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Configuration-Spaces and Iterated Loop-Spaces 

Graeme Segal (Oxford) 

w 1. Introduction 

The object of this paper is to prove a theorem relating "configuration- 
spaces" to iterated loop-spaces. The idea of the connection between 
them seems to be due to Boardman and Vogt [2]. Part of the theorem 
has been proved by May [6]; the general case has been announced by 
Giffen [4], whose method is to deduce it from the work of Milgram [7]. 

Let C. be the space of finite subsets of ~n. It is topologized as the 
disjoint union LI C~,k, where C~, k is the space of subsets of cardinal k, 

k->0 
regarded as the orbit-space of the action of the symmetric group 2: k on 
the space ~n,k of ordered subsets of cardinal k, which is an open subset 
of R "k. 

There is a map from C. to O"S ~, the space of base-point preserving 
maps S"--,S ~, where S" is the n-sphere. One description of it (at least when 
n>  1) is as follows. Think of a finite subset c of ~ as a set of electrically 
charged particles, each of charge + 1, and associate to it the electric 
field E c it generates. This is a map Ec: R ~ -  c-.n~ ~ which can be extended 
to a continuous map Ec: RnUOO--,~nU~ by defining Ec(~)=oo if 
~ec, and Ec(oo)=0. Then E c can be regarded as a base-point-preserving 
map S"--,S", where the base-point is oo on the left and 0 on the right. 
Notice that the map c~-,Ec takes Cn, k into ~"Sntk), the space of maps of 
degree k. 

Our object is to prove that C. is an approximation to Q~ S ~, in the 
sense that the two spaces have composition-laws which are respected 
by the map C~-- , f l 'S  ~, and the induced map of classifying-spaces is a 
homotopy-equivalence. In view of the "group-completion" theorem of 
Barratt-Priddy-Quillen [1, 8] one can say equivalently that Cn, k--~nsn(k ) 
induces an isomorphism of integral homology up to a dimension tending 
to oo with k. But to make precise statements it is convenient to introduce 
a modification of the space C.. 

If u<=v in R, let R".,~ denote the open set )u, v( x R "-~ in R ~. Then 
Cn is homotopy-equivalent to the space 

C'n= {(c, t)e C n x n~: t>__o, cCFCo, t} , 
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which has an associative composition-law given by juxtaposition, i.e. 
(c, t). (c', t') = (c u T t c', t + t'), where T t: ~,no,t--* ~,~,,,+r, is translation. As a 
topological monoid C'~ has a classifying-space BC',. 

Theorem 1. B C'. ~- t2* - 1 S n, the (n - 1 )-fold loop-space of S ~. 

More generally, let X be a space with a good base-point denoted 
by 0. (That means that there exists a homotopy ht: X--*X(O < t < 1) such 
that ho=identity, ht(0)=0, and h1-1(0) is a neighbourhood of 0.) Let 
C. (X) be the space of finite subsets of F, n "labelled by X "  in the following 
sense. A point of C.(X) is a pair (c, x), where c is a finite subset of F, ~, 
and x: c--*X is a map. But (c, x) is identified with (c', x') i f ccc ' ,  x ' lc=x, 
and x '(~)=0 when ~ c .  

C.(X) is topologized as a quotient of the disjoint union 

LI ( ~.~ x xk)/s~. 
k>__O 

As before, Cn(X ) is homotopy-equivalent to a topological monoid 
C'n(X)c C.(X) x P,+, consisting of triples (c, x, t) such that t > 0  and 
C c ~ x n o ,  t . 

Theorem 2. B C'. (X) = t2 n- 1 S n X. 

Here S~X is the n-fold reduced suspension of X. Theorem 1 is 
Theorem 2 for the case X = S  ~ If X is path-connected so is C'.(X), and 

r then I2BC'.(X)= C~(X)-  C~(X), and one has 

Theorem 3. I f  X is path-connected Cn (X) ~- f2 ~ S" X. 

