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Introduction

In this paper we advertise the category of Γ-spaces as a convenient framework for
doing ‘algebra’ over ‘rings’ in stable homotopy theory. Γ-spaces were introduced by
Segal [Se] who showed that they give rise to a homotopy category equivalent to the
usual homotopy category of connective (i.e. (−1)-connected) spectra. Bousfield and
Friedlander [BF] later provided model category structures for Γ-spaces. The study of
‘rings, modules and algebras’ based on Γ-spaces became possible when Lydakis [Ly]
introduced a symmetric monoidal smash product with good homotopical properties.
Here we develop model category structures for modules and algebras, set up (derived)
smash products and associated spectral sequences and compare simplicial modules
and algebras to their Eilenberg–MacLane spectra counterparts.

There are other settings for ring spectra, most notably the S-modules and
S-algebras of [EKMM] and the symmetric spectra of [HSS], each of these with
its own advantages and disadvantages. We believe that one advantage of the Γ-
space approach is its simplicity. The definitions of the stable equivalences, the smash
product and the ‘rings’ (which we call Gamma-rings) are given on a few pages. An-
other feature is that Γ-spaces nicely reflect the idea that spectra are a homotopical
generalization of abelian groups, that the smash product generalizes the tensor prod-
uct and that algebras over the sphere spectrum generalize classical rings. There is
an Eilenberg–MacLane functor H which embeds the category of simplicial abelian
groups as a full subcategory of the category of Γ-spaces. The embedding has a left
adjoint, left inverse which on cofibrant objects models spectrum homology. Similarly,
simplicial rings embed fully faithfully into Gamma-rings. We give a quick proof (see
Section 4) of the fact that modules over a simplicial ring B have the same homo-
topy theory as modules over the associated Eilenberg–MacLane Gamma-ring HB,
and similarly for algebras when B is commutative. In Appendix B we introduce a
stable model category structure for topological Γ-spaces, i.e. where simplicial sets
are replaced by actual topological spaces.

One intrinsic limitation of our approach comes from the fact that Γ-spaces can only
represent connective spectra. This rules out applications in certain areas of stable
homotopy theory, but it is no essential restriction for the purpose of algebraic K-
theory, topological Hochschild homology and topological cyclic homology. Also, even
though we consider commutative Gamma-rings, and many E∞-ring spectra can be
represented this way, it seems unlikely that the homotopy category of commutative
Gamma-rings is equivalent to that of connective E∞-ring spectra.
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This paper is a part of the author’s thesis [Sch2], with some modifications. The

most important one is the shift from the Bousfield–Friedlander to the Quillen model
category structure for Γ-spaces (see Theorem 1·5). The weak equivalences are the
same in both cases, they are the maps inducing isomorphisms on stable homotopy
groups. However, the fibrations and cofibrations differ and working with the Quillen
model category structure turned out to be more convenient. For example, the proof
of the equivalence of homotopy theories of HZ-algebras and simplicial rings (Theo-
rem 4·5) is quite simple. We emphasize that Lydakis [Ly] works with the more general
cofibrations in the sense of Bousfield and Friedlander. So some results of [Ly] on the
compatibility of the smash product with stable equivalences are stronger than the
versions we are using here.

1. Review of Γ-spaces

The category of Γ-spaces was introduced by Segal [Se], who showed that it has a
homotopy category equivalent to the usual homotopy category of connective spectra.
Bousfield and Friedlander [BF] considered a larger category of Γ-spaces in which the
ones introduced by Segal appeared as the special Γ-spaces. Their category admits a
closed simplicial model category structure with a notion of stable weak equivalences
giving rise again to the homotopy category of connective spectra. Then Lydakis [Ly]
showed that Γ-spaces admit internal function objects and a symmetric monoidal
smash product with good homotopical properties.

Γop is a skeletal category of the category of finite pointed sets. There is one object
n+ = {0, 1, . . . , n} for every non-negative integer n and morphisms are the maps of
sets which send 0 to 0. The category Γop is equivalent to the opposite of Segal’s
category Γ [Se]. A Γ-space is a covariant functor from Γop to the category of simpli-
cial sets taking 0+ to a one point simplicial set. A morphism of Γ-spaces is a natural
transformation of functors. We denote the category of Γ-spaces by GS. We some-
times need to talk about Γ-sets, by which we mean pointed functors from Γop to
the category of pointed sets. Every Γ-space can be viewed as a simplicial object of
Γ-sets. We choose a symmetric monoidal smash product functor ∧: Γop × Γop → Γop

and extend it to one for all pointed sets. We denote by S the inclusion of Γop into
the category of simplicial sets. The spectrum associated to the Γ-space S is the
sphere spectrum (see below). The representable Γ-spaces Γn = Γop(n+,−) play a role
analogous to that of the standard simplices in the category of simplicial sets. Γ1 is
isomorphic to S. If X is a Γ-space and K a pointed simplicial set, a new Γ-space
X∧K is defined by (X∧K)(n+) = X(n+)∧K.

There are three kinds of hom object for Γ-spaces X and Y . There is the set of
morphisms (natural transformations) GS(X,Y ). Then there is a simplicial hom set
hom (X,Y ), defined by

hom (X,Y )i = GS(X ∧ (∆i)+, Y ),

where the ‘+’ denotes a disjoint basepoint. In this way GS becomes a simpli-
cial category. Finally, Lydakis [Ly, definition 2·1] defines an internal hom Γ-space
Hom (X,Y ) by

Hom (X,Y ) (n+) = hom (X,Yn+∧),

where Yn+∧(m+) = Y (n+∧m+).
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A Γ-space X can be prolonged, by direct limit, to a functor from the category of

pointed sets to pointed simplicial sets. By degreewise evaluation and formation of
the diagonal of the resulting bisimplicial sets, it can furthermore be promoted to a
functor from the category of pointed simplicial sets to itself [BF, section 4]. This
prolongation process has another description as the following coend [MacL, IX·6].
If X is a Γ-space and K a pointed simplicial set, the value of the extended functor
on K is given by ∫ n+∈Γop

Kn∧X(n+).

The extended functor preserves weak equivalences of simplicial sets [BF, proposi-
tion 4·9] and is automatically simplicial, i.e. it comes with coherent natural maps
K ∧X(L) → X(K ∧L). We will not distinguish it notationally from the original
Γ-space.

A spectrum X in the sense of [BF, definition 2·1] consists of a sequence of pointed
simplicial sets Xn for n = 0, 1, . . ., together with maps S1∧Xn → Xn+1. A map of
spectra X → Y consists of maps Xn → Yn strictly commuting with the suspension
maps. Since a Γ-space extends to a simplicial functor from all pointed simplicial sets,
it defines a spectrum whose n-th term is the Γ-space evaluated at Sn = S1∧ · · · ∧S1

(n factors). Consider for example the Γ-space S∧K for a pointed simplicial set K.
This Γ-space prolongs to the functor which smashes a pointed simplicial set with
K. So the associated spectrum has Sn ∧K as its nth term, i.e. S∧K represents the
suspension spectrum ofK. Theorem 5·8 of [BF] states that the spectrum construction
induces an equivalence of the homotopy category of Γ-spaces with the homotopy
category of connective spectra. Although our paper does not formally depend on
the comparison of the homotopy theories of Γ-spaces and spectra, this result is an
important motivation for the study of Γ-spaces.

The homotopy groups of a Γ-space X are those of the associated spectrum,

πnX = colimi πn+i|X(Si)|.
These groups are always trivial in negative dimensions. A map of Γ-spaces is called
a stable equivalence if it induces isomorphisms on homotopy groups. An example of a
stable equivalence of Γ-spaces is the map Γ1 ∧n+ → Γn induced by the n projections
n+ → 1+. After prolongation to a pointed simplicial set K, this map includes the
wedge of n copies of K into the product, which is an equivalence in the stable range.

In [Ly, theorem 2·2], Lydakis introduces a smash product X ∧Y for Γ-spaces X
and Y . First, an external smash product X ∧̃Y is defined as the bi-Γ-space

(X ∧̃Y ) (k+, l+) = X(k+)∧Y (l+).

The internal smash product is then obtained by left Kan extension along the smash
product functor ∧ : Γop × Γop → Γop,

(X ∧Y ) (n+) = colimk+∧ l+→n+X(k+)∧Y (l+).

The smash product is thus characterized by the universal property that Γ-space
maps X ∧Y → Z are in bijective correspondence with maps

X(k+)∧Y (l+)→ Z(k+ ∧ l+)

which are natural in both variables.



332 Stefan Schwede
Theorem 1·1. ([Ly, theorem 2·18]). The smash product of Γ-spaces is associative

and commutative with unit S, up to coherent natural isomorphism. There is a natural
isomorphism of Γ-spaces

Hom (X ∧Y,Z)%Hom (X,Hom (Y,Z)).

In other words, the category of Γ-spaces becomes a symmetric monoidal closed category.

A Γ-space X is called special if the map X((k + l)+) → X(k+)×X(l+) induced by
the projections from (k + l)+% k+ ∨ l+ to k+ and l+ is a weak equivalence for all k
and l. In this case, the weak map

X(1+)×X(1+) ∼←−−−− X(2+)
X(∇)−−−−−→ X(1+)

induces an abelian monoid structure on π0 (X(1+)). Here ∇: 2+ → 1+ is defined by
∇(1) = 1 = ∇(2). X is called very special if it is special and the monoid π0 (X(1+)) is
a group. By Segal’s theorem ([Se, proposition 1·4] or [BF, theorem 4·2]), the spec-
trum associated to a very special Γ-space X is an Ω-spectrum in the sense that the
maps |X(Sn)| → Ω|X(Sn+1)| adjoint to the spectrum structure maps are homotopy
equivalences. In particular, the homotopy groups of a very special Γ-space X are
naturally isomorphic to the homotopy groups of the simplicial set X(1+).

