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PREFACE

The origin of simplicial homotopy theory coincides with the beginning of alge-
braic topology almost a century ago. The thread of ideas started with the work
of Poincaré and continued to the middle part of the 20th century in the form
of combinatorial topology. The modern period began with the introduction of
the notion of complete semi-simplicial complex, or simplicial set, by Eilenberg-
Zilber in 1950, and evolved into a full blown homotopy theory in the work of
Kan, beginning in the 1950s, and later Quillen in the 1960s.

The theory has always been one of simplices and their incidence relations,
along with methods for constructing maps and homotopies of maps within these
constraints. As such, the methods and ideas are algebraic and combinatorial and,
despite the deep connection with the homotopy theory of topological spaces, ex-
ist completely outside any topological context. This point of view was effectively
introduced by Kan, and later encoded by Quillen in the notion of a closed model
category. Simplicial homotopy theory, and more generally the homotopy theories
associated to closed model categories, can then be interpreted as a purely alge-
braic enterprise, which has had substantial applications throughout homological
algebra, algebraic geometry, number theory and algebraic K-theory. The point
is that homotopy is more than the standard variational principle from topology
and analysis: homotopy theories are everywhere, along with functorial methods
of relating them.

This book is, however, not quite so cosmological in scope. The theory has
broad applications in many areas, but it has always been quite a sharp tool
within ordinary homotopy theory — it is one of the fundamental sources of
positive, qualitative and structural theorems in algebraic topology. We have
concentrated on giving a modern account of the basic theory here, in a form
that could serve as a model for corresponding results in other areas.

This book is intended to fill an obvious and expanding gap in the literature.
The last major expository pieces in this area, namely [33], [67], [61] and [18],
are all more than twenty-five years old. Furthermore, none of them take into
account Quillen’s ideas about closed model structures, which are now part of the
foundations of the subject.

We have attempted to present an account that is as linear as possible and
inclusive within reason. We begin in Chapter I with elementary definitions and
examples of simplicial sets and the simplicial set category S, classifying objects,
Kan complexes and fibrations, and then proceed quickly through much of the
classical theory to proofs of the fundamental organizing theorems of the subject
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which appear in Section 11. These theorems assert that the category of simplicial
sets satisfies Quillen’s axioms for a closed model category, and that the associated
homotopy category is equivalent to that arising from topological spaces. They
are delicate but central results, and are the basis for all that follows.

Chapter I contains the definition of a closed model category. The foundations
of abstract homotopy theory, as given by Quillen, start to appear in the first
section of Chapter II. The “simplicial model structure” that most of the closed
model structures appearing in nature exhibit is discussed in Sections 2-7. A sim-
plicial model structure is an enrichment of the underlying category to simplicial
sets which interacts with the closed model structure, like function spaces do for
simplicial sets; the category of simplicial sets with function spaces is a standard
example. Simplicial model categories have a singular technical advantage which
is used repeatedly, in that weak equivalences can be detected in the associated
homotopy category (Section 4). There is a detection calculus for simplicial model
structures which leads to homotopy theories for various algebraic and diagram
theoretic settings: this is given in Sections 5-7, and includes a discussion of cofi-
brantly generated closed model categories in Section 6 — it may be heavy going
for the novice, but homotopy theories of diagrams almost characterize work in
this area over the past ten years, and are deeply implicated in much current
research. The chapter closes on a much more elementary note with a description
of Quillen’s non-abelian derived functor theory in Section 8, and a description of
proper closed model categories, homotopy cartesian diagrams and glueing and
coglueing lemmas in Section 9. All subsequent chapters depend on Chapters I
and II.

Chapter III is a further repository of things that are used later, although per-
haps not quite so pervasively. The fundamental groupoid is defined in Chapter
I and then revisited here in Section III.1. Various equivalent formulations are
presented, and the resulting theory is powerful enough to show, for example,
that the fundamental groupoid of the classifying space of a small category is
equivalent to the free groupoid on the category, and give a quick proof of the
Van Kampen theorem. The closed model structure for simplicial abelian groups
and the Dold-Kan correspondence relating simplicial abelian groups to chain
complexes (ie. they’re effectively the same thing) are the subject of Section
2. These ideas are the basis of most applications of simplicial homotopy the-
ory and of closed model categories in homological algebra. Section 3 contains
a proof of the Hurewicz theorem: Moore-Postnikov towers are introduced here
in a self-contained way, and then treated more formally in Chapter VII. Kan’s
Ex*°-functor is a natural, combinatorial way of replacing a simplicial set up to
weak equivalence by a Kan complex: we give updated proofs of its main prop-
erties in Section 4, involving some of the ideas from Section 1. The last section
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presents the Kan suspension, which appears later in Chapter V in connection
with the loop group construction.

Chapter IV discusses the homotopy theory, or more properly homotopy the-
ories, for bisimplicial sets and bisimplicial abelian groups, with major applica-
tions. Basic examples and constructions, including homotopy colimits and the
diagonal complex, appear in the first section. Bisimplicial abelian groups, the
subject of Section 2, are effectively bicomplexes, and hence have canonical asso-
ciated spectral sequences. One of the central technical results is the generalized
Eilenberg-Zilber theorem, which asserts that the diagonal and total complexes
of a bisimplicial abelian group are chain homotopy equivalent. Three different
closed model structures for bisimplicial sets, all of which talk about the same
homotopy theory, are discussed in Section 3. They are all important, and in fact
used simultaneously in the proof of the Bousfield-Friedlander theorem in Section
4, which gives a much used technical criterion for detecting fibre sequences aris-
ing from maps of bisimplicial sets. There is a small technical innovation in this
proof, in that the so-called m,-Kan condition is formulated in terms of certain
fibred group objects being Kan fibrations. The chapter closes in Section 4 with
proofs of Quillen’s “Theorem B” and the group completion theorem. These re-
sults are detection principles for fibre sequences and homology fibre sequences
arising from homotopy colimits, and are fundamental for algebraic K-theory and
stable homotopy theory.

From the beginning, we take the point of view that simplicial sets are usually
best viewed as set-valued contravariant functors defined on a category A of
ordinal numbers. This immediately leads, for example, to an easily manipulated
notion of simplicial objects in a category C: they’re just functors A°? — C,
so that morphisms between them become natural transformations, and so on.
Chapter II contains a detailed treatment of the question of when the category
sC of simplicial objects in C has a simplicial model structure.