This has been proved by May [6]. 
Some other special cases are 

(a) If n=  1, C'n(X ) is equivalent to the free monoid M X  on X, in the 
sense that there is a homomorphism C'I(X)---*MX which is a homotopy- 
equivalence. Thus one obtains the theorem of James [5] that B M X " ,  SX. 

(b) If n=2,  C2, k is the classifying-space for the braid group Br k on k 
strings. Thus one has B( LI B(B rk))-~ OS 2. 

k~O 

(c) Because (~.,k is (n-2)-connected, being the complement of some 
linear subspaces of codimension n in F, *k, one has C~,k~BZ k as n~oo .  
This gives the theorem of Barratt-Priddy-Quillen that B( ]_[BE, k)", 
t2oo-1S~O" k_>O 

The theorems above do not mention a specific map between the 
configuration-spaces and the loop-spaces. I shall return to this question 
inw 
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w 2. Proofs 

Theorem 2 is obtained by induct ion from 

Proposition (2.1). B C'. (X)  ~- C~_ 1 (SX).  

For  C . _ I ( S X  ) is connected, so C~_I(SX)---C',_I(SX)~-K2BC'~_I(SX) 
~,~2Cn_2(S2 X )  ~, . . .  ~,~2 n-1 Co(SnX)=~-2n- l  s n x .  

The proof  of (2.1) is based on  the idea of a "part ia l  m o n o i d ' .  

Defini t ion(2.2) .  A par t ia l  mono id  is a space M with a subspace 
M 2 c M x M and  a map M 2 - * M ,  written (m, m') ~ m .  m', such that 

(a) there is an element 1 in M such that m. 1 and 1. m are defined for 
all m in M, and 1. m = m. 1 = m. 

(b) m. (m' m")=  (m. m'). m" for all m, m', m"  in M, in the sense that if 
one side is defined then the other is too, and  they are equal. 

A partial  monoid  M has a classifying-space B M ,  defined as follows. 
Let M k c M x ... x M be the space of composable k-tuples. The M k form 

~k~ 

a (semi)simplicial space, in which di: M k - ~ M k _  1 and si: MR--~Mk+ t are 
defined by 

di(m 1 . . . . .  ink) =(m 2 . . . .  , mR) if i = 0  

=(m I . . . . .  ml .mi+  1 . . . .  rrlk) if 0 < i < k  

= (m 1 . . . . .  ink_l )  if i = k  

si(m 1 . . . . .  m k ) = ( m  I . . . . .  mi,  1, m i + l , . . . , m k )  if O < i < k .  

B M  is defined as the realization of this simplicial space [9]. If M is 
actually a monoid  (i. e. if M 2 ---M x M) then B M  is the usual  classifying- 
space. On  the other  hand if M has trivial composi t ion (i. e. M 2 = M v M) 
then B M  = S M ,  the reduced suspension of M. 

The space C,_I(X)  can be regarded as a partial  monoid,  in which 
(c, x) and (c', x') are composable if and only if c and c' are disjoint, and 
then (c, x). (c', x') = (c u c', x w x'). 

Proposition (2.3). B C , _  1 (X)  ~- C~_ 1 (SX).  

Proof .  Write M = C , _ I ( X ) .  By definition B M  is a quot ient  of the 
disjoint un ion  of the spaces M R x d k for k>__0. Regard the s tandard 
simplex d k as {(t 1 . . . . .  t k ) e R k :  O < t  I < . . .  < t k <  1}. Define M k x d k--, 

C , _  1 ( S X )  by ((c l ,  xl) . . . . .  (Ck, Xk); t 1 . . . . .  tk) V-~ (C, ~), where c = U c i and 
Yc: c - ~ S X  takes P e c  i to (ti, x i ( P ) ) e S X .  

