Configuration-Spaces and Iterated Loop-Spaces

Graeme Segal (Oxford)

§ 1. Introduction

The object of this paper is to prove a theorem relating "configurationspaces" to iterated loop-spaces. The idea of the connection between them seems to be due to Boardman and Vogt [2]. Part of the theorem has been proved by May [6]; the general case has been announced by Giffen [4], whose method is to deduce it from the work of Milgram [7].

Let C_{n} be the space of finite subsets of \mathbb{R}^{n}. It is topologized as the disjoint union $\coprod_{k \geqq 0} C_{n, k}$, where $C_{n, k}$ is the space of subsets of cardinal k, regarded as the orbit-space of the action of the symmetric group Σ_{k} on the space $\tilde{C}_{n, k}$ of ordered subsets of cardinal k, which is an open subset of $\mathbb{R}^{n k}$.

There is a map from C_{n} to $\Omega^{n} S^{n}$, the space of base-point preserving maps $S^{n} \rightarrow S^{n}$, where S^{n} is the n-sphere. One description of it (at least when $n>1$) is as follows. Think of a finite subset c of \mathbb{R}^{n} as a set of electrically charged particles, each of charge +1 , and associate to it the electric field E_{c} it generates. This is a map $E_{c}: \mathbb{R}^{n}-c \rightarrow \mathbb{R}^{n}$ which can be extended to a continuous map $E_{c}: \mathbb{R}^{n} \cup \infty \rightarrow \mathbb{R}^{n} \cup \infty$ by defining $E_{c}(\xi)=\infty$ if $\xi \in c$, and $E_{c}(\infty)=0$. Then E_{c} can be regarded as a base-point-preserving map $S^{n} \rightarrow S^{n}$, where the base-point is ∞ on the left and 0 on the right. Notice that the map $c \mapsto E_{c}$ takes $C_{n, k}$ into $\Omega^{n} S^{n}{ }_{(k)}$, the space of maps of degree k.

Our object is to prove that C_{n} is an approximation to $\Omega^{n} S^{n}$, in the sense that the two spaces have composition-laws which are respected by the map $C_{n} \rightarrow \Omega^{n} S^{n}$, and the induced map of classifying-spaces is a homotopy-equivalence. In view of the "group-completion" theorem of Barratt-Priddy-Quillen $[1,8]$ one can say equivalently that $C_{n, k} \rightarrow \Omega^{n} S^{n}{ }_{(k)}$ induces an isomorphism of integral homology up to a dimension tending to ∞ with k. But to make precise statements it is convenient to introduce a modification of the space C_{n}.

If $u \leqq v$ in \mathbb{R}, let $\mathbb{R}_{u, v}^{n}$ denote the open set $) u, v\left(\times \mathbb{R}^{n-1}\right.$ in \mathbb{R}^{n}. Then C_{n} is homotopy-equivalent to the space

$$
C_{n}^{\prime}=\left\{(c, t) \in C_{n} \times \mathbb{R}: t \geqq 0, c \subset \mathbb{R}_{0, t}^{n}\right\},
$$

which has an associative composition-law given by juxtaposition, i.e. $(c, t) .\left(c^{\prime}, t^{\prime}\right)=\left(c \cup T_{t} c^{\prime}, t+t^{\prime}\right)$, where $T_{t}: \mathbb{R}_{0, t}^{n} \rightarrow \mathbb{R}_{t, t+t^{\prime}}^{n}$ is translation. As a topological monoid C_{n}^{\prime} has a classifying-space $B C_{n}^{\prime}$.

Theorem 1. $B C_{n}^{\prime} \simeq \Omega^{n-1} S^{n}$, the $(n-1)$-fold loop-space of S^{n}.
More generally, let X be a space with a good base-point denoted by 0 . (That means that there exists a homotopy $h_{t}: X \rightarrow X(0 \leqq t \leqq 1)$ such that $h_{0}=$ identity, $h_{t}(0)=0$, and $h_{1}^{-1}(0)$ is a neighbourhood of 0 .) Let $C_{n}(X)$ be the space of finite subsets of \mathbb{R}^{n} "labelled by X " in the following sense. A point of $C_{n}(X)$ is a pair (c, x), where c is a finite subset of \mathbb{R}^{n}, and $x: c \rightarrow X$ is a map. But (c, x) is identified with $\left(c^{\prime}, x^{\prime}\right)$ if $c \subset c^{\prime}, x^{\prime} \mid c=x$, and $x^{\prime}(\xi)=0$ when $\xi \notin c$.
$C_{n}(X)$ is topologized as a quotient of the disjoint union

$$
\coprod_{k \geq 0}\left(\tilde{C}_{n, k} \times X^{k}\right) / \Sigma_{k} .
$$