Simplicial groups is one such category, and is the subject of Chapter V. We
establish, in Sections 5 and 6, the classical equivalence of homotopy theories
between simplicial groups and simplicial sets having one vertex, from a modern
perspective. The method can the be souped up to give the Dwyer-Kan equiva-
lence between the homotopy theories of simplicial groupoids and simplicial sets
in Section 7. The techniques involve a new description of principal G-fibrations,
for simplicial groups G, as cofibrant objects in a closed model structure on the
category of G-spaces, or simplicial sets with G-action (Section 2). Then the
classifying space for G is the quotient by the G-action of any cofibrant model of
a point in the category of G-spaces (Section 3); the classical WG construction
is an example, but the proof is a bit interesting. We give a new treatment of
WG as a simplicial object of universal cocycles in Section 4; one advantage of
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this method is that there is a completely analogous construction for simplicial
groupoids, which is used for the results of Section 7. Our approach also depends
on a specific closed model structure for simplicial sets with one vertex, which is
given in Section 6. That same section contains a definition and proof of the main
properties of the Milnor F'K-construction, which is a functor taking values in
simplicial groups that gives a model for loops suspension Q2> X of a given space
X.

The first section of Chapter V contains a discussion of skeleta in the category of
simplicial groups which is later used to show the technical (and necessary) result
that the Kan loop group functor outputs cofibrant simplicial groups. Skeleta
for simplicial sets first appear in a rather quick and dirty way in Section 1.2.
Skeleta for more general categories appear in various places: we have skeleta for
simplicial groups in Chapter V, skeleta for bisimplicial sets in Section IV.3, and
then skeleta for simplicial objects in more general categories later, in Section
VIIL.1. In all cases, skeleta and coskeleta are left and right adjoints of truncation
functors.

Chapters VI and VII contain material on towers of fibrations, nilpotent spaces,
cosimplicial spaces and associated spectral sequences that was introduced by
Bousfield and Kan in [14].

The first section of Chapter VI describes a simplicial model structure for tow-
ers, which is used in Section 2 as a context for a formal discussion of Postnikov
towers. The Moore-Postnikov tower, in particular, is a tower of fibrations that
is functorially associated to a space X; we show, in Sections 3-5, that the fibra-
tions appearing in the tower are homotopy pullbacks along maps, or k-invariants,
taking values in homotopy colimits of diagrams of Eilenberg-Mac Lane spaces,
which diagrams are functors defined on the fundamental groupoid of X. The
homotopy pullbacks can be easily refined if the space is nilpotent, as is done in
Section 6. The development includes an introduction of the notion of covering
system of a connected space X, which is a functor defined on the fundamental
groupoid and takes values in spaces homotopy equivalent to the covering space
of X.

Chapter VII contains a detailed treatment of the well known homotopy spec-
tral sequence of a cosimplicial space. The method is to show that the category
of simplicial objects in the category S°P has a Reedy model structure, along
with an adequate notion of skeleta and an appropriate analogue of realization
(Sections 1-3), and then reverse all the arrows to give the usual tower of fibra-
tions from [14] in Section 5, after a general discussion of the model category
structure of cosimplicial spaces in Section 4. The standard method of extract-
ing a homotopy spectral sequence from a tower of fibrations (and the associated
convergence difficulty) is explained in Section 6 and then deployed in Section 7
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to produce the homotopy spectral sequence of a cosimplicial space — Bousfield-
Kan p-completions appear in the examples, along with the spectral sequence for
a homotopy inverse limit.

The homotopy spectral sequence of a cosimplicial space is well known to be
“fringed” in the sense that the objects that appear along the diagonal in total
degree 0 are sets rather than groups. Standard homological techniques therefore
fail, and there can be substantial difficulty in analyzing the path components
of the total space. Bousfield has created an obstruction theory to attack this
problem. We give here, in Section VIIL.8, a special case of this theory, which
deals with the question of when elements in bidegree (0,0) in the Fs-term lift
to path components of the total space. This particular result can be used to
give a criterion for maps between mod p cohomology objects in the category of
unstable algebras over the Steenrod algebra to lift to maps of p-completions.

Simplicial model structures return with a vengeance in Chapter VIII, in the
context of homotopy coherence. The point of view that we take is that a homo-
topy coherent diagram on a catgeory I in simplicial sets is a functor X : A — S
which is defined on a category enriched in simplicial sets and preserves the en-
riched structure, subject to the object A being a resolution of I in a suitable
sense. The main results are due to Dwyer and Kan: there is a simplicial model
structure on the category of simplicial functors S** (Section 1), and a large class
of simplicial functors f : A — B which are weak equivalences induce equivalences
of the homotopy categories associated to S and S? (Section 2). Among such
weak equivalences are resolutions A — I — in practice, I is the category of
path components of A and each component of A is contractible. A realization
of a homotopy coherent diagram X : A — S is then nothing but a diagram
Y : I — S which represents X under the equivalence of homotopy categories.
This approach subsumes the standard homotopy coherence phenomena, which
are discussed in Section 3. We show how to promote some of these ideas to
notions of homotopy coherent diagrams and realizations of same in more general
simplicial model categories, including chain complexes and spectra, in the last
section.

Frequently, one wants to take a given space and produce a member of a class
of spaces for which homology isomorphisms are homotopy equivalences, with-
out perturbing the homology. If the homology theory is mod p homology, the
p-completion works in many but not all examples. Bousfield’s mod p homol-
ogy localization technique just works, for all spaces. The original approach to
homology localization [8] appeared in the mid 1970’s, and has since been incor-
porated into a more general theory of f-localization. The latter means that one
constructs a minimal closed model structure in which a given map f becomes
invertible in the homotopy category — in the case of homology localization the
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map f would be a disjoint union of maps of finite complexes which are homol-
ogy isomorphisms. The theory of f-localization and the ideas underlying it are
broadly applicable, and are still undergoing frequent revision in the literature.
We present one of the recent versions of the theory here, in Sections 1-4 of Chap-
ter IX. The methods of proof involve little more than aggressive cardinal counts
(the cogniscenti will note that there is no mention of regular cardinals): this is
where the applicability of the ideas comes from — morally, if cardinality counts
are available in a model category, then it admits a theory of localization.

Some applications and related ideas are presented in the final two sections of
Chapter IX. We formally introduce homotopy inverse limits in Section 5 and show
that they can be recovered as inverse limits of fibrant objects within appropriate
(localized) closed model structures for diagram categories, and then show that
such closed model structures themselves admit f-localizations. In Section 6 we
describe Bousfield’s approach to localizing at a functor, and then show that it
leads to the Bousfield-Friedlander model for the stable category. We also show
that the stable category can be derived as a type of f-localization.

There are nine chapters in all; we use roman numerals to distinguish them.
Each chapter is divided into sections, plus an introduction. Results and equations
are numbered consecutively within each section. The overall referencing system
for the monograph is perhaps best illustrated with an example: Lemma 9.8 lives
in Section 9 of Chapter II — it is referred to precisely this way from within
Chapter II, and as Lemma I1.9.8 from outside. Similarly, the corresponding
section is called Section 9 inside Chapter II and Section I1.9 from without.