Simplicial abelian groups give rise to very special Γ-spaces via an Eilenberg–
MacLane functor H. For a simplicial abelian group A, the Γ-space HA is defined
by (HA)(n+) = A⊗ Z̃ [n+] where Z̃ [n+] denotes the reduced free abelian group gen-
erated by the pointed set n+. HA is very special and the associated spectrum is
an Eilenberg–MacLane spectrum for A. The homotopy groups of HA are naturally
isomorphic to the homotopy groups of A. The functor H embeds simplicial abelian
groups as a full subcategory of GS. A functor L in the opposite direction is defined
as follows. For a Γ-space X, L(X) is the cokernel of the map of simplicial abelian
groups

(p1)M + (p2)M −∇M: Z̃ [X(2+)] −→ Z̃ [X(1+)].

Here p1 and p2 are the two projections from 2+ to 1+ in Γop. The functor L is left
adjoint and left inverse toH and it is compatible with the smash product of Γ-spaces.
We summarize the properties of L in the next lemma. For ‘nice’ Γ-spaces (for those
which are cofibrant in the Q-model category structure of Theorem 1·5), L repre-
sents spectrum homology, see Lemma 4·2. These formal and homotopical properties
of H and L are the main input for the comparison of modules and algebras over
Eilenberg–MacLane Gamma-rings with simplicial modules and algebras in Section
4. In the following lemma, HomsAb denotes the internal hom object in the category
of simplicial abelian groups.

Lemma 1·2. The functor L is both left adjoint and left inverse to H and it preserves
finite products. The adjunction extends to an isomorphism of Γ-spaces

Hom (X,HA)%H(HomsAb (L(X), A)).

The functor L is strong symmetric monoidal, i.e. there are natural associative, unital and
commutative isomorphisms

L(X)⊗ L(Y )%L(X ∧Y ) and Z%L(S).
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The functor H is lax symmetric monoidal, i.e. there are natural associative, unital and
commutative transformations

HA∧HB −→ H(A⊗B) and S −→ HZ.

The adjunction map X → HL(X) induces an isomorphism on π0 and an epimorphism
on π1.

Proof. We omit the proof that L is left adjoint to H and that L(HA) is naturally
isomorphic to A. The extended adjunction isomorphism then follows from the addi-
tional fact that the Γ-spaces (HA)n+∧ and H(An) are naturally isomorphic. To see
that L preserves finite products, we consider two Γ-spaces X and Y and note that
the composite

L(X ∨Y ) −→ L(X × Y ) −→ L(X)× L(Y )

is an isomorphism since L preserves coproducts. So it suffices to show that the map
L(X ∨Y )→ L(X × Y ) is surjective. Let (x, y) denote one of the generators of the
group Z̃[X(1+)× Y (1+)]. We consider the element (i1(x), i2(y)) ofX(2+)×Y (2+), where
i1, i2: 1+ → 2+ are the two non-trivial morphisms in Γop. The image of (i1(x), i2(y))
under the map

(p1)M + (p2)M −∇M: Z̃ [X(2+)× Y (2+)] −→ Z̃ [X(1+)× Y (1+)]

is the sum of generators (x, M) + (M, y)− (x, y). In the quotient group L(X × Y ), the
image of the generator (x, y) is thus equal to the sum of the generators (x, M) and
(M, y), so it is in the image of L(X ∨Y ).

A map L(X)⊗L(Y )→ L(X ∧Y ) is obtained as follows. The universal property of
the smash product provides a map X(1+)∧Y (1+)→ (X ∧Y )(1+∧ 1+) = (X ∧Y )(1+).
To this we apply the functor Z̃ and note that the resulting map passes to cokernels.
The natural transformation obtained is then associative, commutative and unital. To
show that it is an isomorphism, we can restrict our attention to Γ-sets. Everything in
sight commutes with colimits, and every Γ-set is a colimit of representable Γ-spaces
Γn, so it is enough to show that L(Γn) ⊗ L(Γm) → L(Γn∧Γm) is an isomorphism.
But this follows since L(Γn) is naturally isomorphic to Zn as a contravariant functor
in n+ ∈ Γop and because Γn∧Γm is isomorphic to Γnm [Ly, proposition 2·15]. The
symmetric monoidal transformation for H is obtained, by the universal property of
∧, from the map

(HA)(n+)∧ (HB)(m+) −→ (H(A⊗B))(n+∧m+)

that sends the smash product of two elements to their tensor product.
It remains to show that the mapX → HL(X) is 1-connected. Denote by Z̃ ◦ X the

Γ-space which takes n+ to the underlying simplicial set of the reduced free abelian
group generated by X(n+). Since HL(X) stems from a functor from Γop to simp-
licial abelian groups, the map in question factors over the inclusion of generators
X → Z̃ ◦ X. The Hurewicz theorem applied to the simplicial set X(Sn) for large n
shows that X → Z̃ ◦ X induces an isomorphism on π0 and an epimorphism on π1.
We let K denote the pointwise kernel of the induced map Z̃ ◦ X → HL(X), viewed
as a map of functors from Γop to simplicial abelian groups. When we take the short
exact sequence

0 −→ K −→ Z̃ ◦ X −→ HL(X) −→ 0



334 Stefan Schwede
of abelian group valued functors and evaluate it at a high dimensional simplicial
sphere, we obtain a short exact sequence of simplicial abelian groups. The long exact
homotopy sequences of those simplicial abelian groups in the limit assemble to a
long exact sequence of homotopy groups for the Γ-spaces underlying K, Z̃ ◦ X and
HL(X). So it suffices to show that π0K is trivial.

We consider the map X ∨ X → X2+∧ which is induced by the two inclusions
1+ → 2+. This map is a stable equivalence, hence so is the induced map

Z̃ ◦ (X ∨X)→ Z̃ ◦ (X2+∧).

The map (p1)M + (p2)M − ∇M : Z̃ ◦ (X2+∧) → Z̃ ◦ X becomes trivial when composed
with the map Z̃ ◦ X→ HL(X), so it factors over a map Z̃ ◦ (X2+∧) → K. By the
definition of K, this map is surjective at 1+, so π0(Z̃ ◦ (X2+∧)) surjects onto π0K.
But the composite Z̃ ◦ (X ∨X)→ Z̃ ◦ (X2+∧)→ K is trivial and π0(Z̃ ◦ (X ∨X))→
π0(Z̃ ◦ (X2+∧)) is an isomorphism, so π0(Z̃ ◦ (X2+∧)) → π0K is both surjective and
trivial, so π0K is trivial.

Lemma 1·3. Let A→ B be an injective map of Γ-spaces. Then there is a natural long
exact sequence of homotopy groups

· · · → πnA → πnB → πnB/A → πn−1 A → · · · π0 B/A → 0

where B/A denotes the cofibre (quotient) of B by A. Let X → Y be a map between very
special Γ-spaces which is surjective on π0. Assume also that X → Y is pointwise a
fibration of simplicial sets, and let F denote its fibre. Then the induced map X/F → Y
is a stable equivalence.

Proof. For every i, the sequence

A (Si) → B (Si) → (A/B) (Si)

is a cofibre sequence of simplicial sets in which all objects are (i − 1)-connected.
Hence for these simplicial sets there is a long exact sequence of homotopy groups in
a range of roughly 2i and the desired long exact sequence is obtained as i goes to
infinity. Under the hypothesis of the second part of the lemma, the fibre F is also
very special. So the homotopy groups of X,Y and F are naturally isomorphic to the
homotopy groups of the simplicial sets X(1+), Y (1+) and F (1+), for which there is a
long exact sequence. By the first part and the five lemma, X/F → Y is thus a stable
equivalence. q

Bousfield and Friedlander introduce two model category structures for Γ-spaces
called the strict and the stable model categories [BF, 3·5, 5·2]. It will be more con-
venient for our purposes to work with slightly different model category structures,
which we call the Quillen- or Q-model category structures. The strict and stable
Q-structures have the same weak equivalences as the corresponding Bousfield–
Friedlander model category structures, but different fibrations and cofibrations. The
strict Q-structure is mentioned in [BF] at the end of Section 3.

We call a map of Γ-spaces a strict Q-fibration (resp. a strict Q-equivalence) if it is
a Kan fibration (resp. weak equivalence) of simplicial sets when evaluated at every
n+∈ Γop. Strict Q-cofibrations are defined as the maps having the left lifting property
with respect to all strict acyclic Q-fibrations. The Q-cofibrations can be characterized
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in the spirit of [Q, II·4, remark 4] as the injective maps with free cokernel, see Lemma
A3 for the precise statement. The injection Γk ∨ Γl → Γk+l is an example of a map
which is not a Q-cofibration, but which is a cofibration in the sense of [BF, 3·5]. On
the other hand, the Eilenberg–MacLane Γ-space HA is strictly Q-fibrant for every
simplicial abelian group A, but it is not strictly fibrant in the sense of [BF, 3·5]
unless A is a constant simplicial abelian group.

The definitions can be rephrased as saying that a map of Γ-spaces is a strict Q-
fibration (resp. strict Q-equivalence) if and only if it induces a fibration (resp. weak
equivalence) of simplicial hom sets hom (Γn,−) for all the representable Γ-spaces Γn.
These objects Γn form a set of small projective generators in the sense of [Q, II·4,
p. 4·1] for the category of Γ-sets. Since a Γ-space can be viewed as a simplicial object
of Γ-sets, we have

Lemma 1·4. [Q, II·4, theorem 4]. The strict Q-notions of weak equivalences, fibrations
and cofibrations make the category of Γ-spaces into a closed simplicial model category.

More important is the stable Q-model category structure. This one is obtained by
localizing the strict Q-model category structure with respect to the stable equiva-
lences. We call a map of Γ-spaces a stable Q-equivalence if it induces isomorphisms
on homotopy groups. The stable Q-cofibrations are the strict Q-cofibrations and the
stable Q-fibrations are defined by the right lifting property with respect to the stable
acyclic Q-cofibrations. The proof of the following theorem will be given in Appendix
A. It relies on Bousfield’s cardinality argument of [Bou, section 11].