These maps induce a map B M - ~ C ~ _ t ( S X )  which is obviously sur- 
jective. It is injective because each point  of BM is representable in the 
above form with 0 < t 1 < . - -  < t k < 1, all ci non-empty,  and x i(ci) c X - {0}. 
It is a homeomorphism because one can define a cont inuous  inverse- 
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map, observing that C._I(SX ) is a quotient of the dispoint union for 
k > 0 of the spaces (~._ 1, k X X ~ x [0, 1] k, which map to M k x [0, 1] k. 

The partial monoid C._x(X ) is related to the monoid C',(X) by 
means of a sub-partial-monoid of the latter. Call an element (c, x, t) of 
C'. (X) projectable if c is mapped injectively by the projection 

P r2: o,t 
The projectable elements form a subspace which the composition-law 
of C'.(X) makes into a partial monoid. Projection defines a homo- 
morphism C"(X)-* C._ l(X), and elements of C~(X) are composable if 
and only if their images in C._ I(X) are. Furthermore C'~(X)-* C._ t(X) 
is a homotopy-equivalence (with inverse (c,x)~-~(s(c), x, 1), where s is 
any cross-section of pr2: F,~,t--~R"-I); and so is the map C'.'(X)k~ 
C._ l(X)k of spaces of composable k-tuples. Because the simplicial spaces 
in question are good (see Appendix2), this implies that BC'.'(X)~ 
BC._~(X). So to prove (2.1) it is enough to prove 

Proposition (2.4). The inclusion C"(X)-*C'.(X) induces a homotopy- 
equivalence of classifying-spaces. 

To prove (2.4) I shall use an alternative description of the classifying- 
space of a partial monoid M. Let ~(M) be the topological category [9] 
whose objects are the elements of M, and whose morphisms from m 
to m' are pairs of elements rex, m2eM such that ml.m.mE=m'. Thus 
ob (g (M)=M,  and m o r ~ ( M ) = M  3. Let ]~(M)I be the realization or 
"classifying space" of qf(M) in the sense of [9]. 

Proposition (2.5). leg (M)[ ~ BM. 

This is a particular case of a subdivision theorem for arbitrary 
simplicial spaces, proved in Appendix 1. For  the proof of (2.4) I shall use 
a modification of the category c~(C',(X)). Let Q be the ordered space 
whose points are 4-tuples (u,v; c, x), with u,v~R, u<O<=v, c a finite 
subset of ~ , ~ ,  and x: c---~X, subject to the usual equivalence-relation. 
It is ordered by defining (u,v;c.x)<(u',v';c' .x ')  if [u,v]~[u',v'], 
c = c' c~ ([u, v] x ~ " -  1), and x'lc = x. Thinking of the topological ordered 
set Q as a topological category, define a functor n: Q-*cf(C',(X)) by 
(u, v; c , x ) ~ ( T  ,c, x, v-u) .  

Lemma(2.6). In]: IQl--,l~(c.(x))l is shrinkable [3] (i.e. it has a 
section s such that s I~l -~ identity by a homotopy h t for which I~l h, = I~1). 

Proof. Using the homomorphism of monoids C',(X)---~F,+ which 
takes (c, x, t) to t one can regard Q as the fibre-product (of categories) 
~(C'.(X)) x ~0x+)J, where J is the space of intervals [u, v] with u<O<v 
ordered by inclusion. Forming the nerve commutes with fibre-products. 
But IJl-- , l~e(n~+)l  is easily seen to be shrinkable; so Inl is shrinkable. 
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Continuing the proof of (2.4), if P is the sub-ordered-space of Q 
consisting of all (u, v; c, x) with c projectable then n(P)=c~(C~(X)); so it 
will be enough to show that IPI~IQI is a homotopy-equivalence. Heur- 
istically this is so because P is co-initial in Q, i.e. for each q e Q there is a 
pep  such that p < q, and if Pl < q and P2 <q  there is a Pa eP  such that 
Pa <Pl  and P3 <P2. But some further conditions are needed, and I shall 
use the following ad hoc lemma. 