Despite the length of this tome, much important material has been left out:
there is not a word about traditional simplicial complexes and the vast mod-
ern literature related to them (trees, Tits buildings, Quillen’s work on posets);
the Waldhausen subdivision is not mentioned; we don’t discuss the Haussman-
Husemoller theory of acyclic spaces or Quillen’s plus construction; we have
avoided all of the subtle aspects of categorical coherence theory, and there is
very little about simplicial sheaves and presheaves. All of these topics, how-
ever, are readily available in the literature — we have tried to include a useful
bibiliography.

This book should be accessible to mathematicians in the second year of grad-
uate school or beyond, and is intended to be of interest to the research worker
who wants to apply simplicial techniques, for whatever reason. We believe that
it will be a useful introduction both to the theory and the current literature.

The sensitive reader may already have correctly observed that this monograph
does not have the structure of a traditional text book. We have, for example,
declined to assign homework in the form of exercises, preferring instead to lib-
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erally sprinkle the text with examples and remarks that are designed to provoke
further thought. Everything here depends on the first two chapters; the remain-
ing material often reflects the original nature of the project, which amounted to
separately written self contained tracts on defined topics. The book achieved its
current more unified state thanks to a drive to achieve consistent notation and
referencing. It nevertheless remains true that somebody with a bit of experience
in the area should be able to read each of the later chapters in isolation, and
find an essentially complete story.

Work on this monograph was partly supported by grants from the National
Science Foundation and the Natural Sciences and Engineering Research Council
of Canada, as well as a NATO Collaborative Research grant. We would like
to thank all of these agencies for their support. Work on the project involved
multiple visits by each author to the other’s home institution, and we would
jointly like to thank the University of Washington and the University of Western
Ontario for their hospitality.
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Chapter I Simplicial sets

This chapter introduces the basic elements of the homotopy theory of sim-
plicial sets. Technically, the purpose is twofold: to prove that the category of
simplicial sets has a homotopical structure in the sense that it admits the struc-
ture of a closed model category (Theorem 11.3), and to show that the resulting
homotopy theory is equivalent in a strong sense to the ordinary homotopy theory
of topological spaces (Theorem 11.4). Insofar as simplicial sets are algebraically
defined, and the corresponding closed model structure is combinatorial in nature,
we obtain an algebraic, combinatorial model for standard homotopy theory.

The substance of Theorem 11.3 is that we can find three classes of morphisms
within the simplicial set category S, called cofibrations, fibrations and weak

equivalences, and then demonstrate that the following list of properties is satis-
fied:

CM1: S is closed under all finite limits and colimits.

CM2: Suppose that the following diagram commutes in S:

N A

Z.

If any two of f, g and h are weak equivalences, then so is the third.

CMa3: If f is a retract of g and g is a weak equivalence, fibration or cofibration,
then so is f.

CM4: Suppose that we are given a commutative solid arrow diagram

where 7 is a cofibration and p is a fibration. Then the dotted arrow exists,
making the diagram commute, if either ¢ or p is also a weak equivalence.
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CM5: Any map f: X — Y may be factored:

(a) f=p-iwhere pis a fibration and i is a trivial cofibration, and

(b) f = q-j where q is a trivial fibration and j is a cofibration.

The fibrations in the simplicial set category are the Kan fibrations, which are
defined by a lifting property that is analogous to the notion of a Serre fibration.
The cofibrations are the monomorphisms, and the weak equivalences are mor-
phisms which induce homotopy equivalences of CW-complexes after passage to
topological spaces. We shall begin to investigate the consequences of this list of
axioms in subsequent chapters — they are the basis of a great deal of modern
homotopy theory.

Theorem 11.3 and Theorem 11.4 are due to Quillen [75], but the development
given here is different: the results are proved simultaneously, and their proofs
jointly depend fundamentally on Quillen’s later result that the realization of a
Kan fibration is a Serre fibration [76]. The category of simplicial sets is histori-
cally the first full algebraic model for homotopy theory to have been found, but
the verification of its closed model structure is still the most difficult proof of ab-
stract homotopy theory. These theorems and their proofs effectively summarize
all of the classical homotopy theory of simplicial sets, as developed mostly by
Kan in the 1950’s. Kan’s work was a natural outgrowth of the work of Eilenberg
and Mac Lane on singular homology theory, and is part of a thread of ideas that
used to be called “combinatorial homotopy theory” and which can be traced
back to the work of Poincaré at the beginning of the twentieth century.

We give here, in the proof of the main results and the development lead-
ing to them, a comprehensive introduction to the homotopy theory of simpli-
cial sets. Simplicial sets are defined, with examples, in Section 1, the functo-
rial relationship with topological spaces via realization and the singular functor
is described in Section 2, and we start to describe the combinatorial homo-
topical structure (Kan fibrations and Kan complexes) in Section 3. We intro-
duce the Gabriel-Zisman theory of anodyne extensions in Section 4: this is the
obstruction-theoretic machine that trivializes many potential difficulties related
to the function complexes of Section 5, the notion of simplicial homotopy in Sec-
tion 6, and the discussion of simplicial homotopy groups for Kan complexes in
Section 7. The fundamental groupoid for a Kan complex is introduced in Section
8, by way of proving a major result about composition of simplicial sets maps
which induce isomorphisms in homotopy groups (Theorem 8.2). This theorem,
along with a lifting property result for maps which are simultaneously Kan fibra-
tions and homotopy groups isomorphisms (Theorem 7.10 — later strengthened
in Theorem 11.2), is used to demonstrate in Section 9 (Theorem 9.1) that the
collection of Kan complexes and maps between them satisfies the axioms for a



1. BASIC DEFINITIONS 3

category of fibrant objects in the sense of Brown [15]. This is a first axiomatic
approximation to the desired closed model structure, and is the platform on
which the relation with standard homotopy theory is constructed with the intro-
duction of minimal fibrations in Section 10. The basic ideas there are that every
Kan fibration has a “minimal model” (Proposition 10.3 and Lemma 10.4), and
the Gabriel-Zisman result that minimal fibrations induce Serre fibrations after
realization (Theorem 10.9). It is then a relatively simple matter to show that
the realization of a Kan fibration is a Serre fibration (Theorem 10.10).

The main theorems are proved in the final section, but Section 10 is the heart of
the matter from a technical point of view once all the definitions and elementary
properties have been established. We have not heard of a proof of Theorem 11.3
or Theorem 11.4 that avoids minimal fibrations. The minimality concept is very
powerful wherever it appears (any rational homotopy theorist would agree), but
not much has yet been made of it from a formal point of view.

1. Basic definitions.

Let A be the category of finite ordinal numbers, with order-preserving maps
between them. More precisely, the objects for A consist of elements n, n > 0,
where n is a string of relations

0—1—2—---—>n

(in other words n is a totally ordered set with n 4+ 1 elements). A morphism
f : m — n is an order-preserving set function, or alternatively just a functor.
We usually commit the abuse of saying that A is the ordinal number category.