As before, $C_{n}(X)$ is homotopy-equivalent to a topological monoid $C_{n}^{\prime}(X) \subset C_{n}(X) \times \mathbb{R}_{+}$, consisting of triples ($\left.c, x, t\right)$ such that $t \geqq 0$ and $c \subset \mathbb{R}^{n}{ }_{0,2}$.

Theorem 2. $B C_{n}^{\prime}(X) \simeq \Omega^{n-1} S^{n} X$.
Here $S^{n} X$ is the n-fold reduced suspension of X. Theorem 1 is Theorem 2 for the case $X=S^{0}$. If X is path-connected so is $C_{n}^{\prime}(X)$, and then $\Omega B C_{n}^{\prime}(X) \simeq C_{n}^{\prime}(X) \simeq C_{n}(X)$, and one has

Theorem 3. If X is path-connected $C_{n}(X) \simeq \Omega^{n} S^{n} X$.
This has been proved by May [6].
Some other special cases are
(a) If $n=1, C_{n}^{\prime}(X)$ is equivalent to the free monoid $M X$ on X, in the sense that there is a homomorphism $C_{1}^{\prime}(X) \rightarrow M X$ which is a homotopyequivalence. Thus one obtains the theorem of James [5] that $B M X \simeq S X$.
(b) If $n=2, C_{2, k}$ is the classifying-space for the braid group $B r_{k}$ on k strings. Thus one has $B\left(\coprod_{k \geq 0} B\left(B r_{k}\right)\right) \simeq \Omega S^{2}$.
(c) Because $\tilde{C}_{n, k}$ is ($n-2$)-connected, being the complement of some linear subspaces of codimension n in $\mathbb{R}^{n k}$, one has $C_{n, k} \rightarrow B \Sigma_{k}$ as $n \rightarrow \infty$. This gives the theorem of Barratt-Priddy-Quillen that $B\left(\coprod_{k \geqq 0} B \Sigma_{k}\right) \simeq$
$\Omega^{\infty-1} S^{\infty}$.

The theorems above do not mention a specific map between the configuration-spaces and the loop-spaces. I shall return to this question in § 3 .

§ 2. Proofs

Theorem 2 is obtained by induction from
Proposition (2.1). $B C_{n}^{\prime}(X) \simeq C_{n-1}(S X)$.
For $C_{n-1}(S X)$ is connected, so $C_{n-1}(S X) \simeq C_{n-1}^{\prime}(S X) \simeq \Omega B C_{n-1}^{\prime}(S X)$ $\simeq \Omega C_{n-2}\left(S^{2} X\right) \simeq \cdots \simeq \Omega^{n-1} C_{0}\left(S^{n} X\right)=\Omega^{n-1} S^{n} X$.

The proof of (2.1) is based on the idea of a "partial monoid".
Definition(2.2). A partial monoid is a space M with a subspace $M_{2} \subset M \times M$ and a map $M_{2} \rightarrow M$, written $\left(m, m^{\prime}\right) \mapsto m \cdot m^{\prime}$, such that
(a) there is an element 1 in M such that $m .1$ and $1 . m$ are defined for all m in M, and $1 . m=m .1=m$.
(b) $m \cdot\left(m^{\prime} m^{\prime \prime}\right)=\left(m \cdot m^{\prime}\right) . m^{\prime \prime}$ for all $m, m^{\prime}, m^{\prime \prime}$ in M, in the sense that if one side is defined then the other is too, and they are equal.

