Configuration-Spaces and Iterated Loop-Spaces

Graeme Segal (Oxford)

§1. Introduction

The object of this paper is to prove a theorem relating "configurationspaces" to iterated loop-spaces. The idea of the connection between them seems to be due to Boardman and Vogt [2]. Part of the theorem has been proved by May [6]; the general case has been announced by Giffen [4], whose method is to deduce it from the work of Milgram [7].

Let C_n be the space of finite subsets of \mathbb{R}^n . It is topologized as the disjoint union $\prod_{k\geq 0} C_{n,k}$, where $C_{n,k}$ is the space of subsets of cardinal k, regarded as the orbit-space of the action of the symmetric group Σ_k on the space $\tilde{C}_{n,k}$ of ordered subsets of cardinal k, which is an open subset of \mathbb{R}^{nk} .

There is a map from C_n to $\Omega^n S^n$, the space of base-point preserving maps $S^n \to S^n$, where S^n is the *n*-sphere. One description of it (at least when n > 1) is as follows. Think of a finite subset c of \mathbb{R}^n as a set of electrically charged particles, each of charge +1, and associate to it the electric field E_c it generates. This is a map $E_c: \mathbb{R}^n - c \to \mathbb{R}^n$ which can be extended to a continuous map $E_c: \mathbb{R}^n \cup \infty \to \mathbb{R}^n \cup \infty$ by defining $E_c(\xi) = \infty$ if $\xi \in c$, and $E_c(\infty) = 0$. Then E_c can be regarded as a base-point-preserving map $S^n \to S^n$, where the base-point is ∞ on the left and 0 on the right. Notice that the map $c \mapsto E_c$ takes $C_{n,k}$ into $\Omega^n S^n_{(k)}$, the space of maps of degree k.

Our object is to prove that C_n is an approximation to $\Omega^n S^n$, in the sense that the two spaces have composition-laws which are respected by the map $C_n \rightarrow \Omega^n S^n$, and the induced map of classifying-spaces is a homotopy-equivalence. In view of the "group-completion" theorem of Barratt-Priddy-Quillen [1, 8] one can say equivalently that $C_{n,k} \rightarrow \Omega^n S^n_{(k)}$ induces an isomorphism of integral homology up to a dimension tending to ∞ with k. But to make precise statements it is convenient to introduce a modification of the space C_n .

If $u \le v$ in \mathbb{R} , let $\mathbb{R}^{n}_{u,v}$ denote the open set $u, v(\times \mathbb{R}^{n-1})$ in \mathbb{R}^{n} . Then C_{n} is homotopy-equivalent to the space

$$C'_n = \{ (c, t) \in C_n \times \mathbb{R} : t \ge 0, c \subset \mathbb{R}^n_{0, t} \},\$$

which has an associative composition-law given by juxtaposition, i.e. $(c, t) \cdot (c', t') = (c \cup T_t c', t + t')$, where $T_t \colon \mathbb{R}^{n_{0,t}} \to \mathbb{R}^{n_{t,t+t'}}$ is translation. As a topological monoid C'_n has a classifying-space BC'_n .

Theorem 1. $BC'_n \simeq \Omega^{n-1} S^n$, the (n-1)-fold loop-space of S^n .

More generally, let X be a space with a good base-point denoted by 0. (That means that there exists a homotopy $h_t: X \to X (0 \le t \le 1)$ such that $h_0 = \text{identity}, h_t(0) = 0$, and $h_1^{-1}(0)$ is a neighbourhood of 0.) Let $C_n(X)$ be the space of finite subsets of \mathbb{R}^n "labelled by X" in the following sense. A point of $C_n(X)$ is a pair (c, x), where c is a finite subset of \mathbb{R}^n , and $x: c \to X$ is a map. But (c, x) is identified with (c', x') if $c \subset c', x' | c = x$, and $x'(\xi) = 0$ when $\xi \notin c$.

 $C_n(X)$ is topologized as a quotient of the disjoint union

$$\prod_{k\geq 0} (\tilde{C}_{n,k} \times X^k) / \Sigma_k.$$

As before, $C_n(X)$ is homotopy-equivalent to a topological monoid $C'_n(X) \subset C_n(X) \times \mathbb{R}_+$, consisting of triples (c, x, t) such that $t \ge 0$ and $c \subset \mathbb{R}^n_{0,t}$.