A simplicial set is a contravariant functor X : A°? — Sets, where Sets is the
category of sets.

EXAMPLE 1.1. There is a standard covariant functor

A — Top.

ni|An|
The topological standard n-simplex |A™| C R™*! is the space
n
A" = {(to,... . tn) ER™™) t; =1,¢; > 0},
=0

with the subspace topology. The map 0, : |A"| — |A™| induced by § : n — m
is defined by
9*(t0, NN 7tm) = (80, NP ,Sn),
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where

{ 0 0=t =10
S; = .
Zjegfl(i) t; G_I(Z) # 0

One checks that 6 — 6, is indeed a functor (exercise). Let T be a topological
space. The singular set S(T) is the simplicial set given by

n — hom(|A"|,T).

This is the object that gives the singular homology of the space T.

Among all of the functors m — n appearing in A there are special ones,
namely

d:n—1—-n 0<i<n (cofaces)

s/ :n+1—n 0<j<n (codegeneracies)
where, by definition,
d0—1— - —=n-1)=0—-1—-—i-1—i+1—---—n)

(ie. compose i —1 — i — i+ 1, giving a string of arrows of length n — 1 in n),

and
1

(insert the identity 1; in the j'* place, giving a string of length n + 1 in n). It
is an exercise to show that these functors satisfy a list of identities as follows,
called the cosimplicial identities:

Cdidi = didi—t ifi<j
sidt = disi! ifi <y
(1.2) sId? =1=sId’ !
sldt =di—ts) ife>j5+1
([ s/st = gtgdtl if 1 <j

The maps d’, s° and these relations can be viewed as a set of generators and
relations for A (see [66]). Thus, in order to define a simplicial set Y, it suffices
to write down sets Y;,, n > 0 (sets of n-simplices) together with maps

d; : Y, — Y,_1, 0<i<n (faces)
55 1Y, — Y4, 0 <j<n (degeneracies)
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satisfying the simplicial identities:

(did; = d;j_1d; ifi <y
disj = s;_1d; ifi<y
(1.3) djs; =1=djq1s;
disj = s;jdi—1 ifi>7+1
\ 8;8j = Sj4+15; ifi <y

This is the classical way to write down the data for a simplicial set Y.

From a simplicial set Y, one may construct a simplicial abelian group ZY (ie.
a contravariant functor A°? — Ab), with ZY,, set equal to the free abelian group
on Y,. ZY has associated to it a chain complex, called its Moore complexr and
also written ZY, with

o 6]
7Yy «— Y1 «— LYy — ... and

0= En:(—wdi

in degree n. Recall that the integral singular homology groups H,(X;Z) of the
space X are defined to be the homology groups of the chain complex ZSX.

EXAMPLE 1.4. Suppose that C is a (small) category. The classifying space (or
nerve ) BC of C is the simplicial set with

BC,, = homea¢(n,C),

where homeat(n,C) denotes the set of functors from n to C. In other words an

n-simplex is a string
o o an
apgp — a1 —— ... — an

of composeable arrows of length n in C.

We shall see later that there is a topological space |Y| functorially associated
to every simplicial set Y, called the realization of Y. The term “classifying space”
for the simplicial set BC is therefore something of an abuse — one really means
that |BC| is the classifying space of C. Ultimately, however, it does not matter;
the two constructions are indistinguishable from a homotopy theoretic point of
view.
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ExAMPLE 1.5. If G is a group, then G can be identified with a category (or
groupoid) with one object * and one morphism g : * — x for each element g
of G, and so the classifying space BG of G is defined. Moreover |BG| is an
Eilenberg-Mac Lane space of the form K(G, 1), as the notation suggests; this is
now the standard construction.

ExAMPLE 1.6. Suppose that A is an exact category, like the category P(R)
of finitely generated projective modules on a ring R (see [78]). Then A has
associated to it a category Q.A. The objects of QA are those of A. The arrows
of QA are equivalence classes of diagrams

where both arrows are parts of exact sequences of A, and composition is repre-
sented by pullback. Then K;_1(A) := m;|BQ.A| defines the K-groups of A for
i > 1; in particular m;|BQP(R)| = K;_1(R), the i" algebraic K-group of the
ring R.

ExaMPLE 1.7. The standard n-simplex, simplicial A™ in the simplicial set cat-
egory S is defined by
A" = homa ( ,n).

In other words, A"” is the contravariant functor on A which is represented by n.
A map f: X — Y of simplicial sets (or, more simply, a simplicial map) is
the obvious thing, namely a natural transformation of contravariant set-valued
functors defined on A. S will denote the resulting category of simplicial sets and
simplicial maps.
The Yoneda Lemma implies that simplicial maps A™ — Y classify n-simplices
of Y in the sense that there is a natural bijection

homg(A™,Y) 2V,

between the set Y,, of n-simplices of Y and the set homg(A™,Y") of simplicial
maps from A™ to Y (see [66], or better yet, prove the assertion as an exercise).
More precisely, write ¢, = 1, € homa(n,n). Then the bijection is given by
associating the simplex ¢(i,) € Y,, to each simplicial map ¢ : A™ — Y. This
means that each simplex = € Y,, has associated to it a unique simplicial map
Ly + A" — Y such that ¢, () = 2. One often writes x = ¢, since it’s usually
convenient to confuse the two.

A™ contains subcomplexes DA™ (boundary of A™) and A%, 0 < k < n (k'" horn,
really the cone centred on the k'" vertex). OA™ is the smallest subcomplex of
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A" containing the faces d;(t,), 0 < j < n of the standard simplex ¢,,. One finds
that
A? if0<j<n-1,
OAY = ¢ iterated degeneracies of elements of A},
0<k<n-1, ifj>n.

It is a standard convention to write A = (), where ) is the “unique” simplicial
set which consists of the empty set in each degree. () is an initial object for the
simplicial set category S.

The k" horn AT C A™ (n > 1) is the subcomplex of A™ which is generated by
all faces d;(1,) except the k' face di(i,). One could represent A3, for example,
by the picture

SN N

2. Realization.

Let Top denote the category of topological spaces. To go further, we have to
get serious about the realization functor | | : S — Top. There is a quick way to
construct it which uses the simplex category A | X of a simplicial set X. The
objects of A | X are the maps ¢ : A" — X, or simplices of X. An arrow of
A | X is a commutative diagram of simplicial maps

A”\a/‘
0 X

-

Am

Observe that 6 is induced by a unique ordinal number map 6 : m — n.
LEMMA 2.1. There is an isomorphism
X = lim A™.
—

A" — X
inA|]X
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PROOF: The proof is easy; it is really the observation that any functor C — Sets,
which is defined on a small category C, is a colimit of representable functors.

The realization | X| of a simplicial set X is defined by the colimit
| X|= lim |A"|.
é
A" — X
in A | X
in the category of topological spaces. |X| is seen to be functorial in simplicial

sets X, by using the fact that any simplicial map f : X — Y induces a functor
fi: Al X — A |Y in the obvious way, by composition with f.