Theorem 1·5. The stable notions of Q-cofibrations, Q-fibrations and Q-equivalences
make the category of Γ-spaces into a cofibrantly generated closed simplicial model cat-
egory. A Γ-space X is stably Q-fibrant if and only if it is very special and X(n+) is
fibrant as a simplicial set for all n+ ∈ Γop. A strict Q-fibration between stably Q-fibrant
Γ-spaces is a stable Q-fibration.

An adjoint functor pair between model categories is called a Quillen pair if the left
adjoint L preserves cofibrations and acyclic cofibrations. An equivalent condition is
to demand that the right adjoint R should preserve fibrations and acyclic fibrations.
Under these conditions, the functors pass to an adjoint functor pair on homotopy
categories (see [Q, I·4, theorem 3], [DS, theorem 9·7(i)]). A Quillen functor pair is
called a Quillen equivalence if the following condition holds: for every cofibrant ob-
ject A of the source category of L and for every fibrant object X of the source
category of R, a map L(A) → X is a weak equivalence if and only if its adjoint
A → R(X) is a weak equivalence. Sometimes the right adjoint functor R preserves
and detects all weak equivalences. Then the pair is a Quillen equivalence if for all
cofibrant A the unit A→ R(L(A)) of the adjunction is a weak equivalence. A Quillen
equivalence induces an equivalence of homotopy categories (see [Q, I·4, theorem 3],
[DS, theorem 9·7(ii)]), but it also preserves higher order structure like (co-)fibration
sequences, Toda brackets and the homotopy types of function complexes. If two
model categories are related by a chain of Quillen equivalences, they can be viewed
as having the same homotopy theory.

Remark 1·6. The Bousfield–Friedlander stable equivalences and the stable
Q-equivalences coincide: they are the maps inducing isomorphisms on homotopy
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groups. Furthermore, every Q-cofibration is a cofibration in the sense of [BF, 3·5,
5·2] and hence every stable fibration in the sense of [BF, 5·2] is a stable Q-fibration.
So the two stable structures are essentially equivalent. One advantage of the Q-
model category structure is that it is compatible with the adjoint functors H and
L. The Eilenberg–MacLane functor H takes acyclic fibrations of simplicial abelian
groups to strict acyclic Q-fibrations of Γ-spaces. Since the acyclic fibrations coincide
in the strict and stable Q-structures, H takes acyclic fibrations to stable acyclic Q-
fibrations. The functor H also takes fibrations of simplicial abelian groups to strict
Q-fibrations between stably Q-fibrant Γ-spaces, which are stable Q-fibrations by The-
orem 1·5. So H and L are a Quillen pair with respect to the stable Q-model category
structure. Since the Γ-space HA is not fibrant in the strict Bousfield–Friedlander
structure (unless the simplicial abelian group A is discrete), H and L do not form a
Quillen pair with respect to the Bousfield–Friedlander model structure.

The following compatibility of the Q-model category structure with the smash
product is an easy consequence of Lydakis’ results [Ly]. It can be rephrased as saying
that Lydakis’ smash product and the stable Q-model category structure make the
category of Γ-spaces into a monoidal model category satisfying the monoid axiom
in the sense of [SS, definitions 3·1, 3·3]. These are the homotopical ingredients that
will enable us to lift the model category structure from Γ-spaces to modules and
algebras in Section 2.

Lemma 1·7. Smashing with a Q-cofibrant Γ-space preserves stable equivalences.
(Pushout product axiom) If A→ B and K → L are Q-cofibrations of Γ-spaces then

so is the canonical map (called pushout product)

A∧L xA∧K B ∧K −→ B ∧L.
If in addition one of the former maps is a stable equivalence, then so is the pushout
product.

(Monoid axiom) Let I denote the smallest class of maps of Γ-spaces which contains
the maps of the form A∧Z → B ∧Z for A → B a stable acyclic Q-cofibration, Z any
Γ-space, and which is closed under cobase change and transfinite composition. Then every
map in I is a stable equivalence.

Proof. The first statement follows from the stronger result [Ly, theorem 5·12] since
every Q-cofibration is a cofibration in the sense of [Ly, definition 3·1]. If the maps
A→ B and K → L are Q-cofibrations, they are injective and so their pushout prod-
uct is injective by [Ly, proposition 4·4]. By the characterization of Q-cofibrations
(Lemma A3) it is thus enough to show that the cofibre of the pushout product is
Q-cofibrant. Again by Lemma A3, this boils down to showing that the smash prod-
uct of free Γ-sets is free. But this holds because Γn∧Γm is isomorphic to Γnm, see
[Ly, proposition 2·15].

Suppose A→ B, say, is also a stable equivalence. To show that then the pushout
product is a stable equivalence, it suffices by Lemma 1·3 to show that its cofibre is
stably contractible. But this cofibre is isomorphic to (B/A)∧ (L/K), which is sta-
bly contractible since smashing with the Q-cofibrant Γ-space L/K preserves stable
equivalences.

It remains to prove the monoid axiom. Every map of the form A∧Z → B ∧Z
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with A,B,Z as above is injective, and we claim that its cofibre (B/A)∧Z is sta-
bly contractible. To see this we choose a stably equivalent Q-cofibrant replacement
Zc → Z. Since smashing with the Q-cofibrant Γ-spaces B/A and Zc preserves stable
equivalence, the Γ-space (B/A)∧Z is stably equivalent to (B/A)∧Zc which in turn
is stably contractible since B/A is. By Lemma 1·3 the map A∧Z → B ∧Z is thus
a stable equivalence. Again by Lemma 1·3 and the five lemma every cobase change
of an injective stable equivalence is another injective stable equivalence. Since ho-
motopy groups commute with filtered colimits over injective maps, every transfinite
composition of injective stable equivalences is another injective stable equivalence.
Hence every map in I is an injective stable equivalence.

Remark 1·8. The smash product also satisfies the pushout product axiom and
monoid axiom for the Bousfield–Friedlander stable model category structure and
for the two strict structures, but these are of less importance for the present paper.
Smashing with a Γ-space which is cofibrant in the sense of Bousfield and Fried-
lander (but not necessarily Q-cofibrant) also preserves stable equivalences by [Ly,
theorem 5·12]. In all four model category structures the maps in the class I con-
sidered in the monoid axiom are injective equivalences, but they are not in general
acyclic cofibrations.

2. Gamma-rings and their modules

Our version of ring spectra are the monoids in the symmetric monoidal category
of Γ-spaces with respect to the smash product, which we call Gamma-rings. Many
results of this section are formal in the sense that they follow from the existence
of and a few homotopical properties of the smash product that were summarized
in Lemma 1·7. A formally very similar situation arose in the study of modules and
algebras in the framework of symmetric spectra [HSS]. We thus decided to take an
axiomatic approach to the problem in [SS], introducing the notion of a monoidal
model category satisfying the monoid axiom [SS, definitions 3·1, 3·3]. Hence for the
following construction of the model category structures, most of the work is done in
[SS]. In this section we apply the main results of [SS] to Γ-spaces and point out the
special features of the Γ-space category.

Definition 2·1. A Gamma-ring is a monoid in the symmetric monoidal category of
Γ-spaces with respect to the smash product. Explicitly, a Gamma-ring is a Γ-space
R equipped with maps

S → R and R∧R → R,

called the unit and multiplication map, which satisfy certain associativity and unit
conditions (see [MacL, VII·3]). A Gamma-ring R is commutative if the multiplication
map is unchanged when composed with the twist, or the symmetry isomorphism, of
R∧R. A map of Gamma-rings is a map of Γ-spaces commuting with the multiplica-
tion and unit maps. If R is a Gamma-ring, a left R-module is a Γ-space N together
with an action map R∧N → N satisfying associativity and unit conditions (see
again [MacL, VII·4]). A map of left R-modules is a map of Γ-spaces commuting
with the action of R. We denote the category of left R-modules by R-mod.
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One similarly defines right modules. The unit S of the smash product is a Gamma-

ring in a unique way. The category of S-modules is isomorphic to the category of
Γ-spaces. For a Gamma-ringR the opposite Gamma-ringRop is defined by composing
the multiplication with the twist map R∧R → R∧R. Then the category of right
R-modules is isomorphic to the category of left Rop-modules. The smash product of
two Gamma-rings is naturally a Gamma-ring. An R-T -bimodule is defined to be a
left (R∧T op)-module.

In the definition of a Gamma-ring we view the multiplication map as defined on
the internal smash product. Because of the universal property of the smash product,
one can instead define a Gamma-ring via maps

n+ = S (n+) → R(n+) and R(n+)∧R(m+) → R(n+∧m+)

which are natural in n+,m+∈ Γop. The associativity and unit conditions can similarly
be expanded into external form. This rewriting shows that a Gamma-ring has the
same kind of structure as an FSP (‘Functor with Smash Product’ [Bö, 1·1], [PW,
2·2]). The main difference is that FSPs are indexed on all finite pointed simplicial sets,
whereas Gamma-rings are indexed on finite discrete sets. This justifies thinking of
Gamma-rings as ‘FSPs defined on finite sets’. A similar, but different, specialization
of FSPs leads to the symmetric ring spectra in the sense of J. Smith. These can be
viewed as ‘FSPs defined on spheres’ because they contain the information one obtains
from an FSP by forgetting everything except its value at the simplicial spheres Sn

and their coordinate permutations. The two notions of Gamma-rings and symmetric
ring spectra are in a sense ‘orthogonal’ because the indexing categories used (Γop

versus spheres and coordinate permutations) only intersect in 1+%S0.
Standard examples of Gamma-rings are monoid rings over the sphere Gamma-ring

S and Eilenberg–MacLane models of classical rings. Both these kinds of Gamma-rings
are in fact the restrictions to finite sets of the standard FSP models (cf. [BHM, 3·2],
[PW, 2·3]). If M is a simplicial monoid, we define a Γ-space S[M ] by

S[M ] (n+) = M+∧n+.