Theorem 2. $BC'_n(X) \simeq \Omega^{n-1} S^n X$.

Here $S^n X$ is the *n*-fold reduced suspension of X. Theorem 1 is Theorem 2 for the case $X = S^0$. If X is path-connected so is $C'_n(X)$, and then $\Omega BC'_n(X) \simeq C'_n(X) \simeq C_n(X)$, and one has

Theorem 3. If X is path-connected $C_n(X) \simeq \Omega^n S^n X$.

This has been proved by May [6].

Some other special cases are

(a) If n=1, $C'_n(X)$ is equivalent to the free monoid MX on X, in the sense that there is a homomorphism $C'_1(X) \rightarrow MX$ which is a homotopy-equivalence. Thus one obtains the theorem of James [5] that $BMX \simeq SX$.

(b) If n=2, $C_{2,k}$ is the classifying-space for the braid group Br_k on k strings. Thus one has $B(\coprod B(Br_k)) \simeq \Omega S^2$.

(c) Because $\tilde{C}_{n,k}$ is (n-2)-connected, being the complement of some linear subspaces of codimension n in \mathbb{R}^{nk} , one has $C_{n,k} \to B\Sigma_k$ as $n \to \infty$. This gives the theorem of Barratt-Priddy-Quillen that $B(\coprod_{k\geq 0} B\Sigma_k) \simeq \Omega^{\infty-1}S^{\infty}$.

The theorems above do not mention a specific map between the configuration-spaces and the loop-spaces. I shall return to this question in §3.

§ 2. Proofs

Theorem 2 is obtained by induction from

Proposition (2.1). $BC'_n(X) \simeq C_{n-1}(SX)$.

For $C_{n-1}(SX)$ is connected, so $C_{n-1}(SX) \simeq C'_{n-1}(SX) \simeq \Omega B C'_{n-1}(SX)$ $\simeq \Omega C_{n-2}(S^2X) \simeq \cdots \simeq \Omega^{n-1} C_0(S^nX) = \Omega^{n-1}S^nX.$

The proof of (2.1) is based on the idea of a "partial monoid".

Definition (2.2). A partial monoid is a space M with a subspace $M_2 \subset M \times M$ and a map $M_2 \rightarrow M$, written $(m, m') \mapsto m \cdot m'$, such that

(a) there is an element 1 in M such that m.1 and 1.m are defined for all m in M, and 1.m=m.1=m.

(b) m.(m'm'') = (m.m'). m'' for all m, m', m'' in M, in the sense that if one side is defined then the other is too, and they are equal.

A partial monoid M has a classifying-space BM, defined as follows. Let $M_k \subset M \times \cdots \times M$ be the space of composable k-tuples. The M_k form a (semi)simplicial space, in which $d_i: M_k \to M_{k-1}$ and $s_i: M_k \to M_{k+1}$ are defined by

$$\begin{aligned} d_i(m_1, \dots, m_k) &= (m_2, \dots, m_k) & \text{if } i = 0 \\ &= (m_1, \dots, m_i, m_{i+1}, \dots, m_k) & \text{if } 0 < i < k \\ &= (m_1, \dots, m_{k-1}) & \text{if } i = k \\ s_i(m_1, \dots, m_k) &= (m_1, \dots, m_i, 1, m_{i+1}, \dots, m_k) & \text{if } 0 \leq i \leq k. \end{aligned}$$

BM is defined as the realization of this simplicial space [9]. If M is actually a monoid (i.e. if $M_2 = M \times M$) then BM is the usual classifying-space. On the other hand if M has trivial composition (i.e. $M_2 = M \vee M$) then BM = SM, the reduced suspension of M.

The space $C_{n-1}(X)$ can be regarded as a partial monoid, in which (c, x) and (c', x') are composable if and only if c and c' are disjoint, and then $(c, x).(c', x')=(c \cup c', x \cup x')$.

Proposition (2.3). $BC_{n-1}(X) \cong C_{n-1}(SX)$.

