceyx : 0X — X.

SinceQX :=|B.(X,? — X)| — X is aD-cofibrant resolution, we get

3.20. Corollary. Given a forgetful functot/ : C — D of diagram?2.1, then

(1) if C # Opr, there is a functorialD-cofibrant resolutiorex : 0 X — X for eachX in C,

(2) if C = Opr and D = N-7op or X-7op, each operad has a functorid?-cofibrant
resolution,

(3) if C = Opr and D = N-7op or X¥-7op each well-pointed operad has a functorial
‘D-cofibrant resolution.

An inspection of0X = |B(X, ¥ — X)| shows
3.21.

(0) If U =Id¢, thenQX = X.

Q) f U =Uz or Us, then(QX), = X,, forn #1and(QX)1 = X;, the mapping cylinder
(I UXy)/~ of {x} > X1 with 1~ % and base poind e I.

(2) If U = Us or Uy, then (QX), = X, for n =0,1 and (0X), = B(X, X, X,),
the two sided barconstruction, for > 2. Recall that there is a¥,-equivariant
homeomorphism(X,,, X,, X,) = E X, x X,, with diagonalX,,-action onE X, x X,,.

(3) For U: X-Topg — N-7op the D-cofibrant resolutionQ X is a combination of(1)
and(2).

(4) If U =U1 and 8B is a well-pointed operad, the@ B is the cotriple resolution of3
associated with the adjoint pai#y, U1), which we mentioned in the introducti¢ag.,
see[1, p. 88])

3.22. Remark. We now have various notions of homotopydnLet C4A be a cylinder
object of A with respect to theD-structure (inOpr we have to assume that is well-
pointed to ensure the existence@fA). The Relative Lifting Lemma applied to

AUA——=AQ®I

L

C@A—)A

shows that homotopic morphisms gpehomotopic. Hence the standard homotopy relation
in C is finer than théD- homotopy relation.
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4. Universal E, operads

4.1. Theorem. Let U : X-Top — D be a forgetful functor of diagrar@.1 Let B8 be a
well-pointed operad such thaf; (8) is D-cofibrant in X-7op. Then

e(B):WB— B

is a D-cofibrant resolution ofB. In particular, W 8 is homotopy equivalent i@pr to the
cotriple resolutionQ 8 of 8 3.21(4)

Before we prove the theorem let us charactefzeofibrant objects in the categories
C # Opr.

4.2. Proposition.

(1) An objectX in X-7op or in N-7op is (X-7op)-respectivelyN-7op)-cofibrant iff
X1 is well-pointed.

(2) An objectX in X-7op is(N-7op)-cofibrant iff X,, is a numerable principak’, -space
forn > 2.

(3) X in X-Top is (N-7op)-cofibrant iff X1 is well-pointed andX,, is a numerable
principal X, -space fom > 2. SuchX are also(N-7op)-cofibrant.

Proof. (1) follows from [22, Proposition 1]. (3) is a consequence of (1) and (2). So
let X be in ¥-7op. Recall thatX, is a numerable principak,-space iff there is an
equivariant classifying max,, — EX,. Let EX denote the collectiodE X,,; n € N}

with EX1 = E X = %, and letX be (N-7op)-cofibrant. Since each X, — * is a trivial
fibration in7op, there is a lifth

7
h_ ~
—~

~

*

-

X
producing classifying maps, : X,, — EX,. Conversely, classifying maps, define a
section(#, id)

x"ey x> x

of the projection. Henc& is (N-7op)-cofibrant, being a retract af X x X, which is
(N-7op)-cofibrant by 3.21. O

Proof of 4.1. Define ther-skeletonW”8 of W8 to be the suboperad generated by
those elements which can be represented by trees with atsrmiastrnal edges. Then
WOB = F1 o U1(B), whereF; is left adjoint toU;. By 3.11 W8 is D-cofibrant. Since
W B = colim, W B, it remains to show that/’~18 c W" B is aD-cofibration.

Let A be an abstract planar tree withinternal edges and inputs as described in
Section 2. The spacH,, of elements il U+(8) with underlying treet is of the form

M, =1 x H,- B(n)™ x 2,
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if X hasm; vertices withn; inputs. Herel” codifies the lengths of the internal edges,
]_[j B(n;)™i codifies the vertex labels ari, the input labels.

Let A be the set of all trees which can be obtained frorby iterated application

of relation 2.2.2. We callA the shape orbitof A. We have a groups 4 acting on
M4 =, M., given as followsX, permutes the coordinates bf, Zm; and(an)’"/‘
act on8B(n;)"/ by permuting factors respectively by the right actionXf, on B(n;),
X, acts onX, by composition on the right. Le%, denote the subgroup df 4 generated
by all g € G 4 which mapM,, into itself and for which the labelled treesandg(A) are
related by a single application of relation 2.2.2.

A labelled treeA € M, represents an element Wi" 13 iff

(1) some vertex is an identity (relation 2.4.1 applies),
(2) some internal edge has length O (relation 2.4.2 applies),
(3) some internal edge has length 1 (tbedecomposes into smaller trees).