So S[M ] is isomorphic to S∧M+ and it represents the suspension spectrum of M+.
There is a unit map S → S[M ] induced by the unit of M and a multiplication map
S[M ]∧S[M ] → S[M ] induced by the multiplication of M which turn S[M ] into
a Gamma-ring. This construction of the monoid ring over S is left adjoint to the
functor which takes a Gamma-ring R to the simplicial monoid R(1+).

If B is a simplicial ring, then the Eilenberg–MacLane Γ-space HB is naturally a
Gamma-ring, simply because H is a lax monoidal functor. The functor H is still full
and faithful when considered as a functor from the category of simplicial rings to the
category of Gamma-rings. The functor L is still left adjoint and left inverse to H.

A formal consequence of having a closed symmetric monoidal smash product
is that the category of R-modules inherits a smash product and function objects.
More precisely, let M be a right R-module, N a left R-module. Define the smash
product M∧RN as the coequalizer, in the category of Γ-spaces, of the two maps
M ∧R∧N −→−→M ∧N given by the action of R on M and N respectively. If M hap-
pens to be a T -R-bimodule and N an R-U -bimodule, then M∧RN is naturally a
T -U -bimodule. In particular, if R is a commutative Gamma-ring, the notions of left
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and right module coincide and agree with the notion of a symmetric bimodule. In
this case ∧R is an internal symmetric monoidal smash product for R-modules.

The analogous phenomenon happens for internal function objects. Given two left
R-modulesM andN, there are two maps of Γ-spaces Hom (M,N )−→−→Hom (R∧M,N ).
The first is induced by the action map for M , the second is the composition of
R∧− : Hom (M,N ) → Hom (R∧M,R∧N ) followed by the map induced by the
action of R on N . We define the function Γ-space HomR (M,N ) of R-morphisms
between M and N to be the equalizer of these two maps. As was the case with the
smash product, the usual properties known from algebra carry over: if M is an R-T -
bimodule and N an R-U -bimodule, then HomR (M,N ) is naturally a T -U -bimodule.
In particular, over a commutative Gamma-ring we get internal function objects for
the module category.

Finally, the adjunction between smash and function Γ-spaces extends as follows:
consider a left R-module N , a T -R-bimodule M and a left T -module W . Then there
is an isomorphism of Γ-spaces, natural in all three variables

HomT (M∧RN,W ) % HomR (N,HomT (M,W )).

In particular, over a commutative Gamma-ring the internal smash and function
objects are again adjoint.

We now establish the model category structure for modules over a Gamma-ring R.
It is created by the forgetful functor R-mod→ GS. By this we mean that a map of
R-modules is called a weak equivalence (resp. fibration) if it is a stable Q-equivalence
(resp. stable Q-fibration) as a map of Γ-spaces. A map of R-modules will be called a
cofibration if it has the left lifting property with respect to all acyclic fibrations in
R-mod. Theorem 4·4 will show that for a simplicial ring B, the homotopy theory of
HB-modules is equivalent to that of simplicial B-modules.

Theorem 2·2. For any Gamma-ring R, the category of left R-modules is a cofibrantly
generated closed simplicial model category. Every cofibration of R-modules is injective.
If N is a cofibrant left R-module then the functor −∧RN takes stable equivalences of
right R-modules to stable equivalences of Γ-spaces.

Proof. Lemma 1·7 states that the smash product makes the category of Γ-spaces
into a monoidal model category satisfying the monoid axiom in the sense of [SS, def-
initions 3·1, 3·3]. The model category structure is cofibrantly generated by Theorem
1·5 and every Γ-space is small with respect to the whole category since the category
of Γ-spaces is locally finitely presentable (see Appendix A). So [SS, theorem 4·1(1)]
shows that R-modules form a cofibrantly generated model category. The simplicial
structure, i.e. mapping objects from and products with simplicial sets, is defined on
the underlying Γ-spaces and the simplicial axiom SM7 holds for R-modules since it
holds for Γ-spaces. Every generating cofibration is injective and injectivity is closed
under pushouts, transfinite composition and retracts. By the small object argument
(Lemma A1), every cofibration of R-modules can be obtained using these operations.

Call a left R-module N nice if smashing over R with N preserves stable equiva-
lences. It remains to show that cofibrant modules are nice. Consider a Q-cofibration
of Γ-spaces A→ B and a diagram of R-modules

N ←− R∧A −→ R∧B
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and suppose that N is nice. We claim that then the pushout of this diagram is also
nice. To see this, we smash the pushout square with a weak equivalence to obtain
a certain cube of Γ-spaces. Viewed as a map between pushout squares, all horizon-
tal maps in this cube are injective. This provides long exact sequences of homotopy
groups (Lemma 1·3) and the claim follows by the five lemma. Since homotopy groups
commute with filtered colimits over injective maps and smashing over R commutes
with colimits and takes cofibrations to injective maps, the class of nice modules is
closed under transfinite composition along cofibrations. By the small object argu-
ment (Lemma A1), every cofibrant left R-module can be obtained from the trivial
module by pushouts and transfinite composition as above, and retracts. Hence every
cofibrant R-module is nice. q

For a map R→ R′ of Gamma-rings, there is a Quillen adjoint functor pair analo-
gous to restriction and extension of scalars: any R′-module becomes an R-module if
we let R act through the map. This functor has a left adjoint taking an R-module M
to theR′-moduleR′ ∧RM . IfR→ R′ is a stable equivalence, then for every cofibrant
R-module M , the map M%R∧RM → R′∧RM is a stable equivalence. So we have

Corollary 2·3. For a weak equivalence of Gamma-rings R ∼→ R′, the functors of
restriction and extension of scalars are a Quillen equivalences between the categories of
R-modules and R′-modules.

Gamma-rings form a model category with fibrations and weak equivalences de-
fined on the underlying Γ-spaces. Gamma-rings are the same as S-algebras and more
generally algebras over any commutative Gamma-ring form a model category.

Definition 2·4. Let k be a commutative Gamma-ring. A k-algebra is a monoid in the
symmetric monoidal category of k-modules with respect to smash product over k.
Explicitly, a k-algebra is a k-moduleA together with associative and unital k-module
maps

k → A and A∧k A → A.

A map of k-algebras is a map of k-modules which commutes with the unit and
multiplication map.

It is a formal property of symmetric monoidal categories (compare [EKMM, VII,
1·3]) that specifying a k-algebra structure on a Γ-space A is the same as giving A a
Gamma-ring structure together with a central map of Gamma-rings f: k → A. Here
central means that the following diagram commutes

kgA Agk AgAtwist idgf

AgA A

mult.fgid

mult.

We call a map of k-algebras a fibration or weak equivalence if it is a fibration or
weak equivalence on underlying k-modules (equivalently: a stable Q-fibration or
stable Q-equivalence on underlying Γ-spaces). A map of k-algebras is a cofibration if
it has the left lifting property with respect to all acyclic fibrations. Since we know
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that Γ-spaces form a cofibrantly generated monoidal model category which satisfies
the monoid axiom, that every Γ-space is small and that the unit S of the smash
product is cofibrant, the following theorem is an application of [SS, theorem 4·1(3)].
We will also see (Theorem 4·5) that the algebras over the Eilenberg–MacLane model
of a commutative simplicial ring B have the same homotopy theory as simplicial
B-algebras.

Theorem 2·5. The category of k-algebras is a closed simplicial model category. Every
cofibrant k-algebra is also cofibrant as a k-module. In particular, the category of Gamma-
rings is a cofibrantly generated closed simplicial model category.

Remark 2·6. A concluding remark about commutativity of multiplication for
Gamma-rings is in order. One can consider the full subcategory of the commutative
Gamma-rings. This category of commutative Gamma-rings is definitely not a model
category with weak equivalences and fibrations defined on underlying Γ-spaces. If
commutative Gamma-rings became a model category this way, the sphere Gamma-
ring S would have a weakly equivalent fibrant model inside this category. Evaluating
this fibrant representative on 1+∈ Γop would give a commutative simplicial monoid
weakly equivalent toQS0. This would imply that the spaceQS0 is weakly equivalent
to a product of Eilenberg–MacLane spaces, which is not the case.

3. The derived smash product

For a Gamma-ring R, we define the derived smash product of a right R-module M
and a left R-module N in the usual way: we choose a cofibrant left R-module N c and
a weak equivalence N c ∼→ N and set M ∧LRN = M ∧RN c. It follows from the last
statement in Theorem 2·2 that the derived smash product is well defined up to stable
equivalence and that we could have chosen to cofibrantly resolve the right module
M instead. The derived smash product can be made functorial by a functorial choice
of cofibrant approximation using the small object argument (Lemma A1).

There are standard spectral sequences for calculating the homotopy of M ∧LRN ,
analogous to Quillen’s spectral sequences for the derived tensor product of simplicial
modules [Q, II·6, theorem 6].

Lemma 3·1. Let R be a Gamma-ring, M a right R-module and N a left R-module.
There are functorial convergent first quadrant spectral sequences with differential of stan-
dard homological form

E2
p,q = TorπMRp (πMM,πMN )q =⇒ πp+q (M ∧LRN )

E2
p,q = πp ((HπqM )∧LRN ) =⇒ πp+q (M ∧LRN )

E2
p,q = πp (M ∧LR (HπqN )) =⇒ πp+q (M ∧LRN ).

Proof. By functorial replacement we can assume that M is fibrant and N is cofi-
brant. For the construction of the first spectral sequence, we denote by F (M ) the
wedge

F (M ) =
∨

ΣnR→M
ΣnR

of copies of suspensions of R considered as a right module over itself; the copies are
indexed by all R-module maps ΣnR→M for varying n. Since M is fibrant it is very
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special, and the associated spectrum is an Ω-spectrum. Thus every element in πnM
is represented by a map of simplicial sets Sn → M (1+). By adjointness, this gives
a map of R-modules ΣnR = Sn∧R → M . On homotopy, this map takes the n-fold
suspension of 1 ∈ π0 R to the given element in πnM . So the natural evaluation map
F (M )→M is surjective on homotopy groups. Furthermore, πM F (M ) is graded free
over πMR.