PROPOSITION 2.2. The realization functor is left adjoint to the singular functor
in the sense that there is an isomorphism
homop (| X|,Y) = homg(X, SY)
which is natural in simplicial sets X and topological spaces Y .
PrROOF: There are isomorphisms

hOHl'I‘Op(|‘X|7Y)g 1&1 hOmTOP(’An|7Y)
Anr—X
= lim homg(A™, S(Y))
Anr—X
= homg(X, SY)). |

Note that S has all colimits and the realization functor | | preserves them,
since it has a right adjoint.

PROPOSITION 2.3. |X| is a CW-complex for each simplicial set X.

PRrROOF: Define the n'" skeleton sk, X of X be the subcomplex of X which is
generated by the simplices of X of degree < n. Then

X =[] skn X,
n>0

and there are pushout diagrams

|_| OA" —— sk, 1 X
reNX,

|

|_| A" — sk, X
reENX,
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of simplicial sets, where NX,, C X, is the set of non-degenerate simplices of
degree n. In other words,

NX, ={x € X,|z is not of the form s;y forany 0 <i<n—1andy € X,,_1}.

The realization of A™ is the space |A"|, since A | A™ has terminal object
1: A" — A™. Furthermore, one can show that there is a coequalizer

n
|_| Aan — |_| Anfl — A"
0<i<j<n i=0
given by the relations d’d* = d'd’~1 if i < j (exercise), and so there is a coequal-
izer diagram of spaces

L] 1am=2 = [ ]1amt — oA
0<i<j<n i=0
Thus, the induced map |0A™| — |A"| maps |0A™| onto the (n — 1)-sphere
bounding |A™|. Tt follows that |X]| is a filtered colimit of spaces |sk, X| where
| sk,, X| is obtained from | sk,,_; X| by attaching n-cells according to the pushout
diagram

|| 10A" —— |sk,_1 X]|
zeNX,

[ n
|| A" —— sk, X].
reNX,

In particular | X| is a compactly generated Hausdorff space, and so the realiza-
tion functor takes values in the category CGHaus of all such. We shall interpret
| | as such a functor. Here is the reason:

PROPOSITION 2.4. The functor | | : S — CGHaus preserves finite limits.

We won’t get into the general topology involved in proving this result; a
demonstration is given in [33]. Proposition 2.4 avoids the problem that | X x Y|
may not be homeomorphic to | X| x |Y| in general in the ordinary category of
topological spaces, in that it implies that

|1 X XY | 2|X]| Xke |Y]
(Kelley space product = product in CGHaus). We lose no homotopical in-

formation by working CGHaus since, for example, the definition of homotopy
groups of a CW-complex does not see the difference between Top and CGHaus.
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3. Kan complexes.

Recall the “presentation”
n
|_| Aan — |_| Anfl — A"
0<i<j<n i=0

of OA™ that was mentioned in the last section. There is a similar presentation
for A}.

LEMMA 3.1. The “fork” defined by the commutative diagram

An—Z djil An—l

Nj< l ‘ZTLM

-2 —1
T AP ——
0<i<j<n i#k

Z'TL¢<31 ]Z‘ﬂj dj

An—2 : An—l

dZ

is a coequalizer in S.

PROOF: There is a coequalizer

|_| An—l XAZ An—l — |_| An—l _ AZ
i< i 2k
0<1<n

But the fibre product A"~! x N A" is isomorphic to
An—l X An An—l ~ An—2
since the diagram

!

n—-2— —n-1

di[ |di

n—-1——n

dJ
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is a pullback in A. In effect, the totally ordered set {0...7...7...n} is the
intersection of the subsets {0...7...n} and {0...7...n} of {0...n}, and this
poset is isomorphic to n — 2. [ |

The notation {0...7...n} means that 4 isn’t there.

COROLLARY 3.2. The set homg (A}, X) of simplicial set maps from A} to X is
in bijective correspondence with the set of n-tuples (Yo, ..., Yk, --,Yn) of (n—1)-
simplices y; of X such that d;y; = d;j_1y; if i < j, and i,j # k.

We can now start to describe the internal homotopy theory carried by S. The
central definition is that of a fibration of simplicial sets. A map p : X — Y
of simplicial sets is said to be a fibration if for every commutative diagram of
simplicial set homomorphisms

A" —Y

there is a map 0 : A™ — X (dotted arrow) making the diagram commute. i is
the obvious inclusion of A} in A”.

This requirement was called the extension condition at one time (see [58],
[67], for example), and fibrations were (and still are) called Kan fibrations. The
condition amounts to saying that if (xg...%...2,) is an n-tuple of simplices
of X such that d;x; = dj_1z; if i < j, ¢,j # k, and there is an n-simplex y of
Y such that d;y = p(x;), then there is an n-simplex z of X such that d;x = z;,
i # k, and such that p(x) = y. It is usually better to formulate it in terms of
diagrams.

The same language may be used to describe Serre fibrations: a continuous
map of spaces f : T'— U is said to be a Serre fibration if the dotted arrow exists
in each commutative diagram of continuous maps

AR ——T

[ )

A ———U
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making it commute. By adjointness 2.2, all such diagrams may be identified
with diagrams

Ay —— S(T)

>

[ [S(f)
A" S,

so that f : T — U is a Serre fibration if and only if S(f) : S(T') — S(U) is
a (Kan) fibration. This is partial motivation for the definition of fibration of
simplicial sets. The simplicial set |A}| is a strong deformation retract of |A™|,
so that we’ve proved

LEMMA 3.3. For each space X, the map S(X) — x is a fibration.

* is different notation for the simplicial set A°. It consists of a singleton set in
each degree, and is therefore a terminal object in the category of simplicial sets.

A fibrant simplicial set (or Kan complex) is a simplicial set Y such that the
canonical map Y — x is a fibration. Alternatively, Y is a Kan complex if and
only if one of the following equivalent conditions is met:

K1: Every map o : A} — Y may be extended to a map defined on A™ in the
sense that there is a commutative diagram

J N

v

ATL

K2: For each n-tuple of (n—1)-simplices (yo ... Uk ... yn) of Y such that d;y; =
dj_1y; it i < j, 1,5 # k, there is an n-simplex y such that d;y = y;.

The standard examples of fibrant simplicial sets are singular complexes, as
we’ve seen, as well as classifying spaces BG of groups GG, and simplicial groups.
A simplicial group H is a simplicial object in the category of groups; this means
that H is a contravariant functor from A to the category Grp of groups. I
generally reserve the symbol e for the identities of the groups H,,, for all n > 0.
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LEMMA 3.4 (MOORE). The underlying simplicial set of any simplicial group H
is fibrant.