A partial monoid M has a classifying-space $B M$, defined as follows. Let $M_{k} \subset M \times \cdots \times M$ be the space of composable k-tuples. The M_{k} form a (semi)simplicial space, in which $d_{i}: M_{k} \rightarrow M_{k-1}$ and $s_{i}: M_{k} \rightarrow M_{k+1}$ are defined by

$$
\begin{aligned}
d_{i}\left(m_{1}, \ldots, m_{k}\right) & =\left(m_{2}, \ldots, m_{k}\right) & & \text { if } \mathrm{i}=0 \\
& =\left(m_{1}, \ldots, m_{i}, m_{i+1}, \ldots m_{k}\right) & & \text { if } 0<i<k \\
& =\left(m_{1}, \ldots, m_{k-1}\right) & & \text { if } i=k \\
s_{i}\left(m_{1}, \ldots, m_{k}\right) & =\left(m_{1}, \ldots, m_{i}, 1, m_{i+1}, \ldots, m_{k}\right) & & \text { if } 0 \leqq i \leqq k .
\end{aligned}
$$

$B M$ is defined as the realization of this simplicial space [9]. If M is actually a monoid (i.e. if $M_{2}=M \times M$) then $B M$ is the usual classifyingspace. On the other hand if M has trivial composition (i.e. $M_{2}=M \vee M$) then $B M=S M$, the reduced suspension of M.

The space $C_{n-1}(X)$ can be regarded as a partial monoid, in which (c, x) and $\left(c^{\prime}, x^{\prime}\right)$ are composable if and only if c and c^{\prime} are disjoint, and then $(c, x) .\left(c^{\prime}, x^{\prime}\right)=\left(c \cup c^{\prime}, x \cup x^{\prime}\right)$.

Proposition (2.3). $B C_{n-1}(X) \cong C_{n-1}(S X)$.
Proof. Write $M=C_{n-1}(X)$. By definition $B M$ is a quotient of the disjoint union of the spaces $M_{k} \times \Delta^{k}$ for $k \geqq 0$. Regard the standard simplex Δ^{k} as $\left\{\left(t_{1}, \ldots, t_{k}\right) \in \mathbb{R}^{k}: 0 \leqq t_{1} \leqq \cdots \leqq t_{k} \leqq 1\right\}$. Define $M_{k} \times \Delta^{k} \rightarrow$ $C_{n-1}(S X)$ by $\left(\left(c_{1}, x_{1}\right), \ldots,\left(c_{k}, x_{k}\right) ; t_{1}, \ldots, t_{k}\right) \mapsto(c, \tilde{x})$, where $c=U c_{i}$ and $\tilde{x}: c \rightarrow S X$ takes $P \in c_{i}$ to $\left(t_{i}, x_{i}(P)\right) \in S X$.

These maps induce a map $B M \rightarrow C_{n-1}(S X)$ which is obviously surjective. It is injective because each point of $B M$ is representable in the above form with $0<t_{1}<\cdots<t_{k}<1$, all c_{i} non-empty, and $x_{i}\left(c_{i}\right) \subset X-\{0\}$. It is a homeomorphism because one can define a continuous inverse-
map, observing that $C_{n-1}(S X)$ is a quotient of the dispoint union for $k \geqq 0$ of the spaces $\tilde{C}_{n-1, k} \times X^{k} \times[0,1]^{k}$, which map to $M_{k} \times[0,1]^{k}$.

The partial monoid $C_{n-1}(X)$ is related to the monoid $C_{n}^{\prime}(X)$ by means of a sub-partial-monoid of the latter. Call an element (c, x, t) of $C_{n}^{\prime}(X)$ projectable if c is mapped injectively by the projection

$$
p r_{2}: \mathbb{R}_{0, t}^{n} \rightarrow \mathbb{R}^{n-1} .
$$

The projectable elements form a subspace which the composition-law of $C_{n}^{\prime}(X)$ makes into a partial monoid. Projection defines a homomorphism $C_{n}^{\prime \prime}(X) \rightarrow C_{n-1}(X)$, and elements of $C_{n}^{\prime \prime}(X)$ are composable if and only if their images in $C_{n-1}(X)$ are. Furthermore $C_{n}^{\prime \prime}(X) \rightarrow C_{n-1}(X)$ is a homotopy-equivalence (with inverse $(c, x) \mapsto(s(c), x, 1)$, where s is any cross-section of $p r_{2}: \mathbb{R}_{0, t}^{n} \rightarrow \mathbb{R}^{n-1}$); and so is the map $C_{n}^{\prime \prime}(X)_{k} \rightarrow$ $C_{n-1}(X)_{k}$ of spaces of composable k-tuples. Because the simplicial spaces in question are good (see Appendix 2), this implies that $B C_{n}^{\prime \prime}(X) \xlongequal{\Rightarrow}$ $B C_{n-1}(X)$. So to prove (2.1) it is enough to prove

Proposition (2.4). The inclusion $C_{n}^{\prime \prime}(X) \rightarrow C_{n}^{\prime}(X)$ induces a homotopyequivalence of classifying-spaces.