We set P0 = M and define Pi+1 inductively as the homotopy fibre, in mod-R, of
the map F (Pi) → Pi. This means that Pi+1 is the categorical fiber of the fibration
which is part of the functorial factorization

F (Pi)
∼−→ E(Pi) −→ Pi

as a stable equivalence followed by a stable Q-fibration. Then Pi+1 is fibrant, hence
F (Pi+1) → Pi+1 again induces epimorphisms on homotopy groups. Thus taking ho-
motopy groups of the sequence of R-modules

· · · −→ E(Pi+1) −→ E(Pi) −→ · · · −→ E(P0) −→ M

gives a functorial free resolution of πMM over πMR. The fibration E(Pi) → Pi is
surjective on π0. So by Lemma 1·3 the cofibre E(Pi)/Pi+1 maps to Pi by a stable
equivalence. Since smashing with N over R preserves colimits, weak equivalences
and injective maps, the sequence

Pi+1 ∧RN −→ E(Pi)∧RN −→ Pi ∧RN
gives rise to a long exact sequence of homotopy groups. These homotopy groups
thus assemble into an exact couple of standard homological form with E1

p,q %
πp+q (E(Pp)∧RN ). Since E(Pp)∧RN is stably equivalent to

F (Pp)∧RN %
∨

ΣnR→Pp
ΣnN,

we have E1
p,q % (πME(Pp) ⊗πMR πMN )p+q. Under this isomorphism, the differential

d1 is isomorphic to the map obtained by tensoring the above free resolution of πMM
with πMN . Thus the E2-term of the spectral sequence is isomorphic to the Tor groups
over πMR.

Now we construct the second spectral sequence, the third being analogous. We
follow Quillen’s construction in [Q, II·6, theorem 6], so we first provide connected
covers for (right, say) R-modules. The category of R-modules has adjoint suspension
and loop functors and they are given by pointwise suspension and loop on the un-
derlying Γ-spaces. Fibrant R-modules are very special Γ-spaces, so for these looping
shifts homotopy groups. If a module is looped beyond its connectivity, the lower
homotopy groups are cut off. Also, for any right R-module M , the cofibre sequence

M −→ Cone (M ) −→ ΣM

induces long exact sequences of homotopy groups by Lemma 1·3. Hence suspension
shifts homotopy groups for any module. These two facts together imply that for a
fibrant right R-module M , the module ΣnΩnM is (n− 1)-connected and the counit
of the adjunction ΣnΩnM →M induces an isomorphism on homotopy groups from
dimension n upwards.
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For the construction of the spectral sequence we may again assume that M is

fibrant as a right R-module and that N is cofibrant as a left R-module. We de-
note by Pn the homotopy cofibre, in the category of right R-modules, of the map
Σn+1Ωn+1M → ΣnΩnM . Then Pn has only one non-trivial homotopy group isomor-
phic to πnM in dimension n. Pn is thus stably equivalent to the n-fold suspension of
the module HπnM . Smashing with the cofibrant right R-module N preserves homo-
topy cofibre sequences, so the homotopy groups of the homotopy cofibre sequences

(Σn+1Ωn+1M )∧RN −→ (ΣnΩnM )∧RN −→ Pn ∧RN
form an exact couple with

E2
p,q = πp+q (Pq ∧RN )%πp+q (Σq(HπqM )∧LRN )%πp ((HπqM )∧LRN ).

The spectral sequence we are looking for is the one associated to this exact couple.

4. Eilenberg–MacLane Gamma-rings and simplicial rings

In this section we prove that modules and algebras over Eilenberg–MacLane
Gamma-rings have the same homotopy theory as simplicial modules and algebras
(Theorems 4·4 and 4·5). The comparison of HZ-algebras and simplicial rings was
motivated by a construction of Dundas. He shows in [Du] that certain FSPs which
should be (equivalent to FSPs arising from) simplicial rings actually are so. Loosely
speaking the main result of this section states that a Gamma-ring is stably equivalent
to a simplicial ring if and only if it contains HZ in its center.

Since the Eilenberg–MacLane functorH from simplicial abelian groups to Γ-spaces
is lax monoidal, it induces a functor B-mod→HB-mod for any simplicial ring B.
Since the left adjoint L is also monoidal, L(R) is a simplicial ring for every Gamma-
ring R, and L induces a functor R-mod→L(R)-mod. Both functors preserve com-
mutativity. Since L(HB) is naturally isomorphic to B as a simplicial ring, H and L
in particular pass to adjoint functors between the categories of simplicial B-modules
and HB-modules.

Lemma 4·1. Let R be a Gamma-ring, M a right R-module and N a left R-module.
Then there are natural isomorphisms

L(M )⊗L(R) L(N ) %L(M∧RN ) and π0M ⊗π0R π0N % π0(M∧RN ).

In particular if R = HB is an Eilenberg–MacLane Gamma-ring, then L(M∧HBN ) is
naturally isomorphic to L(M )⊗B L(N ).

Proof. The smash product M∧RN was defined as a certain coequalizer in the
category of Γ-spaces. If we apply L to the coequalizer diagram and use the properties
of L summarized in Lemma 1·2, we obtain a coequalizer diagram of simplicial abelian
groups

L(M )⊗ L(R)⊗ L(N ) −−→−−→ L(M )⊗ L(N ) −→ L(M∧RN ).

So L(M∧RN ) is naturally isomorphic to L(M ) ⊗L(R) L(N ). Since π0X is naturally
isomorphic to π0L(X) for any Γ-space X (Lemma 1·2), the second isomorphism
follows from the first.
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Lemma 4·2. Let R be a Gamma-ring, M any simplicial right L(R)-module and N a

cofibrant left R-module. Then the map

HM ∧RN −→ H(M ⊗L(R) L(N ))

which is adjoint to the isomorphism L(HM ∧RN )%M ⊗L(R) L(N ) is a stable equiva-
lence. In particular, for every Q-cofibrant Γ-space X, the map HZ∧X → HL(X) is a
stable equivalence. So for Q-cofibrant X, the homotopy groups of L(X) are the spectrum
homology groups of X.

Proof. If N is of the form N = R∧K for some pointed simplicial set K, then L(N )
is naturally isomorphic to the reduced free L(R)-module generated byK. The map in
question then becomesHM ∧K → H(M⊗Z̃[K]). This is an isomorphism forK = S0

and the homotopy groups of both sides are reduced generalized homology theories
in K (namely singular homology with coefficients in M ). Hence the map is a stable
equivalence for all K. Both sides of the original map HM ∧RN → H(M ⊗L(R)L(N ))
preserves stable equivalences between cofibrant objects in the variable N . So if N is
of the form N = R∧Γn∧K, it is equivalent to R∧ (n+∧K), and the map is a stable
equivalence by the first part.

Now suppose K → L is a cofibration of pointed simplicial sets, N a left R-module
and N ′ the pushout of a diagram of left R-modules

N ←− R∧Γn∧K −→ R∧Γn∧L.
We claim that ifHM∧RN → H(M⊗L(R)L(N )) is a stable equivalence, then the same
is true for N ′. This claim follows from the five lemma using the fact that L preserves
colimits and cofibrations and that cofibrations of R-modules and simplicial L(R)-
modules give rise to long exact sequences of homotopy groups. Every cofibrant R-
module can be obtained from the trivial module by pushouts of this kind, transfinite
composition along cofibrations and retracts, so this proves the lemma for an arbitrary
cofibrant R-module N . The claims about spectrum homology follow by taking R = S
and M = Z.

Remark 4·3. For a Γ-space which is cofibrant in the sense of Bousfield and Fried-
lander the functor L does not necessarily represent spectrum homology. As an ex-
ample we consider the map Γ1 ∨Γ1 ∨Γ1 → Γ2 induced by the three non-trivial maps
2+ → 1+. This map is a cofibration in the sense of [BF] and so its cofibreC is cofibrant
in the sense of Bousfield–Friedlander. The induced map L(Γ1 ∨ Γ1 ∨ Γ1) → L(Γ2) is
surjective, so L(C) is trivial. However, the Γ-space C represents the suspension spec-
trum is S1, which certainly has non-trivial spectrum homology.

For the following two comparison theorems it is important that we based the
model category structures for HB-modules and HB-algebras on the Quillen-, and
not the Bousfield–Friedlander model category structures for Γ-spaces (see Remark
1·6).

Theorem 4·4. Let B be a simplicial ring. Then the adjoint functors H and L are a
Quillen equivalence between the categories of simplicial B-modules and HB-modules.

Theorem 4·5. Let B be a commutative simplicial ring. Then the adjoint functors H
and L are a Quillen equivalence between the categories of simplicial B-algebras and
HB-algebras.
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Proofs. The fibrations and acyclic fibrations of simplicial B-modules are defined

on underlying simplicial abelian groups, and the fibrations and acyclic fibrations
of HB-modules are defined on underlying Γ-spaces, and similarly for algebras. So
Remark 1·6 implies that the adjoint functors H and L form a Quillen pair between
the model categories of simplicial B-modules and HB-modules, and similarly for
algebras. The right adjoint functor H detects and preserves all weak equivalences,
so to prove Theorem 4·4 it remains to shows that for every cofibrant HB-module
N the unit map N → HL(N ) of the adjunction is a stable equivalence. This is a
special case of the previous Lemma 4·2 with R = HB and M = B. In the case where
B is commutative, every cofibrant HB-algebra is also cofibrant as an HB-module
(Theorem 2·5), so the same argument takes care of Theorem 4·5.

Appendix A. The stable Q-model category structure

The model category structures for Gamma-rings and modules over Gamma-rings
that we introduced in Section 2 are based on the stable Quillen model category struc-
ture for Γ-spaces and on the fact that this is cofibrantly generated. In this appendix
we recall from [DHK] the definition of cofibrantly generated model categories and
establish the stable Q-model structure. The main tool is Bousfield’s transfinite ver-
sion [Bou, section 11] of Quillen’s small object argument.