Proof. Write $M = C_{n-1}(X)$. By definition BM is a quotient of the disjoint union of the spaces $M_k \times \Delta^k$ for $k \ge 0$. Regard the standard simplex Δ^k as $\{(t_1, \ldots, t_k) \in \mathbb{R}^k : 0 \le t_1 \le \cdots \le t_k \le 1\}$. Define $M_k \times \Delta^k \to C_{n-1}(SX)$ by $((c_1, x_1), \ldots, (c_k, x_k); t_1, \ldots, t_k) \mapsto (c, \tilde{x})$, where $c = Uc_i$ and $\tilde{x}: c \to SX$ takes $P \in c_i$ to $(t_i, x_i(P)) \in SX$.

These maps induce a map $BM \rightarrow C_{n-1}(SX)$ which is obviously surjective. It is injective because each point of BM is representable in the above form with $0 < t_1 < \cdots < t_k < 1$, all c_i non-empty, and $x_i(c_i) \subset X - \{0\}$. It is a homeomorphism because one can define a continuous inverse-

¹⁵ Inventiones math., Vol. 21

map, observing that $C_{n-1}(SX)$ is a quotient of the dispoint union for $k \ge 0$ of the spaces $\tilde{C}_{n-1,k} \times X^k \times [0,1]^k$, which map to $M_k \times [0,1]^k$.

The partial monoid $C_{n-1}(X)$ is related to the monoid $C'_n(X)$ by means of a sub-partial-monoid of the latter. Call an element (c, x, t) of $C'_n(X)$ projectable if c is mapped injectively by the projection

$$pr_2: \mathbb{R}^n_{0,t} \to \mathbb{R}^{n-1}$$

The projectable elements form a subspace which the composition-law of $C'_n(X)$ makes into a partial monoid. Projection defines a homomorphism $C''_n(X) \rightarrow C_{n-1}(X)$, and elements of $C''_n(X)$ are composable if and only if their images in $C_{n-1}(X)$ are. Furthermore $C''_n(X) \rightarrow C_{n-1}(X)$ is a homotopy-equivalence (with inverse $(c, x) \mapsto (s(c), x, 1)$, where s is any cross-section of $pr_2: \mathbb{R}^n_{0,t} \rightarrow \mathbb{R}^{n-1}$); and so is the map $C''_n(X)_k \rightarrow C_{n-1}(X)_k$ of spaces of composable k-tuples. Because the simplicial spaces in question are good (see Appendix 2), this implies that $BC''_n(X) \stackrel{\simeq}{\rightarrow} BC_{n-1}(X)$. So to prove (2.1) it is enough to prove

Proposition (2.4). The inclusion $C''_n(X) \rightarrow C'_n(X)$ induces a homotopy-equivalence of classifying-spaces.

To prove (2.4) I shall use an alternative description of the classifyingspace of a partial monoid M. Let $\mathscr{C}(M)$ be the topological category [9] whose objects are the elements of M, and whose morphisms from mto m' are pairs of elements $m_1, m_2 \in M$ such that $m_1.m.m_2=m'$. Thus ob $\mathscr{C}(M)=M$, and mor $\mathscr{C}(M)=M_3$. Let $|\mathscr{C}(M)|$ be the realization or "classifying space" of $\mathscr{C}(M)$ in the sense of [9].

Proposition (2.5). $|\mathscr{C}(M)| \cong BM$.

This is a particular case of a subdivision theorem for arbitrary simplicial spaces, proved in Appendix 1. For the proof of (2.4) I shall use a modification of the category $\mathscr{C}(C'_n(X))$. Let Q be the ordered space whose points are 4-tuples (u, v; c, x), with $u, v \in \mathbb{R}$, $u \leq 0 \leq v$, c a finite subset of $\mathbb{R}^n_{u,v}$, and $x: c \to X$, subject to the usual equivalence-relation. It is ordered by defining $(u, v; c, x) \leq (u', v'; c'. x')$ if $[u, v] \subset [u', v']$, $c = c' \cap ([u, v] \times \mathbb{R}^{n-1})$, and x'|c=x. Thinking of the topological ordered set Q as a topological category, define a functor $\pi: Q \to \mathscr{C}(C'_n(X))$ by $(u, v; c, x) \mapsto (T_{-u}c, x, v-u)$.