To prove (2.4) I shall use an alternative description of the classifyingspace of a partial monoid M. Let $\mathscr{C}(M)$ be the topological category [9] whose objects are the elements of M, and whose morphisms from m to m^{\prime} are pairs of elements $m_{1}, m_{2} \in M$ such that $m_{1} \cdot m \cdot m_{2}=m^{\prime}$. Thus $\operatorname{ob}_{\mathscr{C}}(M)=M$, and $\operatorname{mor} \mathscr{C}(M)=M_{3}$. Let $|\mathscr{C}(M)|$ be the realization or "classifying space" of $\mathscr{C}(M)$ in the sense of [9].

Proposition (2.5). $|\mathscr{C}(M)| \cong B M$.
This is a particular case of a subdivision theorem for arbitrary simplicial spaces, proved in Appendix 1. For the proof of (2.4) I shall use a modification of the category $\mathscr{C}\left(C_{n}^{\prime}(X)\right)$. Let Q be the ordered space whose points are 4-tuples ($u, v ; c, x$), with $u, v \in \mathbb{R}, u \leqq 0 \leqq v, c$ a finite subset of $\mathbb{R}_{u, v}^{n}$, and $x: c \rightarrow X$, subject to the usual equivalence-relation. It is ordered by defining $(u, v ; \mathbf{c} . x) \leqq\left(u^{\prime}, v^{\prime} ; c^{\prime} . x^{\prime}\right)$ if $[u, v] \subset\left[u^{\prime}, v^{\prime}\right]$, $c=c^{\prime} \cap\left([u, v] \times \mathbb{R}^{n-1}\right)$, and $x^{\prime} \mid c=x$. Thinking of the topological ordered set Q as a topological category, define a functor $\pi: Q \rightarrow \mathscr{C}\left(C_{n}^{\prime}(X)\right)$ by $(u, v ; c, x) \mapsto\left(T_{-u} c, x, v-u\right)$.

Lemma (2.6). $|\pi|:|Q| \rightarrow\left|\mathscr{G}\left(C_{n}(X)\right)\right|$ is shrinkable [3] (i.e. it has a section s such that $s|\pi| \simeq$ identity by a homotopy h_{t} for which $\left.|\pi| h_{t}=|\pi|\right)$.

Proof. Using the homomorphism of monoids $C_{n}^{\prime}(X) \rightarrow \mathbb{R}_{+}$which takes (c, x, t) to t one can regard Q as the fibre-product (of categories) $\mathscr{C}\left(C_{n}^{\prime}(X)\right) \times_{\mathscr{(}\left(\mathbb{R}_{+}\right)} \mathscr{J}^{\prime}$, where \mathscr{J} is the space of intervals $[u, v]$ with $u \leqq 0 \leqq v$ ordered by inclusion. Forming the nerve commutes with fibre-products. But $|\mathscr{I}| \rightarrow\left|\mathscr{C}\left(\mathbb{R}_{+}\right)\right|$is easily seen to be shrinkable; so $|\pi|$ is shrinkable.

Continuing the proof of (2.4), if P is the sub-ordered-space of Q consisting of all $(u, v ; c, x)$ with c projectable then $\pi(P)=\mathscr{C}\left(C_{n}^{\prime \prime}(X)\right)$; so it will be enough to show that $|P| \rightarrow|Q|$ is a homotopy-equivalence. Heuristically this is so because P is co-initial in Q, i.e. for each $q \in Q$ there is a $p \in P$ such that $p \leqq q$, and if $p_{1} \leqq q$ and $p_{2} \leqq q$ there is a $p_{3} \in P$ such that $p_{3} \leqq p_{1}$ and $p_{3} \leqq p_{2}$. But some further conditions are needed, and I shall use the following ad hoc lemma.

Proposition (2.7). Let Q be a good ordered space such that
(a) $q_{1} \cap q_{2}=\inf \left(q_{1}, q_{2}\right)$ is defined whenever there exists $q \in Q$ such that $q_{1} \leqq q$ and $q_{2} \leqq q$, and
(b) $q_{1} \cap q_{2}$ depends continuously on $\left(q_{1}, q_{2}\right)$ where defined.