Proposition (2.7). Let Q be a good ordered space such that 
(a) ql n q2 =inf(ql ,  q2) is defined whenever there exists q eQ such that 

ql < q and q2 < q, and 
(b) ql c~ q2 depends continuously on (ql, q2) where defined. 

Let Qo be an open subspace of Q such that if qeQ and peQo and 
q<p then qeQo. Suppose there is a numerable covering [3] U={U~} of 
Q, and maps f~: U~---~ Qo such that f~(q)<q for all qe U~. 

Then IQol---'IQt is a homotopy-equivalence. 

In the application of (2.7) Q is as above. Using the fact that X has a 
good base-point, choose a homotopy h,: X--* X such that h 0 is the identity 
and h~-t(0) is a neighbourhood of 0. This induces ht: Q--~Q. Let Qo = 
h{l(P), a neighbourhood of P. One might call Qo the "almost  pro- 
jectable" elements of Q. Obviously IPI---' IQ01 is a homotopy-equivalence, 
with inverse induced by h t. But Qo and Q satisfy the hypotheses of (2.7)- 
it is proved in Appendix 2 that Q is good. Thus (2.4) is proved modulo (2.7). 

The proof of (2.7) would be almost trivial if one could choose the 
maps f ,  compatibly so as to get a continuous map Q--'Qo. In general it 
depends on the fact that one does not change the homotopy-type of a 
topological category by breaking apart the space of objects into the sets 
of a numerable covering and introducing isomorphism between the 
reduplicated objects. To be precise, if C is a topological category, and 
U =  {U~}~ A is a numerable covering of ob(C), then the disintegration of 
C by U is the topological category ~ whose objects are pairs (x, ~t) with 
aeA and xe  U~, and whose morphisms (x, ct)~(x', ~') are the morphisms 
from x to x' in C. Thus ob(t~)= LI u~ and m o r ( ~ ) =  LI v~#, where V~# 

consists of the elements of mor(C) with source in U~ and target in U#. 

Preposition (2.8). I f  C is a topological category, U is a numerable 
covering of ob(C), and ~ is the disintegration of C by U, then the pro- 
jection I~I~ICI  is shrinkable. 

Proof. Let {Ck}k~O be the simplicial space associated to C (i.e. 
C0=ob(C),  C 1 =mor(C) ,  etc.), and let {~k}k~O be that associated to d. 
Then ~k =(~o)  k+l x tco~k+ 1 C~. Now for any space Ythere is a simplicial 
space {Yk+l}k~ 0 whose realization is a contractible space called EY [9]. 
15" 
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Because realization commutes with fibre-products ]~l = E(~o x EcolCI, 
and it is enough to show that E(~o~EC o is shrinkable. But {EU~}~ A is 
a numerable covering of EC o over which E~o~EC o is shrinkable, so 
the result follows from [31. 

Proof of (2.7). Let p: 0 ~ Q  be the disintegration associated to U. 
is a preordered space. The f~ define a map f:  Q---'Qo such that f (C)< 

P(C) for all CE~. Let chn(~) be the space of finite chains of ~ ordered by 
inclusion (cf. Appendix2). Define F: chn(O)---,Qo by (Co < . . . < C k ) ~  
inf(f(Co) . . . . .  f(Ck)). This is order-preseryin~ and F(cr) < r chn (p) (a) for 
a~chn(Q), where r: chn(Q)---,~ is (Co < . . .  <Ck)~Co. As Irl is a homo- 
topy-equivalence by Appendix 2, and IPl, and so Ichn (P)I, is one by (2.8), 
and IF I-----Irl I chn (P)I by 1-9] (), it follows that the composite I chn (Q)I- '  
I Qo 1--* I QI is a homotopy-equivalence. Similarly the composite I chn (~0)1--' 
Ichn(~)l---'lQ0] is a homotopy-equivalence; and so IQ01--'IQI is one, as 
desired. 