Lemma (2.6). $|\pi|: |Q| \rightarrow |\mathscr{C}(C_n(X))|$ is shrinkable [3] (i.e. it has a section s such that $s|\pi| \simeq identity$ by a homotopy h_i for which $|\pi|h_i = |\pi|$).

Proof. Using the homomorphism of monoids $C'_n(X) \to \mathbb{R}_+$ which takes (c, x, t) to t one can regard Q as the fibre-product (of categories) $\mathscr{C}(C'_n(X)) \times_{\mathscr{C}(\mathbb{R}_+)} \mathscr{I}$, where \mathscr{I} is the space of intervals [u, v] with $u \leq 0 \leq v$ ordered by inclusion. Forming the nerve commutes with fibre-products. But $|\mathscr{I}| \to |\mathscr{C}(\mathbb{R}_+)|$ is easily seen to be shrinkable; so $|\pi|$ is shrinkable.

Continuing the proof of (2.4), if P is the sub-ordered-space of Q consisting of all (u, v; c, x) with c projectable then $\pi(P) = \mathscr{C}(C''_n(X))$; so it will be enough to show that $|P| \rightarrow |Q|$ is a homotopy-equivalence. Heuristically this is so because P is co-initial in Q, i.e. for each $q \in Q$ there is a $p \in P$ such that $p \leq q$, and if $p_1 \leq q$ and $p_2 \leq q$ there is a $p_3 \leq P_2$. But some further conditions are needed, and I shall use the following ad hoc lemma.

Proposition (2.7). Let Q be a good ordered space such that

(a) $q_1 \cap q_2 = \inf(q_1, q_2)$ is defined whenever there exists $q \in Q$ such that $q_1 \leq q$ and $q_2 \leq q$, and

(b) $q_1 \cap q_2$ depends continuously on (q_1, q_2) where defined.

Let Q_0 be an open subspace of Q such that if $q \in Q$ and $p \in Q_0$ and $q \leq p$ then $q \in Q_0$. Suppose there is a numerable covering [3] $U = \{U_{\alpha}\}$ of Q, and maps $f_{\alpha}: U_{\alpha} \rightarrow Q_0$ such that $f_{\alpha}(q) \leq q$ for all $q \in U_{\alpha}$.

Then $|Q_0| \rightarrow |Q|$ is a homotopy-equivalence.

In the application of (2.7) Q is as above. Using the fact that X has a good base-point, choose a homotopy $h_t: X \to X$ such that h_0 is the identity and $h_1^{-1}(0)$ is a neighbourhood of 0. This induces $h_i: Q \to Q$. Let $Q_0 = h_1^{-1}(P)$, a neighbourhood of P. One might call Q_0 the "almost projectable" elements of Q. Obviously $|P| \to |Q_0|$ is a homotopy-equivalence, with inverse induced by h_1 . But Q_0 and Q satisfy the hypotheses of (2.7) – it is proved in Appendix 2 that Q is good. Thus (2.4) is proved modulo (2.7).

The proof of (2.7) would be almost trivial if one could choose the maps f_{α} compatibly so as to get a continuous map $Q \rightarrow Q_0$. In general it depends on the fact that one does not change the homotopy-type of a topological category by breaking apart the space of objects into the sets of a numerable covering and introducing isomorphism between the reduplicated objects. To be precise, if C is a topological category, and $U = \{U_{\alpha}\}_{\alpha \in A}$ is a numerable covering of ob(C), then the disintegration of C by U is the topological category \tilde{C} whose objects are pairs (x, α) with $a \in A$ and $x \in U_{\alpha}$, and whose morphisms $(x, \alpha) \rightarrow (x', \alpha')$ are the morphisms from x to x' in C. Thus $ob(\tilde{C}) = \coprod_{\alpha \in A} U_{\alpha}$ and $mor(\tilde{C}) = \coprod_{\alpha, \beta \in A} V_{\alpha\beta}$, where $V_{\alpha\beta}$ consists of the elements of mor(C) with source in U_{α} and target in U_{β} .

Proposition (2.8). If C is a topological category, U is a numerable covering of ob(C), and \tilde{C} is the disintegration of C by U, then the projection $|\tilde{C}| \rightarrow |C|$ is shrinkable.