Let Q_{0} be an open subspace of Q such that if $q \in Q$ and $p \in Q_{0}$ and $q \leqq p$ then $q \in Q_{0}$. Suppose there is a numerable covering [3] $U=\left\{U_{\alpha}\right\}$ of Q, and maps $f_{\alpha}: U_{\alpha} \rightarrow Q_{0}$ such that $f_{\alpha}(q) \leqq q$ for all $q \in U_{\alpha}$.

Then $\left|Q_{0}\right| \rightarrow|Q|$ is a homotopy-equivalence.
In the application of (2.7) Q is as above. Using the fact that X has a good base-point, choose a homotopy $h_{t}: X \rightarrow X$ such that h_{0} is the identity and $h_{1}^{-1}(0)$ is a neighbourhood of 0 . This induces $h_{t}: Q \rightarrow Q$. Let $Q_{0}=$ $h_{1}^{-1}(P)$, a neighbourhood of P. One might call Q_{0} the "almost projectable" elements of Q. Obviously $|P| \rightarrow\left|Q_{0}\right|$ is a homotopy-equivalence, with inverse induced by h_{1}. But Q_{0} and Q satisfy the hypotheses of (2.7)it is proved in Appendix 2 that Q is good. Thus (2.4) is proved modulo (2.7).

The proof of (2.7) would be almost trivial if one could choose the maps f_{α} compatibly so as to get a continuous map $Q \rightarrow Q_{0}$. In general it depends on the fact that one does not change the homotopy-type of a topological category by breaking apart the space of objects into the sets of a numerable covering and introducing isomorphism between the reduplicated objects. To be precise, if C is a topological category, and $U=\left\{U_{a}\right\}_{a \in A}$ is a numerable covering of $\mathrm{ob}(C)$, then the disintegration of \mathcal{C} by U is the topological category \tilde{C} whose objects are pairs (x, α) with $a \in A$ and $x \in U_{\alpha}$, and whose morphisms $(x, \alpha) \rightarrow\left(x^{\prime}, \alpha^{\prime}\right)$ are the morphisms from x to x^{\prime} in C. Thus $\operatorname{ob}(\tilde{C})=\coprod_{\alpha \in A} U_{\alpha}$ and $\operatorname{mor}(\tilde{C})=\coprod_{\alpha, \beta \in A} V_{\alpha \beta}$, where $V_{\alpha \beta}$ consists of the elements of $\operatorname{mor}(C)$ with source in U_{α} and target in U_{β}.

Proposition (2.8). If C is a topological category, U is a numerable covering of $\mathrm{ob}(C)$, and \tilde{C} is the disintegration of C by U, then the projection $|\mathcal{C}| \rightarrow|C|$ is shrinkable.

Proof. Let $\left\{C_{k}\right\}_{k \geqq 0}$ be the simplicial space associated to C (i.e. $C_{0}=\operatorname{ob}(C), C_{1}=\operatorname{mor}(C)$, etc.), and let $\left\{C_{k}\right\}_{k \geq 0}$ be that associated to \tilde{C}. Then $\tilde{C}_{k}=\left(\tilde{C}_{0}\right)^{k+1} \times{ }_{\left(C_{0}\right)} k+1 C_{k}$. Now for any space Y there is a simplicial space $\left\{Y^{k+1}\right\}_{k \geq 0}$ whose realization is a contractible space called $E Y$ [9].

Because realization commutes with fibre-products $|\tilde{C}|=\mathrm{EC}_{0} \times_{{ }_{E C_{0}}}|C|$, and it is enough to show that $E \tilde{C}_{0} \rightarrow E C_{0}$ is shrinkable. But $\left\{E U_{a}\right\}_{a \in A}$ is a numerable covering of $E C_{0}$ over which $E \tilde{C}_{0} \rightarrow E C_{0}$ is shrinkable, so the result follows from [3].