PROOF: Suppose that (zg,...,Tp—1,To—1,%0,...,Tn), £ >k + 2, is a family of
(n — 1)-simplices of H which is compatible in the sense that d;x; = d;_i2; for
1 < j whenever the two sides of the equation are defined. Suppose that there is
an n-simplex y of H such that d;y = x; for : < k —1 and ¢ > £. Then the family

-1
k—1
(ea co., € ,$2—1d2—1(y

1),6,...,6)

is compatible, and d;(s¢_2(w¢_1de_1y~1)y) = z; for i <k—1and i > £ —1. This
is the inductive step in the proof of the Proposition. |

Recall that a groupoid is a category in which every morphism is invertible.
Categories associated to groups as above are obvious examples, so that the fol-
lowing result specializes to the assertion that classifying spaces of groups are
Kan complexes.

LEMMA 3.5. Suppose that G is a groupoid. Then BG is fibrant.

Proor: If C is a small category, then its nerve BC is a 2-coskeleton in the sense
that the set of simplicial maps f : X — BC is in bijective correspondence with
commutative (truncated) diagrams

2

X9 ———— BCy

o,

X ——— BC;

1

X9 —— BCy

in which the vertical maps are the relevant simplicial structure maps. It suffices
to prove this for X = A" since X is a colimit of simplices. But any simplicial
map f : A" — BC can be identified with a functor f : n — C, and this functor is
completely specified by its action on vertices (fy), and morphisms (f1), and the
requirement that f respects composition (f3, and d; fo = fi1d;). Another way of
saying this is that a simplicial map X — BC is completely determined by its
restriction to sky X.
The inclusion A} C A™ induces an isomorphism

Skn,Q AZ = Skn,Q A",
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To see this, observe that every simplex of the form d;d;i,, @ < j, is a face of
some dyi, with r # k: if k # 4, j use d;(d;iy,), if k =i use di(djiy), and if k = j
use d;dgty, = di_1(d;t,. It immediately follows that the extension problem

is solved if n > 4, for in that case sky A} = sko A”.
Suppose that n = 3, and consider the extension problem

AgLBG

Then sk; Ag = sk; A3 and so we are entitled to write a : ag — a1, o : a1 — ag
and ag : as — ag for the images under the simplicial map « of the 1-simplices
0—1,1— 2 and 2 — 3, respectively. Write x : a; — ag for the image of 1 — 3
under «. Then the boundary of dyt3 maps to the graph

ay —)CLQ

N\ A

in the groupoid G under «, and this graph bounds a 2-simplex of BG if and
only if z = agas in GG. But the images of the 2-simplices dst3 and dit3 under «
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together determine a commutative diagram

ag

% W‘l

al 013(012011) a2

N

as

in GG, so that
xay = ag(agay),

and ¥ = azag, by right cancellation. It follows that the simplicial map « : A3 —
BG extends to OA3 = sky A3, and the extension problem is solved.

The other cases corresponding to the inclusions A? C A3 are similar.

If n = 2, then, for example, a simplicial map « : A2 — BG can be identified
with a diagram

ao

"

ai as

and « can be extended to a 2-simplex of BG if and only if there is an arrow
Qg 1 a; — ag of G such that asa; = z. But obviously as = :Ual_l does the trick.
The other cases in dimension 2 are similar. [ |

The standard n-simplex A™ = Bn fails to be fibrant for n > 2, precisely because
the last step in the proof of Lemma 3.5 fails in that case.

4. Anodyne extensions.

The homotopy theory of simplicial sets is based on the definition of fibration
given above. Originally, all of the work done in this area was expressed in terms
of the extension condition, and some rather grisly-looking combinatorics was
involved. The Gabriel-Zisman theory of anodyne extensions [33] gives a way to
short-circuit most of the pain.
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A class M of (pointwise) monomorphisms of S is said to be saturated if the
following conditions are satisfied:

A: All isomorphisms are in M.
B: M is closed under pushout in the sense that, in a pushout square

A——C

Rt

B—BUsC,

if i € M then so is i, (Exercise: Show that i, is monic).

C: Each retract of an element of M is in M. This means that, given a diagram

1
Al A Al
Z/ ‘/l Z/
B B B,
1

if 4 is in M then 4’ is in M.
D: M is closed under countable compositions and arbitrary direct sums,
meaning respectively that:
D1: Given . _ _
11 192 13
A1—>A2—>A3—>...
with i¢; € M, the canonical map A; — lii>nAZ~ is in M.

D2: Given i; : A; — B; in M, j € I, the map

isin M.
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A map p: X — Y issaid to have the right lifting property (RLP is the standard
acronym) with respect to a class of monomorphisms M if in every solid arrow
diagram

with ¢+ € M the dotted arrow exists making the diagram commute.

LEMMA 4.1. The class M, of all monomorphisms which have the left lifting
property (LLP) with respect to a fixed simplicial map p : X — Y is saturated.

PROOF: (trivial) For example, we prove the axiom B. Suppose given a com-
mutative diagram

A C X

(R B

B———BU4C—Y,

where the square on the left is a pushout. Then there is a map 6 : B — X such
that the “composite” diagram

commutes. But then € induces the required lifting 6, : BUs4 C — X by the
universal property of the pushout. |

The saturated class Mp generated by a class of monomorphisms B is the
intersection of all saturated classes containing B. One also says that Mp is
the saturation of B.

Consider the following three classes of monomorphisms:

B, := the set of all inclusions A} C A", 0<k<n,n>0
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Bs = the set of all inclusions

(A x DA™ U ({e} x A™) C (A} x A™),  e=0,1

B3 := the set of all inclusions
(A' x Y)U ({e} x X) c (A' x X),

where Y C X is an inclusion of simplicial sets, and e = 0, 1.
PROPOSITION 4.2. The classes By, B2 and Bz have the same saturation.

Mg, is called the class of anodyne extensions.

1
COROLLARY 4.3. A fibration is a map which has the right lifting property with
respect to all anodyne extensions.

PROOF OF PROPOSITION 4.2: We shall show only that Mg, = Mg, ; it is rela-
tively easy to see that My, = Mp,, since a simplicial set X can be built up from
a subcomplex Y by attaching cells. To show that Mg, C Mg, , observe that any
saturated set is closed under finite composition. The simplicial set A™ x Al has
non-degenerate simplices

hjt A" — A" x Al 0<j<n,

where the h; may be identified with the strings of morphisms

(0,0) — (0,1) — ... —(0,4)

I

(1,j) — ... — (1,n)
of length n 4+ 1 in n X 1 (anything longer must have a repeat). One can show
that there are commutative diagrams

An do An—l—l An dn+1 An—i—l

w 4 T

A" x {1} e—— A" x A' A" x {0} ——— A" x Al
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ATL d’L A’n
hj—ll lhj if i < j

An_l XAlﬁAn XAl
' X

A" dit1!
_

(4.5) ! dj+1[ Ihjﬂ

An—i—l

hj[ Ihj if i > j + 1.
AT Al — S A" x Al

\ dz—l % 1
Moreover dj;1h; ¢ DA™ x Al for j > 0 since it projects to ¢, under the projection
map A" x A — A™. Finally, d;+1h; is not a face of h; for j > i+ 1 since it has
vertex (0, 7).