w 3. The Map C.(X)----~2"S'X 
Despite its picturesqueness the electrostatic map described in w 1 is 

not very convenient in practice. It is homotopic, however, to the follow- 
ing map. Let D,,(X) be the space of finite sets of disjoint open unit disks 
in R", labelled by X. (This is a closed subset of C.(X), and obviously a 
deformation retract of it.) Choose a fixed map f of degree 1 from a 
standard disk D to S", taking the boundary to the base-point. Then 
associate to a point ({i~: D---,R"}~,r x: c--,X) of D.(X) the map 
ok: R"u~---,S"X defined by 

dp(~)=(fi~l(C),x(oO) if Ceil(D), and 

=base-point  otherwise. 

Regard q~ as a point of 12"S"X. 
D.(X) can be regarded as a partial monoid in n different ways, the 

composition in each case being superimposition, but two sets of disks 
being composable for the i-th law if and only if they are separated by a 
hyperplane perpendicular to the i-th coordinate direction. These com- 
position-laws are compatible in the sense that each is a homomorphism 
for the others, so one can use each of them in turn and thus define an 
n-fold classifying-space B"Dn(X ). There is a map X----,D.(X) taking x to 
the unit disk at the origin labelled by x. Giving X n trivial composition- 
laws (so that B"X=S'X), X--,D.(X) is a homomorphism for all n laws, 
and induces S"X--,B"D.(X). Evidently what was proved in w was that 
S" X--, B" D.(X). 

On the other hand the space of maps ~b: g"woo--*S"X also has n 
partial composition-laws. Define support (ok)= r {0}). Then ~b 1 



Configuration-Spaces and Iterated Loop-Spaces 219 

and ~2 are composable for the i-th law if their supports are separated by 
a hyperplane perpendicular to the i-th axis, and the composite is in any 
case given by "union".  The map X - . ~ I " S " X  is an n-fold homomorphism, 
so induces S" X ~ B" Q" S" X ,  which one knows classically to be a homo- 
topy-equivalence. But the map D. (X)---,(I" S "X  defined above is an n-fold 
homomorphism, and the diagram 

X 

/ \  
D.(X)--+~" S" X 

commutes. So D . ( X ) ~ " S " X  induces an isomorphism of classifying- 
spaces, as desired. 

Appendix 1. The Edgewise Subdivision of a Simplicial Space 

This is more or less due to Quillen. 

The standard n-simplex A"= {(q . . . . .  t.) e F,": 0 < t 1 ~ . . .  < t.  < 1 } can 
be subdivided into 2" n-simplexes corresponding to the 2" possible 
orders in which the 2" numbers (tx, . . . ,tn; 1 - t  . . . . . .  l - t  0 can occur 
in [0, 1]. When n = 2  the diagram is 

11 

00 02 22 

In general one puts a new vertex P~ at the mid-point of each edge P, Pss of 
A", the original vertices being denoted P,(O<i<n).  And P~oSo . . . . .  P~ksk 
span a simplex of the subdivision if i o >=... > i k and Jo <""  <=Jk" 

This subdivision of a simplex, being functorial for simplicial maps, 
induces a subdivision of IA[ for any simplicial space A. Thereby [A[ is 
expressed as the realization of a simplicial space B such that B, = A 2.+ 1. 
To be precise, let A be the category of finite ordered sets, so that A is a 
contravariant functor from A to spaces. There is a functor T: A--~A 
which takes the set {~o . . . . .  ~,} with n +  1 elements to the set {~0 . . . . .  ~,, 
�9 ', . . . .  , ~ }  with 2 n + 2  elements, ordered as written. Then B is A.  T. 

Proposition (A.1). For any simplicial space A, [A[-~ [A. T[. 