Proof of (2.7). Let $p: \tilde{Q} \rightarrow Q$ be the disintegration associated to U. \tilde{Q} is a preordered space. The f_{α} define a map $f: \tilde{Q} \rightarrow Q_{0}$ such that $f(\xi) \leqq$ $p(\xi)$ for all $\xi \in \mathbb{Q}$. Let $\operatorname{chn}(\tilde{Q})$ be the space of finite chains of \tilde{Q} ordered by inclusion (cf. Appendix 2). Define $F: \operatorname{chn}(\tilde{Q}) \rightarrow Q_{0}$ by $\left(\xi_{0} \leqq \cdots \leqq \xi_{k}\right) \mapsto$ $\inf \left(f\left(\xi_{0}\right), \ldots, f\left(\xi_{k}\right)\right)$. This is order-preserving, and $F(\sigma) \leqq r \operatorname{chn}(p)(\sigma)$ for $\sigma \in \operatorname{chn}(Q)$, where $r: \operatorname{chn}(\tilde{Q}) \rightarrow \tilde{Q}$ is $\left(\xi_{0} \leqq \cdots \leqq \xi_{k}\right) \mapsto \xi_{0}$. As $|r|$ is a homo-topy-equivalence by Appendix 2, and $|p|$, and so $|\operatorname{chn}(p)|$, is one by (2.8), and $|F| \simeq|r||\operatorname{chn}(p)|$ by $[9]$ (), it follows that the composite $|\operatorname{chn}(\tilde{Q})| \rightarrow$ $\left|Q_{0}\right| \rightarrow|Q|$ is a homotopy-equivalence. Similarly the composite $\left|\operatorname{chn}\left(\tilde{Q}_{0}\right)\right| \rightarrow$ $|\operatorname{chn}(\tilde{Q})| \rightarrow\left|Q_{0}\right|$ is a homotopy-equivalence; and so $\left|Q_{0}\right| \rightarrow|Q|$ is one, as desired.

§ 3. The Map $\boldsymbol{C}_{n}(X) \rightarrow \boldsymbol{\Omega}^{\boldsymbol{n}} \mathbf{S}^{\boldsymbol{n}} \boldsymbol{X}$

Despite its picturesqueness the electrostatic map described in $\S 1$ is not very convenient in practice. It is homotopic, however, to the following map. Let $D_{n}(X)$ be the space of finite sets of disjoint open unit disks in \mathbb{R}^{n}, labelled by \boldsymbol{X}. (This is a closed subset of $C_{n}(X)$, and obviously a deformation retract of it.) Choose a fixed map f of degree 1 from a standard disk D to S^{n}, taking the boundary to the base-point. Then associate to a point $\left(\left\{i_{\alpha}: D \rightarrow \mathbb{R}^{n}\right\}_{\alpha e c}, x: c \rightarrow X\right)$ of $D_{n}(X)$ the map $\phi: \mathbb{R}^{n} \cup \infty \rightarrow S^{n} X$ defined by

$$
\begin{aligned}
\phi(\xi) & =\left(f i_{\alpha}^{-1}(\xi), x(\alpha)\right) \quad \text { if } \xi \in i_{\alpha}(D), \quad \text { and } \\
& =\text { base-point otherwise. }
\end{aligned}
$$

Regard ϕ as a point of $\Omega^{n} S^{n} X$.
$D_{n}(X)$ can be regarded as a partial monoid in n different ways, the composition in each case being superimposition, but two sets of disks being composable for the i-th law if and only if they are separated by a hyperplane perpendicular to the i-th coordinate direction. These com-position-laws are compatible in the sense that each is a homomorphism for the others, so one can use each of them in turn and thus define an n-fold classifying-space $B^{n} D_{n}(X)$. There is a map $X \rightarrow D_{n}(X)$ taking x to the unit disk at the origin labelled by x. Giving $X n$ trivial compositionlaws (so that $\left.B^{n} X=S^{n} X\right), X \rightarrow D_{n}(X)$ is a homomorphism for all n laws, and induces $S^{n} X \rightarrow B^{n} D_{n}(X)$. Evidently what was proved in $\S 2$ was that $S^{n} X \rightarrow B^{n} D_{n}(X)$.

On the other hand the space of maps $\phi: \mathbb{R}^{n} \cup \infty \rightarrow S^{n} X$ also has n partial composition-laws. Define support $(\phi)=\phi^{-1}\left(S^{n} X-\{0\}\right)$. Then ϕ_{1}
and ϕ_{2} are composable for the i-th law if their supports are separated by a hyperplane perpendicular to the i-th axis, and the composite is in any case given by "union". The map $X \rightarrow \Omega^{n} S^{n} X$ is an n-fold homomorphism, so induces $S^{n} X \rightarrow B^{n} \Omega^{n} S^{n} X$, which one knows classically to be a homo-topy-equivalence. But the map $D_{n}(X) \rightarrow \Omega^{n} S^{n} X$ defined above is an n-fold homomorphism, and the diagram

commutes. So $D_{n}(X) \rightarrow \Omega^{n} S^{n} X$ induces an isomorphism of classifyingspaces, as desired.