Let (A" x AN)® 4 > 1 be the smallest subcomplex of A™ x Al containing
OA™ x A and the simplices hq, . .., h;. Then (A" x A1)(") = A" x A! and there
is a sequence of pushouts, each having the form

antt_(dohit1,. . digahita, . . dug1hivy) (A" x A1)

i+2
[ [ n—1>1> -1
An+1 - (An > Al)(i—l—l)
1+1

by the observation above.
To see that Mp, C Mp,, suppose that £ < n, and construct the functors

7 Tk
n—nx1-—n,

where i(j) = (j,1) and r is defined by the diagram

0o—1—... —mk-1—k—k——... —k

L l l l |

0—1—... —mk-1—k—k+1— ... —n
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in n. Then r -7 = 1,, and r and 7 induce a retraction diagram of simplicial set
maps

AR ——— (AR x A U (A" x {0}) ——— A}

| | |

A" A™ x Al A"

(apply the classifying space functor B). It follows that the inclusion A} C A™ is
in MB2 if K <n.
Similarly, if £ > 0, then the functor v : n X 1 — n defined by the diagram

0—1l—... —k—k+1— ... —n
[ | | |
k—k—... —wk—k+1— ... —n

may be used to show that the inclusion A} C A™ is a retract of
(A7 x AY)U (A" x {1}).
Thus, A} C A" is in the class Mp, for all n and k. |

COROLLARY 4.6. Suppose that i : K — L is an anodyne extension and that
Y — X is an arbitrary inclusion. Then the induced map

(KxX)U(LxY)— (LxX)
is an anodyne extension.
PROOF: The set of morphisms K’ — L’ such that
(K'x X)U(L'xY)— (L' x X)
is anodyne is a saturated set. Consider the inclusion
(A'x Y)Y YU({e}x X)c(A'x X"y (Y cX)

and the induced inclusion

((A* xYHYU({e} x X)) x X)U((A' x X') xY) — ((A' x X') x X)

gl lg

(A" x (Y x X)U (X' x YY) U ({e} x (X' x X)) Al x (X' x X)

This inclusion is anodyne, and so the saturated set in question contains all
anodyne morphisms. [ |
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5. Function complexes.

Let X and Y be simplicial sets. The function complezr Hom(X,Y) is the
simplicial set defined by

Hom(X,Y), = homg(X x A", Y).
If 6 : m — n is an ordinal number map, then the induced function
6" : Hom(X,Y),, - Hom(X,Y),,

is defined by

f 1x6 f
(X XxA" YY) (X x A" — X x A" = Y)).

In other words, one thinks of X x A™ as a cosimplicial “space” in the obvious
way.
There is an evaluation map

ev: X x Hom(X,Y) - Y

defined by (z, f) — f(z,t,). To show, for example, that ev commutes with face
maps d;, one has to check that

f-(1x dj)(djx,bn_l) =d;f(x,tn).
But ‘
f ' (1 X dj)(djxybn—l) = f(djx7djbn> = djf(%‘, Ln)'

More generally, ev commutes with all simplicial structure maps and is thus a
simplicial set map which is natural in X and Y.

PROPOSITION 5.1 (EXPONENTIAL LAW). The function
ev, : homg (K, Hom(X,Y)) — homg(X x K,Y),

which is defined by sending the simplicial map g : K — Hom(X,Y) to the
composite

1 ev
X x K —2 X x Hom(X,Y) - Y,

is a bijection which is natural in K, X and Y.
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PROOF: The inverse of ev, is the map
homg(X x K,Y) — homg(K, Hom(X,Y))

defined by sending g : X X K — Y to the map g, : K — Hom(X.Y'), where, for

x € Ky, g«(x) is the composite

11Xty g
X xA" — X xK =Y.

The relation between function complexes and the homotopy theory of simpli-

cial sets is given by

PROPOSITION 5.2. Suppose that ¢ : K — L is an inclusion of simplicial sets and

p: X — Y is a fibration. Then the map
(i",ps)

Hom(L,X) —— Hom(K, X) Xtom(x,y) Hom(L,Y),
which is induced by the diagram

Hom(L, X) —2*  Hom(L,Y)

T

Hom (K, X) — Hom(K,Y),

is a fibration.

Proor: Diagrams of the form

AL Hom(L, X)

f [(i*,p*)

A" ——— Hom(K, X) Xtiom(x,y) Hom(L,Y)
may be identified with diagrams
(Az X L) U(AZXK) (An X K) — X

] tp

A" x L Y

by the Exponential Law (Proposition 5.1). But j is an anodyne extension by

4.6, so the required lifting exists.
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COROLLARY 5.3.

(1) If p: X — Y is a fibration, then so is p, : Hom(K, X) — Hom(K,Y')

(2) If X is fibrant then the induced map i* : Hom(L, X) — Hom(K, X) is
a fibration.

PROOF:
(1) The diagram

Hom(K,Y) —L— Hom(K,Y)

| |

* *

is a pullback, and the following commutes:

Hom(K, X)

for a uniquely determined choice of map Hom(K,Y) — Hom((), X).
(2) There is a commutative diagram

Hom(L, X)

Hom(K,X) ——— Hom(L,*) = x

| |

Hom(K, X) ——— Hom(K,x) — x
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where the inner square is a pullback. |

6. Simplicial homotopy.
Let f,g : K — X be simplicial maps. We say that there is a simplicial

homotopy f — g from f to g if there is a commutative diagram

KxA" =K
1 xd \‘
K x Al h X
1 xdY /
KxA' =K

The map h is called a homotopy.

It’s rather important to note that the commutativity of the diagram defining
the homotopy h implies that h(z,0) = f(z) and h(x,1) = g(z) for all simplices
x € K. We have given a definition of homotopy which is intuitively correct
elementwise — it is essentially the reverse of the definition that one is usually
tempted to write down in terms of face (or coface) maps.

Suppose ¢ : L C K denotes an inclusion and that the restrictions of f and g to
L coincide. We say that there is a simplicial homotopy from f to g, (rel L) and

write f = g (rel L), if the diagram exists above, and the following commutes
as well:

KxA—h . x

| e

1
LXA pT)L

where o = f|, = g|1, and pry, is projection onto the left factor (prg will denote
projection on the right). A homotopy of the form

LxA' 2 Sx

is called a constant homotopy (at «).
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The homotopy relation may fail to be an equivalence relation in general. Con-
sider the maps tg,¢1 : A® = A" (n > 1), which classify the vertices 0 and 1,
respectively, of A™. There is a simplex [0,1] : Al — A™ determined by these

vertices, and so 1y — ¢1 (alternatively, 0 — 1). But there is no 1-simplex which
could give a homotopy ¢; — tg, since 0 < 1. This observation provides a second

means (see Lemma 3.5) of seeing that A™ not fibrant, since we can prove

LEMMA 6.1. Suppose that X is a fibrant simplicial set. Then simplicial homo-
topy of vertices x : A — X of X is an equivalence relation.