In [Q, II p. 3·4], Quillen formulates his small object argument, which is now a
standard device in model category theory. After Quillen, several authors have ax-
iomatized and generalized the small object argument (see e.g. [Bl, definition 4·4],
[Cr, definition 3·2] or [Sch1, definition 1·3·1]). For Γ-spaces the countable small
object argument is not good enough (see Example A6), so we need a transfinite
version. An axiomatization suitable for our purposes are the ‘cofibrantly generated
model categories’ of [DHK]. If a model category is cofibrantly generated, its model
category structure is determined by a set of cofibrations and a set of acyclic cofibra-
tions. There is a functorial factorization of maps as cofibrations followed by acyclic
fibrations and as acyclic cofibrations followed by fibrations. The author is grateful
to Dwyer, Hirschhorn and Kan for giving him access to early drafts of their book
[DHK].

Ordinals and cardinals. An ordinal γ is an ordered isomorphism class of well ordered
sets. It can be identified with the well ordered set of all preceding ordinals. For an
ordinal γ, the same symbol will denote the associated poset category. The latter
has an initial object 6, the empty ordinal. An ordinal is a limit ordinal if it has no
immediate predecessor. An ordinal κ is a cardinal if its cardinality is bigger than
that of any preceding ordinal. A cardinal κ is called regular if the following holds:
for every set of sets {Xj}j∈J indexed by a set J of cardinality less than κ and such
that the cardinality of each Xj is less than that of κ, the cardinality of the union⋃
J Xj is also less than that of κ. The successor cardinal (the smallest cardinal of

bigger cardinality) of every cardinal is regular.

Transfinite composition. Let C be a cocomplete category and γ a well-ordered set
which we identify with its poset category. A functor V :γ → C is called a γ-sequence
if for every limit ordinal β < γ the natural map colimV |β → V (β) is an isomorphism.
The map V (6) → colimγV is called the transfinite composition of the maps of V .
A subcategory C1 ⊂ C is said to be closed under transfinite composition if for every



346 Stefan Schwede
ordinal γ the following holds: given a γ-sequence V :γ → C such that V (α)→ V (α+1)
is in C1 for every α < γ, then the induced map V (6) → colimγV is also in C1.
Examples of such subcategories are the cofibrations or the acyclic cofibrations in a
closed model category.

Relatively small objects. Consider a cocomplete category C and a subcategory C1 ⊂ C

closed under transfinite composition. If κ is a regular cardinal, an object C ∈ C is
called κ-small relative to C1 if for every regular cardinal λ > κ and every functor
V :λ→ C1 which is a λ-sequence in C, the map

colimλHomC (C, V ) → HomC (C, colimλV )

is an isomorphism. An object C ∈ C is called small relative to C1 if there exists a
regular cardinal κ such that C is κ-small relative to C1.

Locally presentable categories. In many cases of interest, category theory automati-
cally takes care of smallness conditions. This applies to suitable functor categories
with values in simplicial sets and it applies in particular to Γ-spaces. In these cases
every object is small with respect to the whole category. The relevant category theo-
retical notion is that of a locally presentable category. In general, categories involving
actual topological spaces tend not to be locally presentable.

An object K of a category C is called finitely presentable if the hom functor
homC (K,−) preserves filtered colimits. For any regular cardinal κ, a poset is called
κ-filtered if every subset of cardinality less that κ has an upper bound. An object K
of C is called κ-presentable if the hom functor homC (K,−) commutes with κ-filtered
colimits. Note that the poset indexing a transfinite composition of length > κ is κ-
filtered (an upper bound is given by the union of cardinals involved). So κ-presentable
objects are in particular κ-small with respect to the whole category C. A set G of
objects of a category C is called a set of strong generators if for every object K and
every proper subobject there exists G ∈ G and a morphism G → K which does not
factor through the subobject. A category is called locally finitely presentable (resp.
locally κ-presentable) if it is cocomplete and has a set of finitely presentable (resp. κ-
presentable) strong generators. A category is called locally presentable if it is locally
κ-presentable for some regular cardinal κ. In the category of Γ-spaces, the collection
of objects Γn∧ (∆i)+ for varying n and i form a set of finitely presentable strong gen-
erators. So the category of Γ-spaces if locally finitely presentable. The main property
of locally presentable categories for our purpose is that every object is presentable,
hence small with respect to the whole category (see [Bor, proposition 5·2·10]).

I-injectives, I-cofibrations and regular I-cofibrations. Given a cocomplete category C

and a set I of maps, we denote

• by I-inj the subcategory of C consisting of maps which have the right lifting
property with respect to the maps in I. Maps in I-inj are referred to as I-
injectives.

• by I-cof the subcategory of C consisting of maps which have the left lifting
property with respect to the maps in I-inj. Maps in I-cof are referred to as
I-cofibrations.
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• by I-cofreg ⊂ I-cof the subcategory of the (possibly transfinite) compositions

of maps that can be obtained via cobase change from maps in I. Maps in
I-cofreg are referred to as regular I-cofibrations.

Quillen’s small object argument [Q, II p. 3·4] has the following transfinite analogue:

Lemma A1. [DHK]. Let C be a cocomplete category and I a set of maps in C whose
domains are small relative to I-cofreg. Then

• there is a functorial factorization of maps f ∈ Mor (C) as f = qi with q ∈ I-inj
and i ∈ I-cofreg and thus

• every I-cofibration is a retract of a regular I-cofibration.

Definition A2. [DHK]. A closed model category C is cofibrantly generated if it is
complete and cocomplete and there exist a set of cofibrations I and a set of acyclic
cofibrations J such that the fibrations are precisely the J-injectives; the acyclic
fibrations are precisely the I-injectives; the domain of each map in I (resp. in J) is
small relative to I-cofreg (resp. J-cofreg). The maps in I (resp. J) will be referred to
as generating cofibrations (resp. generating acyclic cofibrations).

We need a characterization of the Q-cofibrations. We call a Γ-set free if it isomor-
phic to a wedge of (possibly infinitely many) copies of Γns for various n. A Γ-space
can be viewed as a simplicial object of Γ-sets and thus has degeneracies in the sim-
plicial direction. For a Γ-space A, we denote by Ai the Γ-set obtained by fixing the
simplicial degree i. We also let Adi denote the degenerate part, i.e. the sub-Γ-set of
Ai consisting of the images of the Aj for j < i under the simplicial degeneracy maps.
So the set Adi (n

+) consists of the degenerate i-simplices in the simplicial set A(n+).
We then have

Lemma A3. (a) A retract of a free Γ-set is free.

(b) A map of Γ-spaces A→ B is a Q-cofibration if and only if it is injective and the
Γ-set Bi/(Bd

i xAdi Ai) is free in every simplicial degree i > 0.

Proof. (a) Let F =
∨
j∈J Γnj be a free Γ-set. Any retract of F is isomorphic to the

image of an idempotent endomorphism ε of F . Dropping some wedge summands if
necessary, we can assume that the image of ε intersects every wedge summand of
F non-trivially (i.e. not only in the basepoint). Since ε is idempotent, it then has to
take every wedge summand to itself.

So ε decomposes as a wedge of idempotent endomorphisms of all the individual
wedge summands of F . We are thus reduced to showing that a retract of a single
Γn is free. If ε again denotes the corresponding idempotent endomorphism, then
ε(idn+) ∈ Γn(n+) has to be idempotent as a morphism in Γop. So it can be written as
a composite ε(idn+) = ip with p :n+ → k+, i : k+ → n+ and pi = idk+ . Then the map
Γk → Γn induced by p is an isomorphism onto the image of ε, so that image is free.

(b) This is a standard argument, similar to [Q, II·4, remark 4], and we omit it. To be
precise, the argument of [Q, II·4, remark 4] only gives that the Γ-sets Bi/(Bd

i xAdi Ai)
are retracts of free Γ-sets, but such Γ-sets are themselves free by part (a) of this
lemma. q

We call a Γ-space X countable if the disjoint union of all simplices in all the
simplicial sets X(n+), n+∈ Γop is countable.
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Lemma A4. Let A be a non-trivial, stably contractible and Q-cofibrant Γ-space. Then

there exists a non-trivial, stably contractible and Q-cofibrant sub-Γ-space M which is
countable.

Proof. We adapt [Bou, lemma 11·2]. The desired M is obtained as the ascending
union of countable, Q-cofibrant sub-Γ-spaces Mi ⊂ A, i ∈ N. It follows from the
characterization of Q-cofibrations (Lemma A3) and the fact that the categories Γop

and ∆op are countable that every countable sub-Γ-space of A can be enlarged to a
Q-cofibrant sub-Γ-space which is still countable.

We thus choose M0 to be any non-trivial, countable and Q-cofibrant sub-Γ-space
of A. Assume that Mi has been constructed and is countable. A is the filtered union
of its countable sub-Γ-spaces. Homotopy groups commute with filtered colimits over
inclusions of Γ-spaces, so for any element x ∈ πMMi there exists a countable Nx ⊂ A
such that the element x maps to 0 in the homotopy of Nx. Since Mi is countable,
so are its homotopy groups, so we can define Mi+1 to be the union of Mi with all
the Nx, x ∈ πMMi. Again Mi+1 is countable, we can assume that it is Q-cofibrant and
by construction the map Mi → Mi+1 induces the trivial map on homotopy groups.
Hence if we defineM as the union of theMi, thenM is countable, stably contractible
and Q-cofibrant.

Lemma A5. Let X → Y be a map of Γ-spaces which has the right lifting property with
respect to all stable acyclic Q-cofibrations between countable Γ-spaces. Then the map has
the right lifting property with respect to all stable acyclic Q-cofibrations.