Proof. Let $\{C_k\}_{k\geq 0}$ be the simplicial space associated to C (i.e. $C_0 = ob(C)$, $C_1 = mor(C)$, etc.), and let $\{\tilde{C}_k\}_{k\geq 0}$ be that associated to \tilde{C} . Then $\tilde{C}_k = (\tilde{C}_0)^{k+1} \times_{(C_0)} k + 1 C_k$. Now for any space Y there is a simplicial space $\{Y^{k+1}\}_{k\geq 0}$ whose realization is a contractible space called EY [9].

Because realization commutes with fibre-products $|\tilde{C}| = E\tilde{C}_0 \times_{EC_0} |C|$, and it is enough to show that $E\tilde{C}_0 \rightarrow EC_0$ is shrinkable. But $\{EU_a\}_{aeA}$ is a numerable covering of EC_0 over which $E\tilde{C}_0 \rightarrow EC_0$ is shrinkable, so the result follows from [3].

Proof of (2.7). Let $p: \tilde{Q} \to Q$ be the disintegration associated to U. \tilde{Q} is a preordered space. The f_{α} define a map $f: \tilde{Q} \to Q_0$ such that $f(\xi) \leq p(\xi)$ for all $\xi \in \tilde{Q}$. Let chn (\tilde{Q}) be the space of finite chains of \tilde{Q} ordered by inclusion (cf. Appendix 2). Define $F: \operatorname{chn}(\tilde{Q}) \to Q_0$ by $(\xi_0 \leq \cdots \leq \xi_k) \mapsto \inf(f(\xi_0), \ldots, f(\xi_k))$. This is order-preserving, and $F(\sigma) \leq r \operatorname{chn}(p)(\sigma)$ for $\sigma \in \operatorname{chn}(Q)$, where $r: \operatorname{chn}(\tilde{Q}) \to \tilde{Q}$ is $(\xi_0 \leq \cdots \leq \xi_k) \mapsto \xi_0$. As |r| is a homotopy-equivalence by Appendix 2, and |p|, and so $|\operatorname{chn}(p)|$, is one by (2.8), and $|F| \simeq |r| |\operatorname{chn}(p)|$ by [9] (), it follows that the composite $|\operatorname{chn}(\tilde{Q})| \to |Q_0| \to |Q|$ is a homotopy-equivalence; and so $|Q_0| \to |Q|$ is one, as desired.

§ 3. The Map $C_{n}(X) \rightarrow \Omega^{n} S^{n} X$

Despite its picturesqueness the electrostatic map described in §1 is not very convenient in practice. It is homotopic, however, to the following map. Let $D_n(X)$ be the space of finite sets of disjoint open unit disks in \mathbb{R}^n , labelled by X. (This is a closed subset of $C_n(X)$, and obviously a deformation retract of it.) Choose a fixed map f of degree 1 from a standard disk D to S^n , taking the boundary to the base-point. Then associate to a point $(\{i_a: D \to \mathbb{R}^n\}_{a \in c}, x: c \to X)$ of $D_n(X)$ the map $\phi: \mathbb{R}^n \cup \infty \to S^n X$ defined by

$$\phi(\xi) = (f i_{\alpha}^{-1}(\xi), x(\alpha)) \quad \text{if } \xi \in i_{\alpha}(D), \text{ and}$$

= base-point otherwise.

Regard ϕ as a point of $\Omega^n S^n X$.

 $D_n(X)$ can be regarded as a partial monoid in *n* different ways, the composition in each case being superimposition, but two sets of disks being composable for the *i*-th law if and only if they are separated by a hyperplane perpendicular to the *i*-th coordinate direction. These composition-laws are compatible in the sense that each is a homomorphism for the others, so one can use each of them in turn and thus define an *n*-fold classifying-space $B^n D_n(X)$. There is a map $X \rightarrow D_n(X)$ taking x to the unit disk at the origin labelled by x. Giving X n trivial composition-laws (so that $B^n X = S^n X$), $X \rightarrow D_n(X)$ is a homomorphism for all n laws, and induces $S^n X \rightarrow B^n D_n(X)$. Evidently what was proved in §2 was that $S^n X \rightarrow B^n D_n(X)$.