Appendix 1. The Edgewise Subdivision of a Simplicial Space

This is more or less due to Quillen.
The standard n-simplex $\Delta^{n}=\left\{\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{R}^{n}: 0 \leqq t_{1} \leqq \cdots \leqq t_{n} \leqq 1\right\}$ can be subdivided into $2^{n} n$-simplexes corresponding to the 2^{n} possible orders in which the 2^{n} numbers ($t_{1}, \ldots, t_{n} ; 1-t_{n}, \ldots, 1-t_{1}$) can occur in $[0,1]$. When $n=2$ the diagram is

In general one puts a new vertex $P_{i j}$ at the mid-point of each edge $P_{i i} P_{j j}$ of Δ^{n}, the original vertices being denoted $P_{i i}(0 \leqq i \leqq n)$. And $P_{i_{0} j_{0}}, \ldots, P_{i_{k} j_{k}}$ span a simplex of the subdivision if $i_{0} \geqq \cdots \geqq i_{k}$ and $j_{0} \leqq \cdots \leqq j_{k}$.

This subdivision of a simplex, being functorial for simplicial maps, induces a subdivision of $|A|$ for any simplicial space A. Thereby $|A|$ is expressed as the realization of a simplicial space B such that $B_{n}=A_{2 n+1}$. To be precise, let Δ be the category of finite ordered sets, so that A is a contravariant functor from Δ to spaces. There is a functor $T: \Delta \rightarrow \Delta$ which takes the set $\left\{\alpha_{0}, \ldots, \alpha_{n}\right\}$ with $n+1$ elements to the set $\left\{\alpha_{0}, \ldots, \alpha_{n}\right.$, $\left.\alpha_{n}^{\prime}, \ldots, \alpha_{0}^{\prime}\right\}$ with $2 n+2$ elements, ordered as written. Then B is $A \cdot T$.

Proposition (A.1). For any simplicial space $A,|A| \cong|A \cdot T|$.
Proof. To write down maps $|A| \leftrightarrows|A \cdot T|$, observe that the 2^{n} simplexes into which Δ^{n} is subdivided can be indexed $\Delta^{n}{ }_{\theta}$, where θ runs through a set of 2^{n} maps $[2 n+1] \rightarrow[n]$; and Δ^{n} is the image of the composition $\theta_{*} i$, where $i: \Delta^{n} \rightarrow \Delta^{2 n+1}$ is $\left(t_{1}, \ldots, t_{n}\right) \mapsto\left(\frac{1}{2} t_{1}, \ldots, \frac{1}{2} t_{n}, \frac{1}{2}, 1-\frac{1}{2} t_{n}, \ldots, 1-\frac{1}{2} t_{1}\right)$.

Then the maps $A_{2 n+1} \times \Delta^{n} \rightarrow \Delta_{2 n+1} \times \Delta^{2 n+1}$ given by $(a, \xi) \mapsto(a, i \xi)$ induce $|A \cdot T| \rightarrow|A|$; and the maps $A_{n} \times \Delta^{n} \rightarrow A_{2 n+1} \times \Delta^{n}$ given by $\left(a, \theta_{*} i \xi\right) \mapsto\left(\theta^{*} a, \xi\right)$ induce its inverse.

Appendix 2. Good Simplicial Spaces

Goodness is a condition on a simplicial space which ensures that its realization has convenient properties. (May [6] uses "strictly proper" for a similar idea.) I have discussed the condition at greater length in [10].

First observe that for any simplicial space $A=\left\{A_{n}\right\}$ there are n distinguished subsets $A_{n, i}(1 \leqq i \leqq n)$ in A_{n}, homeomorphic images of A_{n-1} by the degeneracy maps $s_{i}: A_{n-1} \rightarrow A_{n}$.

Definition. A simplicial space A is good if for each n there exists a homotopy $f_{t}: A_{n} \rightarrow A_{n}(0 \leqq t \leqq 1)$ such that
(i) $f_{0}=$ identity
(ii) $f_{t}\left(A_{n, i}\right) \subset A_{n, i}$ for $1 \leqq i \leqq n$
(iii) $f_{1}^{-1}\left(A_{n,}\right)$ is a neighbourhood of $A_{n, i}$ in A_{n} for $1 \leqq i \leqq n$.