Proof. We follow the proof of [Bou, lemma 11·3]. Let A → B be a stable acyclic
Q-cofibration between arbitrarily large Γ-spaces. We can assume that it is in fact
the inclusion of a sub-Γ-space, and we look at a lifting problem

A X

B Y

C

Consider the set of all (D, fD: D → X) such that A ⊆ D ⊆ B, the inclusion D → B
is a Q-cofibration and a stable equivalence and fD is a partial lifting. The set of these
(D, fD) is non-empty and is preordered by declaring (D, fD) 6 (D′, fD′) if and only
if D ⊆ D′ and fD′ extends fD. Every chain in this preorder has an upper bound, so
by Zorn’s lemma there is a maximal element (D0, fD0 ). We claim that D0 = B.

If D0 was a proper subobject of B, then by Lemma A4 we could find a countable
and non-trivial M inside the cofibre B/D0, such that M is contractible and Q-
cofibrant. We let M̃ denote the smallest sub-Γ-space of B which surjects onto M ;
this M̃ is then countable as well. The inclusion D0 w M̃ → M̃ is a stable acyclic Q-
cofibration since its cofibreM is Q-cofibrant and stably contractible (we use Lemmas
1·3 and A3). So by assumption, X → Y has the right lifting property with respect
to the inclusion D0 w M̃ → M̃ . Since D0 → M̃ x D0 is obtained from it by cobase
change, X → Y also has the right lifting property with respect to that map. This
contradicts the maximality of (D0, fD0 ).
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Proof of Theorem 1·5. We have to show the following: the stable Q-notions of

(co-)fibrations and weak equivalences make the category of Γ-spaces into a cofi-
brantly generated closed simplicial model category; a Γ-space X is stably Q-fibrant
if and only if it is very special and X(n+) is fibrant as a simplicial set for all n+∈ Γop;
a strict Q-fibration between stably Q-fibrant Γ-spaces is a stable Q-fibration.

The model category axioms CM1 (existence of limits and colimits), CM2 (satu-
ration of stable equivalences), CM3 (closure under retracts) and one half of CM4
(lifting properties) are clear. Since the cofibrations and acyclic fibrations of the sta-
ble and the strict Q-structures coincide, the ‘cofibration/acyclic fibration’ part of the
factorization axiom CM5 follows from the corresponding factorization in the strict
Q-structure. A map is a stable acyclic fibration if and only if it is pointwise an acyclic
fibration of simplicial sets. This is equivalent to having the right lifting property with
respect to the Q-cofibrations

¡ng(¦Di)+ ¡ng(Di)+

for varying n, i. These maps thus form a set of generating cofibrations.
As generating acyclic cofibrations we choose a set J of representatives of the iso-

morphism classes of the Q-cofibrations between countable Γ-spaces which are also
stable equivalences. By the small object argument A1, every map can thus be fac-
tored as a regular J-cofibration i followed by a map q which has the right lifting
property with respect to all maps in J . Since every map in J is an injective stable
equivalence, and since the class of injective stable equivalences is closed under cobase
change and transfinite composition, the map i is a stable equivalence. Since i is also
a strict Q-cofibration, it is a stable acyclic Q-cofibration. By Lemma A5, the map q
is a stable Q-fibration. This completes the proof of the factorization lemma CM5.

It remains to prove the other half of CM4, i.e. that any stable acyclic Q-fibration
f has the right lifting property with respect to Q-cofibrations. For this it suffices to
show that f is in fact a strict acyclic Q-fibration. The small object argument in the
strict Q-structure provides a factorization f = qi with i a Q-cofibration and q a strict
acyclic Q-fibration. In addition, i is a stable equivalence since f is. So by definition
of the stable Q-fibrations, f has the right lifting property with respect to i. Thus f
is a retract of the strict acyclic Q-fibration q, so it is one itself.

To prove the simplicial axiom SM7 we can equivalently show that for every Q-
cofibration A → B and every cofibration of pointed simplicial sets K → L, the
pushout product

A∧L xA∧K B ∧K −→ B ∧L
is a Q-cofibration, which is a stable equivalence if one of the former maps is. This is a
special case of the pushout product axiom of Lemma 1·7, which was proved without
reference to the simplicial axiom SM7.

The characterization of the stably Q-fibrant Γ-spaces is obtained as follows. The
map Γk∨Γl → Γk+l induced by the projections from (k+l)+ to k+ and l+ in Γop is a sta-
ble equivalence between Q-cofibrant Γ-spaces. By [BF, lemma 4·5], it induces a weak
equivalence of simplicial hom sets X((k + l)+)%hom (Γk+l, X)→ hom (Γk∨Γl, X)%
X(k+) × X(l+) for every stably Q-fibrant Γ-space X. This proves that every sta-
bly Q-fibrant X is special. The same argument applied to the map Γ1∨Γ1 → Γ2
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induced by the projection p1 and the fold map ∇ implies that the shearing map
π0 (X(1+))2 → π0 (X(1+))2 given by (x, y) 7→ (x, x + y) is an isomorphism for stably
Q-fibrant X. This means that π0(X(1+)) is a group, so X is very special. Every stably
Q-fibrant X is strictly Q-fibrant, so X(n+) is a fibrant simplicial set for all n+∈ Γop.

To prove the converse direction we assume that X(n+) is fibrant as a simplicial
set for all n and that X is very special. We choose a stable acyclic Q-cofibration
X → X f to a stably Q-fibrant Γ-space. Since both X and X f are very special, the
associated spectra are Ω-spectra ([Se, proposition 1·4] or [BF, theorem 4·2]). So the
stable equivalence X → Y is in fact a strict Q-equivalence, thus a strict acyclic Q-
cofibration between strictly Q-fibrant objects, so it has a retraction. Thus X is a
retract of X f , so it is stably Q-fibrant.

Finally, we consider a strict Q-fibration f : X → Y where X and Y are stably
Q-fibrant. We have to establish the right lifting property with respect to any stable
acyclic cofibration i: A → B. Equivalently we have to show that the induced map
of simplicial hom sets

m(i, f ): hom (B,X) −→ hom (A,X)×hom (A,Y ) hom (B, Y )

is surjective on 0-simplices. Since i is a strict Q-cofibration, f is a strict Q-fibration
and the strict Q-model category is simplicial, the map m(i, f ) is a fibration of sim-
plicial sets. Since i is a stable acyclic Q-cofibration, X is stably Q-fibrant and the
stable Q-model category is simplicial, the map hom (B,X)→hom (A,X) is an acyclic
fibration of simplicial sets, and similarly for Y . Thus the map m(i, f ) is also a weak
equivalence, so it is an acyclic fibration of simplicial sets, thus surjective.

Example A6. We now give an example which shows some special features of Γ-
spaces from a model category point of view. It also explains why the countable small
object argument is not good enough to yield the stable model category structures
and why there is no explicit set of generating acyclic cofibrations.

The characterization of the stably Q-fibrant Γ-spaces in the proof of Theorem 1·5
involved certain maps which are natural candidates as generating acyclic cofibra-
tions. The maps Γk∨Γl → Γk+l induced by the projections from k+∨ l+ to k+ and
l+ and the map Γ1∨Γ1 → Γ2 induced by the projection p1 and the fold map ∇ are
stable equivalences between Q-cofibrant and finitely presentable Γ-spaces. By a sim-
plicial mapping cylinder construction these maps can thus be turned into acyclic
Q-cofibrations. The argument in the proof of Theorem 1·5 shows that a Γ-space X is
stably fibrant if and only if the mapX → M has the right lifting property with respect
to the pushout products of all these mapping cylinder inclusions with the boundary
inclusions (∂∆i)+ → (∆i)+. So stably Q-fibrant objects are detected by lifting proper-
ties with respect to an explicit set of acyclic cofibrations between finitely presentable
Γ-spaces. One might hope that these maps detect stable Q-fibrations in general, but
we show by an example that this is not the case. Proposition A7 provides a map of
Γ-spaces which has the right lifting property with respect to all stable equivalences
between finitely presentable Γ-spaces, but which is not a stable Q-fibration (hence
also not a stable fibration in the sense of [BF, 5·2]).

To construct the example we recall that the Eilenberg–MacLane Γ-space con-
struction generalizes to abelian monoids. A simplicial abelian monoid A gives rise to
a special Γ-spaces Ã such that Ã(n+) = An. For a morphism f: n+ → m+ in Γop the
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induced map fM: An → Am is given by the formula

fM(a1, . . . , an) =
( ∑
f (j)=1

aj , . . . ,
∑
f (j)=m

aj

)
.

If A is a simplicial abelian group, then Ã is naturally isomorphic to HA. We denote
by UA the universal abelian group generated by A, so that U is left adjoint to the
inclusion of simplicial abelian groups into simplicial abelian monoids. Group comple-
tion induces a stable equivalence Ã → ŨA%HUA (since the map Ã(Sn)→ ŨA(Sn)
is a weak equivalence for all n > 1 by [Sp, corollary 5·7]).

Proposition A7. LetM be the abelian monoid generated by countably many elements
ωi, i > 0, subject to the relations ωi +ωi+1 = ωi+1. Then the map M→ M̃ from the trivial
Γ-space to M̃ has the right lifting property with respect to all maps between finitely
presentable Γ-spaces which induce an epimorphism on π0. On the other hand, the map
M→ M̃ is not a stable fibration.

We start by deriving the relevant monoid theoretic properties of M :

Lemma A8. The abelian monoid M is non-trivial and its group completion UM is
trivial. If N is a finitely generated submonoid of M whose group completion UN is
trivial, then N = 0.

Proof. The assignment ωi 7→ 0 extends to a surjective homomorphism from M to
the multiplicative monoid {0, 1} of the field with two elements. So M is nontrivial.
Because of the relations ωi + ωi+1 = ωi+1 all generators of M become trivial in UM ,
so UM is trivial. The presentation of M also implies that every element of M is a
multiple of one of the generators, i.e. of the form n:ωi for some n, i > 0. So for every
non-trivial finitely generated submonoid N there exists a maximal number j such
that N contains a positive multiple n:ωj of the generator ωj . Since j is maximal
with this property, N does not contain any element y which satisfies (n:ωj) + y = y,
which implies that n:ωj is non-trivial in the group completion UN .