On the other hand the space of maps $\phi: \mathbb{R}^n \cup \infty \to S^n X$ also has *n* partial composition-laws. Define support $(\phi) = \phi^{-1}(S^n X - \{0\})$. Then ϕ_1

and ϕ_2 are composable for the *i*-th law if their supports are separated by a hyperplane perpendicular to the *i*-th axis, and the composite is in any case given by "union". The map $X \to \Omega^n S^n X$ is an *n*-fold homomorphism, so induces $S^n X \to B^n \Omega^n S^n X$, which one knows classically to be a homotopy-equivalence. But the map $D_n(X) \to \Omega^n S^n X$ defined above is an *n*-fold homomorphism, and the diagram

commutes. So $D_n(X) \rightarrow \Omega^n S^n X$ induces an isomorphism of classifying-spaces, as desired.

Appendix 1. The Edgewise Subdivision of a Simplicial Space

This is more or less due to Quillen.

The standard *n*-simplex $\Delta^n = \{(t_1, \ldots, t_n) \in \mathbb{R}^n : 0 \le t_1 \le \cdots \le t_n \le 1\}$ can be subdivided into 2^n *n*-simplexes corresponding to the 2^n possible orders in which the 2^n numbers $(t_1, \ldots, t_n; 1 - t_n, \ldots, 1 - t_1)$ can occur in [0, 1]. When n = 2 the diagram is

In general one puts a new vertex P_{ij} at the mid-point of each edge $P_{ii}P_{jj}$ of Δ^n , the original vertices being denoted $P_{ii}(0 \le i \le n)$. And $P_{i_0j_0}, \ldots, P_{i_kj_k}$ span a simplex of the subdivision if $i_0 \ge \cdots \ge i_k$ and $j_0 \le \cdots \le j_k$.

This subdivision of a simplex, being functorial for simplicial maps, induces a subdivision of |A| for any simplicial space A. Thereby |A| is expressed as the realization of a simplicial space B such that $B_n = A_{2n+1}$. To be precise, let Δ be the category of finite ordered sets, so that A is a contravariant functor from Δ to spaces. There is a functor $T: \Delta \rightarrow \Delta$ which takes the set $\{\alpha_0, \ldots, \alpha_n\}$ with n+1 elements to the set $\{\alpha_0, \ldots, \alpha_n, \alpha'_n, \ldots, \alpha'_0\}$ with 2n+2 elements, ordered as written. Then B is $A \cdot T$.

Proposition (A.1). For any simplicial space A, $|A| \cong |A \cdot T|$.

Proof. To write down maps $|A| = |A \cdot T|$, observe that the 2ⁿ simplexes into which Δ^n is subdivided can be indexed Δ^n_{θ} , where θ runs through a set of 2ⁿ maps $[2n+1] \rightarrow [n]$; and Δ^n_{θ} is the image of the composition $\theta_* i$, where $i: \Delta^n \rightarrow \Delta^{2n+1}$ is $(t_1, \ldots, t_n) \mapsto (\frac{1}{2}t_1, \ldots, \frac{1}{2}t_n, \frac{1}{2}, 1 - \frac{1}{2}t_n, \ldots, 1 - \frac{1}{2}t_1)$. Then the maps $A_{2n+1} \times \Delta^n \to \Delta_{2n+1} \times \Delta^{2n+1}$ given by $(a, \xi) \mapsto (a, i\xi)$ induce $|A \cdot T| \to |A|$; and the maps $A_n \times \Delta^n_{\theta} \to A_{2n+1} \times \Delta^n$ given by $(a, \theta_* i\xi) \mapsto (\theta^* a, \xi)$ induce its inverse.

Appendix 2. Good Simplicial Spaces

Goodness is a condition on a simplicial space which ensures that its realization has convenient properties. (May [6] uses "strictly proper" for a similar idea.) I have discussed the condition at greater length in [10].

First observe that for any simplicial space $A = \{A_n\}$ there are *n* distinguished subsets $A_{n,i}$ $(1 \le i \le n)$ in A_n , homeomorphic images of A_{n-1} by the degeneracy maps $s_i: A_{n-1} \to A_n$.

Definition. A simplicial space A is good if for each n there exists a homotopy $f_i: A_n \rightarrow A_n (0 \le t \le 1)$ such that

(i) $f_0 = \text{identity}$

(ii) $f_t(A_{n,i}) \subset A_{n,i}$ for $1 \leq i \leq n$

(iii) $f_1^{-1}(A_{n,i})$ is a neighbourhood of $A_{n,i}$ in A_n for $1 \le i \le n$.