Proof. To write down maps [A[~ [A. T[, observe that the 2" simplexes 
into which A" is subdivided can be indexed A"0, where 0 runs through a 
set of 2" maps [ 2 n +  1]-- , [n] ;  and A"o is the image of the composition 
O. i, w h e r e i : A " - . A 2 " + l i s ( t l , . . . , t . ) ~ . ( � 8 9  . . . .  ,-~t.,-~,ll 1 _ x  t2 . , . . - ,  1 - �89  
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Then the maps A2n+l x dn--~A2n+l x A 2n+l given by (a, ~)~-~(a,i~) 
induce IA 'TI~IAI ;  and the maps AnXAno---~A2n+lxA " given by 
(a, O, i r ~--~(0" a, ~) induce its inverse. 

Appendix 2. Good Simplicial Spaces 
Goodness is a condition on a simplicial space which ensures that its 

realization has convenient properties. (May [6] uses "strictly proper" 
for a similar idea.) I have discussed the condition at greater length in [10]. 

First observe that for any simplicial space A={An} there are n 
distinguished subsets An, ~ ( l < i < n )  in An, homeomorphic images of 
An_ 1 by the degeneracy maps s~: A,_I---~A n. 

Definition. A simplicial space A is good if for each n there exists a 
homotopy ft: An-~An(O< t< 1) such that 

(i) fo =identity 
(ii) f t ( A n , ) c A ,  i for l <_i<_n 

(iii) f l -  1 (A,, i) is a neighbourhood of An, i in A n for 1 <- i < n. 
Two results about good simplicial spaces are used in this paper. 

They are proved in [10]. 

Proposition (A.1). I f  dp: A--~B is a map of  good simplicial spaces, and 
dpn: An--~B n is a homotopy-equivalence for each n then I f  S: Ial-*lBI is a 
homotopy-equivalence. 

To state the second result one first associates to a simplicial space A 
a topological category simp(A). Its objects are pairs (n, a), where n > 0  
and aEAn, and its morphisms (n,a)-*(m, b) are morphisms 0: [n] -~[m] 
in d such that 0* b = a. Thus 

ob(simp(A))= i_[ An, and mor(simp(A))= I_I Am. 
n_~ 0 O: [n]~ [m] 

There is a natural map lsimp(A)l---~IAl. 

Proposition (A.2). I f  A is a good simplicial space, Isimp(A)l-~IAt is a 
homotopy-equivalence. 

In the case occurring in this paper A is the simplicial space arising 
from an ordered space Q. Then simp(A) is precisely chn(Q), the space of 
f'mite chains q0 < "'"-~q~ in Q, ordered by inclusion; and Isimp(A)l~lAI 
is induced by the order-reversing map (qo ~ " "  < q~)v-~ q0. 

I call a monoid, partial monoid, category, ordered space, etc., good 
if it gives rise to a good simplicial space. One needs to know that the 
condition holds for all the examples arising in the paper. Notice first: 
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1. A mono id  is good if and only if it is locally contractible at 1. 

2. A ne ighbourhood  of the identity in a good monoid  is a good 
partial  monoid.  

3. The edgewise subdivision of a good simplicial space is good. 

Now we must consider  in turn C,_I(X), C',(X), C"(X), Q. Because X 
has a good base-point  there is a homotopy  hi: X---,X such that ho=id, 
hi - l (0 )=U,  a ne ighbourhood  of  0. The map  ht: C,_I(X)---,C,_I(X) 
contracts a ne ighbourhood  of the identity through par t ia l -monoid-  
homomorphisms ,  proving C~_I(X ) is good. On  the other  hand C'~(U) is 
a contract ible ne ighbourhood  of  the identity in C',(X), so the latter is 
good. F o r  the same reason h{ ~ C"(X) is good. But this is homotopy-  
equivalent  to C'~'(X) as partial monoid, so C'~'(X) is good. Finally Q is 
good because Q---,c~(C'~(X)) is shrinkable. 
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