The subspac#/, C M, consisting of all labelled trees satisfying one of these conditions is
G,-invariant. Note that the orbit spac&s/ G, andM, / G, have right¥,-actions, defined
by (see Section 2)

[0, f,g.hl-m=[6, f,m  og,hl

We considerN, /G, and M, /G, as objects inX-7op, consisting of the base point in
grade 1 and the space§./G, respectivelyM, /G, in graden, all other grades being
empty. By constructiony” 8 may be identified with the following pushout ®pr

LI Fu(N,/G)) [, FL(My/Gy)
w1ls W' B

where x runs through a complete set of representatives of shape orbits of trees with
internal edges.

By 3.10 and 3.11 we have to show thét/ G, — M, /G, is aD-cofibration.

To combine the&5, -action with theX,,-action we decompose:

M= | Pro. whereP, , =1" x H,- B(n,;)" xo.

oex,

An elementg € G; mapsP; , to P, . with T =0 o p(g~1), wherep:G, — X, is
the homomorphism sending to its left action on the input labels. P&, = P, jq and
0, = N, N P,. Define aG,-action onP; by

Gy X Pp,—> M), — P,

where the first map is the restriction of thig -action onM; and the second is induced by
the homeomorphisms, , = P, which forget the input labels. In particular € P, and
g(A)- p(g™) € P ;-1 are related by 2.2.2.
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Letg : X — Y be atrivialU-fibration in X-7op. Consider a commutative diagram

NGy —T——= X,

E ~
~
-

M; /G ———=Y,

Define aG;-action onX,, by g - x = x - p(¢~1) and similarly onY,,. The diagram induces
a G, -equivariant commutative square

Qk4u>Xn

It suffices to construct & ,-equivariant fillers to obtain the required,-equivariant
filler A.

If U = Up, the filler i exists by the equivariant version of [22, Proposition 1], because
0, — P, is a closed5, -equivariant cofibration (see [5, App. 2]).

If U = Uz orUsoUs, then eachB (k) is a numerable principaly-space by assumption,
and we observe thak, and Q, are numerable principal,-spaces. In this casgis an
ordinary trivial fibration. The based cases do not cause problems be@ausmed P, are
well-pointed.

Let w: P, - EG, be a classifying map. We obtain @, -equivariant commutative
diagram

Qk (woj,u) EG)L x X,
jl J/(id,q)
p—"Y L EG;, x Y,

But (id,q): EG, x X, — EG, x Y, is a trivial fibration in the category of; -spaces.
Hence the last diagram has a filler.

This completes the proof of the first part of the theorem.

Since 8 is well-pointed, bothW 8 and Q8 are X-7op -cofibrant resolutions of3.
Hence they are homotopy equivalent by the Relative Lifting Lemnta.

Our results allow the construction of univerdal, operads.

4.3. Definition. An operadB is called anE ., operadif the unique morphisn8 — Com
into the operad of commutative monoids is @&+7op)-equivalence, i.e., if each space
B(n) is contractible.

An E,, operad®B is calleduniversalif for any E, operadC there is a map of operads
B — C, i.e., anyC-structure can be pulled back tagstructure.

Observe that our notion of afi,, operad differs from the one in [15] in so far as we do
not requireX'-freeness. In particulaomis E«.
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4.4. Proposition. Let B8 be an E,, operad and let2 — Com be an(N-7op)-cofibrant
resolution ofom. Then there is a functor of operagls— B uniquely up to homotopy in
Opr which makes

commute. In particular@ is universal. Any two such resolutiods are homotopy equi-
valent inOpr.

Proof. Apply the Relative Lifting Lemma. O

We know how to construct such resolutions. Starting with any op@raa first whisker
B(1) as in 3.21(1) to obtain an opera®l such that/z o U1(B’) is an(N-7op)-cofibrant
resolution ofUsz o U1(B) (cf. [4, p. 1120]). The composition ie8’ is the one inB for
elements inB, and for the new elemenis= I we define

fot=f it fél,

fo(fl@"'@f@"'@fn)
=fo(fid---@d®---@® fu) If f¢l,

tof=fot=max/,t) if fel.

In a second step we replace a well-pointed opefadsuch as8’) by the operad
B =8 x I', where I is the topological realization of the Barratt—Eccles operad, i.e.,
I'(n) = EX, (see [16, 8§4] for an explicit description). The projecti@— B is an
(N-7op)-cofibrant resolution ot/1(B).

Finally, from Theorem 4.1, we obtain

4.5. Proposition.

(1) If B is any operad, thefv 8’ is an (N-Top)-cofibrant resolution ofB.

(2) If B is a well-pointed operad, theW B is an (N-7op)-cofibrant resolution ofB.

(3) If B8 is awell-pointed operad such that ea@(n) is a numerable principak,-space,
thenW B is an (N-7op)-cofibrant resolution ofB.

4.6. Examples of universal E,-operads.

(1) LetI" be the Barratt—Eccles operad. Théh= Com and W I" is universal.

(2) Let @« be the infinite little cubes operad ¢#]. Q@ is well-pointed(see the proof
of [5, (2.50)]) Each spac&(r) is a numerable principal’,-space, because there
is a X,-equivariant map to the configuration spag&R>, n) which is a numerable
principal X, -space. Hencd/ @, is universal.

(3) LetL be the linear isometry operad ¢d]. £ is well-pointed and each spaa&n) is a
numerable principalX, -space(this follows from[7, Proposition1.4and Lemmal.7,
p. 199]) HenceW L is universal.
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