Two results about good simplicial spaces are used in this paper. They are proved in [10].

Proposition (A.1). If $\phi: A \rightarrow B$ is a map of good simplicial spaces, and $\phi_n: A_n \rightarrow B_n$ is a homotopy-equivalence for each n then $|f|: |A| \rightarrow |B|$ is a homotopy-equivalence.

To state the second result one first associates to a simplicial space A a topological category simp(A). Its objects are pairs (n, a), where $n \ge 0$ and $a \in A_n$, and its morphisms $(n, a) \rightarrow (m, b)$ are morphisms $\theta: [n] \rightarrow [m]$ in Δ such that $\theta^* b = a$. Thus

$$\operatorname{ob}(\operatorname{simp}(A)) = \prod_{n \ge 0} A_n$$
, and $\operatorname{mor}(\operatorname{simp}(A)) = \prod_{\theta: [n] \to [m]} A_m$.

There is a natural map $|simp(A)| \rightarrow |A|$.

Proposition (A.2). If A is a good simplicial space, $|simp(A)| \rightarrow |A|$ is a homotopy-equivalence.

In the case occurring in this paper A is the simplicial space arising from an ordered space Q. Then simp(A) is precisely chn(Q), the space of finite chains $q_0 \leq \cdots \leq q_n$ in Q, ordered by inclusion; and $|simp(A)| \rightarrow |A|$ is induced by the order-reversing map $(q_0 \leq \cdots \leq q_n) \mapsto q_0$.

I call a monoid, partial monoid, category, ordered space, etc., good if it gives rise to a good simplicial space. One needs to know that the condition holds for all the examples arising in the paper. Notice first: 1. A monoid is good if and only if it is locally contractible at 1.

2. A neighbourhood of the identity in a good monoid is a good partial monoid.

3. The edgewise subdivision of a good simplicial space is good.

Now we must consider in turn $C_{n-1}(X)$, $C'_n(X)$, $C''_n(X)$, Q. Because X has a good base-point there is a homotopy $h_t: X \to X$ such that $h_0 = id$, $h_1^{-1}(0) = U$, a neighbourhood of 0. The map $h_t: C_{n-1}(X) \to C_{n-1}(X)$ contracts a neighbourhood of the identity through partial-monoid-homomorphisms, proving $C_{n-1}(X)$ is good. On the other hand $C'_n(U)$ is a contractible neighbourhood of the identity in $C'_n(X)$, so the latter is good. For the same reason $h_1^{-1} C''_n(X)$ is good. But this is homotopy-equivalent to $C''_n(X)$ as partial monoid, so $C''_n(X)$ is good. Finally Q is good because $Q \to \mathscr{C}(C'_n(X))$ is shrinkable.

References

- Barratt, M.G., Priddy, S.: On the homology of non-connected monoids and their associated groups. Comment. Math. Helvet. 47, 1-14 (1972).
- Boardman, J. M., Vogt, R. M.: Homotopy-everything H-spaces. Bull. Amer. Math. Soc. 74, 1117-1122 (1968).
- 3. Dold, A.: Partitions of unity in the theory of fibrations. Ann. of Math. 78, 223-255 (1963).
- 4. Giffen, C.: To appear.
- 5. James, I. M.: Reduced product spaces. Ann. of Math. 62, 170-197 (1955).
- May, J.P.: The geometry of iterated loop spaces. Springer Lecture Notes in Mathematics 271. Berlin-Heidelberg-New York 1972.
- 7. Milgram, R.J.: Iterated loop spaces. Ann. of Math. 84, 386-403 (1966).
- 8. Quillen, D.G.: The group completion of a simplicial monoid. To appear.
- Segal, G.B.: Classifying spaces and spectral sequences. Publ. Math. I.H.E.S. Paris 34, 105-112 (1968).
- 10. Segal, G.B.: Categories and cohomology theories. Topology.

Graeme Segal Mathematical Institute University of Oxford 24–29. St. Giles Oxford OX1 3LB, U.K.

(Received March 15, 1973)