Proof of Proposition A7 Since UM = 0, the map M→ M̃ is a stable equivalence, so
if it also were a stable fibration in the Quillen or the Bousfield–Friedlander model
structure, then it would be a strict equivalence. This would contradict the fact that
M is non-trivial.

To show that the map M→ M̃ has the right lifting property with respect to all maps
between finitely presentable Γ-spaces which induce an epimorphism on π0 it suffices
to show that the homomorphism set GS(X, M̃ ) is trivial for any finitely presentable
Γ-space X with π0X = 0. The functor A 7→ Ã from simplicial abelian monoids to
Γ-spaces has a left adjoint, which we denote τ . The value of this adjoint on a Γ-space
X can be described explicitly as the coequalizer of the maps (p1)M+(p2)M and∇M from
the reduced free abelian monoid generated by X(2+) to the reduced free abelian
monoid generated by X(1+). So τ is defined in the same way as the adjoint L to the
Eilenberg–MacLane functorH, only with free abelian groups replaced by free abelian
monoids. Note that L factors as LX % UτX. Since the functor A 7→ Ã preserves
filtered colimits, its left adjoint τ preserves finite presentability. In particular π0 (τX)
is finitely generated as a monoid. Furthermore Uπ0 (τX) % π0 UτX % π0 LX %
π0 X = 0, so every monoid homomorphism from π0 (τX) to M is trivial because
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M has no non-trivial finitely generated submonoids with trivial group completion.
Hence by adjointness every Γ-space map from X to M̃ is trivial.

Appendix B. Topological Γ-spaces

We conclude this paper with an appendix that shows that the stable Q-model
category structure for Gamma-spaces has a counterpart if simplicial sets are replaced
by actual topological spaces. For definiteness, by a topological space we mean a
compactly generated weak Hausdorff space [MC, section 2]. But the arguments of
this section apply more generally to any reasonable simplicial model category of
topological spaces. We define a topological Γ-space to be a pointed functor from
Γop to the category of pointed topological spaces and denote by GT the category
of topological Γ-spaces. The geometric realization functor and the singular complex
functor can be applied objectwise to Γ-objects and give an adjoint functor pair

Sing

;–;
'3 '4

We call a map f :X → Y in GT a stable equivalence (resp. stable fibration) if the
map Sing (f ): SingX → SingY is a stable equivalence or stable Q-fibration in GS

respectively. Note that a topological Γ-space X is stably fibrant if and only if SingX
is very special. A map is a stable cofibration if it has the right lifting property with
respect to all stable acyclic fibrations.

Theorem B1. The stable notions of cofibrations, fibrations and weak equivalences
make the category of topological Γ-spaces into a closed simplicial model category. The
singular complex and geometric realization functors induce a Quillen equivalence between
the stable Q-model category of Γ-spaces and the stable model category of topological Γ-
spaces.

The category of compactly generated weak Hausdorff spaces is cartesian closed
and the category of topological Γ-spaces is tensored and cotensored over the cate-
gory of pointed spaces. As for simplicial set, the smash productX∧K of a topological
Γ-space X and a pointed space K is defined by (X∧K)(n+) = X(n+)∧K. The topo-
logical space homGT (X,Y ) of maps between two topological Γ-spaces X and Y is
given by the end ∫

n+∈Γop

map(X(n+), Y (n+)),

where ‘map’ refers to the topological mapping space. Internal function objects and a
smash product for topological Γ-spaces can then be defined in the same fashion as for
Γ-spaces. The smash product of topological Γ-spaces satisfies the pushout product
axiom (see Lemma 1·7). Since the category GT is (co-)tensored over spaces, it can
also be tensored over the category of simplicial sets using the geometric realization
and singular complex functors.

To prove Theorem B1 we need a lifting lemma for model category structures. We
make no claim to originality for this lemma, as various other lifting lemmas can be
found in the model category literature. Let C be a cofibrantly generated simplicial
model category and let D be a complete and cocomplete category which is tensored
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and cotensored over the category of simplicial sets. Consider a simplicial adjoint
functor pair

# $
R

L

By this we mean that L and R have the structure of simplicial functors and the
adjunction extends to an isomorphism of simplicial hom sets. We call a map f:X → Y
in D a weak equivalence (resp. fibration) if the map R(f ):R(X) → R(Y ) is a weak
equivalence (resp. fibration) in C. A map in D is called a cofibration if it has the left
lifting property with respect to all acyclic fibrations.

Lemma B2. In the above situation, assume that the following conditions hold.
(1) There exist a set I of generating cofibrations and a set J of generating acyclic

cofibrations for the model category structure of C with the following property. Let
ID and JD denote the images of the sets I and J under the left adjoint L. Then
the domains of the maps in ID and JD are small with respect to ID-cofreg and
JD-cofreg respectively.

(2) There exists a functor Q: D→ D and a natural weak equivalence X → QX such
that QX is fibrant for all X.

Then the category D becomes a cofibrantly generated closed simplicial model category.

Remark B3. Note that the smallness condition (1) of the lifting lemma is auto-
matically satisfied if the model category C is cofibrantly generated and the category
D is locally presentable (see App. A) because then every object of D is small with
respect to the whole category [Bor, proposition 5·2·10].

Proof. We use the numbering of the model category axioms as given in [BF, 1·1].
Limits and colimits exist in D by assumption. Model category axioms CM2 (satura-
tion) and CM3 (closure properties under retracts) are clear. One half of CM4 (lifting
properties) holds by definition of cofibrations in D. The axiom SM7a that relates
the model category structure to the simplicial structure holds because the right ad-
joint R preserves weak equivalences, fibrations, pullbacks and mapping objects from
simplicial sets. So SM7a holds in D since it holds in C.

The proof of the remaining axioms uses the transfinite small object argument
(Lemma A1). Hypothesis (1) makes sure that the small object argument can be
applied to the sets of maps ID and JD. We start with the factorization axiom CM5.
Every map in ID is a cofibration in D by adjointness. Hence all ID-cofibrations are
cofibrations in D. Since I is a generating set of cofibrations for C, the ID-injectives are
precisely the acyclic fibrations in D, again by adjointness. Hence the small object
argument applied to the set ID gives a (functorial) factorization of maps in D as
cofibrations followed by acyclic fibrations.

The other half of the factorization axiom CM5 needs the functor Q. Applying the
small object argument to the set of maps JD gives a functorial factorization of maps
in D as regular JD-cofibrations followed by JD-injectives. Since J is a generating set
for the acyclic cofibrations in C, the JD-injectives are precisely the fibrations in D,
one more time by adjointness. We now adapt the argument of [Q, II p. 4·9] to show
that every JD-cofibration i :X → Y is a weak equivalence. The JD-cofibrations are
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precisely the maps which have the right lifting property with respect to all fibrations
in D. Since QX is fibrant, the weak equivalence X → QX can be factored through
Y by a lifting

X

Y

QX

*

D

i r

Then r ◦ i is a weak equivalence. We will show that (Qi) ◦ r also is a weak equivalence.
Since maps in C are weak equivalences if and only if they become isomorphisms in
the homotopy category of C, this will prove that i is a weak equivalence.

Since QY is fibrant and the right adjoint functor R preserves the simplicial struc-
ture, the boundary inclusion ∂∆1 → ∆1 induces a fibration (QY )∆1 → QY ×QY . The
map (Qi)◦r and the weak equivalence Y ∼→ QY together give a map Y → QY ×QY .
Since i is a JD-cofibration, a lifting exists in the square

X

Y QY×QY

(QY)D1

This shows that R((Qi)◦r) and the weak equivalence R(Y )→ R(QY ) descend to the
same map in the homotopy category of C, hence (Qi) ◦ r also is a weak equivalence.
This finishes the proof of the factorization axiom CM5.

It remains to prove the other half of CM4, i.e. that any acyclic cofibration A→ B
has the left lifting property with respect to fibrations. In other words: the acyclic
cofibrations are contained in the JD-cofibrations. The small object argument provides
a factorization

A WC B

with A → W a JD-cofibration and W → B a fibration. In addition, W → B is a
weak equivalence since A→ B is. Since A→ B is a cofibration, a lifting in

A W

B

C

=B

exists. Thus A→ B is a retract of a JD-cofibration, so it is one itself. q

In order to deduce Theorem B1 from Lemma B2 we use the adjoint functor pair
between GS and GT given by objectwise application of the singular complex and
geometric realization functor. As generating cofibrations and acyclic cofibrations for
the stable Q-model category structure of Γ-spaces we use the sets I and J from
the proof of Theorem 1·5 in Appendix A. What we need to know about I and J
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is that all maps in these sets are injective and all source (and target) objects are
countable Γ-spaces. So all the maps of topological Γ-spaces in IGT and JGT are ob-
jectwise inclusions of sub-CW-complexes. Thus all the maps of topological Γ-spaces in
IGT-cofreg and JGT-cofreg are pointwise closed inclusions of relative CW-complexes.
So the smallness hypotheses in Lemma B2 are satisfied.

It remains to construct a fibrant replacement functor Q for topological Γ-spaces.
We let Q′ be any fibrant replacement functor for the stable Q-model category struc-
ture of GS which has the property that the stable equivalence Y → Q′Y is injective.
For a topological Γ-space X we define QX and the natural map X → QX by the
pushout in GT

|Sing X| |Q´ (Sing X)|

X QX

The left vertical map is an objectwise weak equivalence and the upper horizontal map
is objectwise an inclusion of a sub-CW-complex. Hence the right vertical map is also
an objectwise weak equivalence and QX is in fact very special, thus stably fibrant.
Since the upper horizontal map is a stable equivalence and both vertical maps are
objectwise weak equivalences, the map X → QX is also a stable equivalence. So
Lemma B2 applies and shows that topological Γ-spaces indeed form a stable model
category. It then follows that the geometric realization and singular complex functors
induce a Quillen equivalence.
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