Two results about good simplicial spaces are used in this paper. They are proved in [10].

Proposition (A.1). If $\phi: A \rightarrow B$ is a map of good simplicial spaces, and $\phi_{n}: A_{n} \rightarrow B_{n}$ is a homotopy-equivalence for each n then $|f|:|A| \rightarrow|B|$ is a homotopy-equivalence.

To state the second result one first associates to a simplicial space A a topological category $\operatorname{simp}(A)$. Its objects are pairs (n, a), where $n \geqq 0$ and $a \in A_{n}$, and its morphisms $(n, a) \rightarrow(m, b)$ are morphisms $\theta:[n] \rightarrow[m]$ in Δ such that $\theta^{*} b=a$. Thus

$$
\mathrm{ob}(\operatorname{simp}(A))=\coprod_{n \geq 0} A_{n}, \quad \text { and } \quad \operatorname{mor}(\operatorname{simp}(A))=\coprod_{\theta:[n]-[m]} A_{m} .
$$

There is a natural map $|\operatorname{simp}(A)| \rightarrow|A|$.
Proposition (A.2). If A is a good simplicial space, $|\operatorname{simp}(A)| \rightarrow|A|$ is a homotopy-equivalence.

In the case occurring in this paper A is the simplicial space arising from an ordered space Q. Then $\operatorname{simp}(A)$ is precisely $\operatorname{chn}(Q)$, the space of finite chains $q_{0} \leqq \cdots \leqq q_{n}$ in Q, ordered by inclusion; and $|\operatorname{simp}(A)| \rightarrow|A|$ is induced by the order-reversing map $\left(q_{0} \leqq \cdots \leqq q_{n}\right) \mapsto q_{0}$.

I call a monoid, partial monoid, category, ordered space, etc., good if it gives rise to a good simplicial space. One needs to know that the condition holds for all the examples arising in the paper. Notice first:

1. A monoid is good if and only if it is locally contractible at 1 .
2. A neighbourhood of the identity in a good monoid is a good partial monoid.
3. The edgewise subdivision of a good simplicial space is good.

Now we must consider in turn $C_{n-1}(X), C_{n}^{\prime}(X), C_{n}^{\prime \prime}(X), Q$. Because X has a good base-point there is a homotopy $h_{t}: X \rightarrow X$ such that $h_{0}=i d$, $h_{1}^{-1}(0)=U$, a neighbourhood of 0 . The map $h_{t}: C_{n-1}(X) \rightarrow C_{n-1}(X)$ contracts a neighbourhood of the identity through partial-monoidhomomorphisms, proving $C_{n-1}(X)$ is good. On the other hand $C_{n}^{\prime}(U)$ is a contractible neighbourhood of the identity in $C_{n}^{\prime}(X)$, so the latter is good. For the same reason $h_{1}^{-1} C_{n}^{\prime \prime}(X)$ is good. But this is homotopyequivalent to $C_{n}^{\prime \prime}(X)$ as partial monoid, so $C_{n}^{\prime \prime}(X)$ is good. Finally Q is good because $Q \rightarrow \mathscr{C}\left(C_{n}^{\prime}(X)\right)$ is shrinkable.

References

1. Barratt, M.G., Priddy, S.: On the homology of non-connected monoids and their associated groups. Comment. Math. Helvet. 47, 1-14 (1972).
2. Boardman, J. M., Vogt, R. M.: Homotopy-everything H-spaces. Bull. Amer. Math. Soc. 74, 1117-1122 (1968).
3. Dold, A.: Partitions of unity in the theory of fibrations. Ann. of Math. 78, 223-255 (1963).
4. Giffen, C.: To appear.
5. James, I. M.: Reduced product spaces. Ann. of Math. 62, 170-197 (1955).
6. May, J.P.: The geometry of iterated loop spaces. Springer Lecture Notes in Mathematics 271. Berlin-Heidelberg-New York 1972.
7. Milgram, R.J.: Iterated loop spaces. Ann. of Math. 84, 386-403 (1966).
8. Quillen, D.G.: The group completion of a simplicial monoid. To appear.
9. Segal, G.B.: Classifying spaces and spectral sequences. Publ. Math. I.H.E.S. Paris 34, 105-112 (1968).
10. Segal, G. B.: Categories and cohomology theories. Topology.

Graeme Segal
Mathematical Institute
University of Oxford
24-29. St. Giles
Oxford OX1 3LB, U.K.