PROOF: There is a homotopy * — vy if and only if there is a 1-simplex v of
X such that dyv = z and dov = y (alternativley dv = (y,x); in general the
boundary do of an n-simplex o is denoted by do = (dyo,...,d,0)). But then
the equation d(sgx) = (x,z) gives the reflexivity of the homotopy relation.

Suppose that dve = (y,x) and dvg = (z,y). Then dyve = djvg, and so vy and
vo determine a map (vg, ,v2) : A2 — X in the obvious way. Choose a lifting

A% (UO7 7U2) X.

=

A2

Then

9(d10) = (dod10,dyd,0)
= (dodob, dyd20)

= (2,2),

and so the relation is transitive. Finally, given vy = (y, ), set v; = sox. Then
divy = dive and so vy and vy define a map ( ,vy,v2) : A2 — X. Choose an
extension

A% ( 7UI7U2) X‘

=

A2
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Then
A(dob") = (dodob’, d1do0")
= (dod10', dod20")
= (2,9),
and the relation is symmetric. |

COROLLARY 6.2. Suppose X is fibrant and that L. C K is an inclusion of sim-
plicial sets. Then

(a) homotopy of maps K — X is an equivalence relation, and

(b) homotopy of maps K — X (rel L) is an equivalence relation.

PROOF: (a) is a special case of (b), with L = (). But homotopy of maps K — X
(rel L) corresponds to homotopy of vertices in the fibres of the Kan fibration

i* : Hom(K, X) - Hom(L, X)

via the Exponential Law 5.1. [ |

7. Simplicial homotopy groups.

Let X be a fibrant simplicial set and let v € Xy be a vertex of X. Define
Tn(X,v), n > 1, to be the set of homotopy classes of maps a : A" — X (rel
OA™) for maps a which fit into diagrams

A @ x

I

OA" ——— A”,

One often writes v : 0A™ — X for the composition
DA™ — A° 5 X,

Define mo(X) to be the set of homotopy classes of vertices of X. m(X) is
the set of path components of X. The simplicial set X is said to be connected
if mo(X) is trivial (ie. a one-element set). We shall write [«] for the homotopy
class of «, in all contexts.
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Suppose that o, : A™ — X represent elements of 7, (X,v). Then the sim-
plices

Vi =V, 0<i<n—2,
Up—1 = «, and
Un+1 = ﬁ
satisfy d;v; = dj_qv; if @ < j and 4,7 # n, since all faces of all simplices
v; map through the vertex v. Thus, the v; determine a simplicial set map
(V05 -+ s Un—1, yUny1) : ATt — X and there is an extension
An+1 (UOa"'7Un—17 7vn+1) X
" )
Jt /
An—|—1

Observe that

0(dpw) = (dodpw, ..., dp_1dpw, dpd,w)
= (dn—ldo% s 7dn—1dn—1w7 dndn+lw)

= (v,...,v),

and so d,w represents an element of m, (X, v).

LEMMA 7.1. The homotopy class of d,,w (rel 0A™) is independent of the choices
of representatives of [«] and [(3] and of the choice of w.

PROOF: Suppose that h,,_1 is a homotopy « = o (rel OA™) and h,41 is a
homotopy 8 — 3’ (rel OA™). Suppose further that

ow=(v,...,v,a,d,w, 3)

and
o' = (v,...,v,d,dw'", 3).

Then there is a map

(w/awa(vv~~-ahn—17 ahn+1))

(A" x AN U (ATH x A1)



28 I. SIMPLICIAL SETS

which is determined by the data. Choose an extension

(An+1 x 8A1) U (An—l—l > Al) (wlawa(vw--ahn—l; >hn+1)) X.

L

A" x Al

Then the composite
d"x1 w
A" x Al — S AT A S X
is a homotopy d,w — d,w’ (rel OA™). [ ]

It follows from Lemma 7.1 that the assignment
([a],[8]) = ldnw], where 0w = (v,...,v,q,dnw, ),
gives a well-defined pairing
m: (X, v) X (X, 0) = 7, (X, 0).

Let e € m,(X,v) be the homotopy class which is represented by the constant
map

A" — AY L X

THEOREM 7.2. With these definitions, m,(X,v) is a group for n > 1, which is
abelian if n > 2.

PrOOF: We shall demonstrate here that the m,(X,v) are groups; the abelian
property for the higher homotopy groups will be proved later.

It is easily seen (exercise) that av-e = e-a = a for any o € 7,(X,v), and that
the map m,(X,v) — m,(X,v) induced by left multiplication by « is bijective.
The result follows, then, if we can show that the multiplication in m,(X,v) is
associative in general and abelian if n > 2.

To see that the multiplication is associative, let z,y,z : A" — X represent
elements of 7, (X, v). Choose (n + 1)-simplices wy,—1,Wn+1,wWn+2 such that

Owp 1 = (’U, <o U, T dnwn—hy)a
a("}n—&—l = (’U, <oy Uy dnwn—la dnwn+l7 Z)7 and

8wn+2 = (U7 U0 Y, dnwn+2a Z)
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Then there is a map

(’Uz‘“vvvwn—la yWn+41 :Wn+2)

A2
which extends to a map u : A"*2? — X. But then
Odpw) = (v,...,v,2,dpwni1, dpwni2),
and so
([2][y])[2] = [dnwn-1][2]
= [dnwn+1]
= [d,d,ul
= [z][dnwn+1]
= []([y][2])- u

In order to prove that m,(X,v) abelian for n > 2, it is most instructive to
show that there is a loop-space QX such that m,(X,v) = m,_1(QX,v) and then
to show that 7; (22X, v) is abelian for ¢ > 1. This is accomplished with a series of
definitions and lemmas, all of which we’ll need in any case. The first step is to
construct the long exact sequence of a fibration.

Suppose that p : X — Y is a Kan fibration and that F' is the fibre over a
vertex * € Y in the sense that the square

F—l X

|k

JIC

is cartesian. Suppose that v is a vertex of F' and that o : A™ — Y represents an
element of 7, (Y, *). Then in the diagram

(,v,...,v)

n
A0

| ]

Al Y

the element [dpf] € m,—1(F,v) is independent of the choice of § and representa-
tive of [a]. The resulting function

0 :mp(Y, %) — w1 (F,v)

is called the boundary map.
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LEMMA 7.3.
(a) The boundary map O : m,(Y,*) — m,_1(F,v) is a group homomorphism
ifn > 1.
(b) The sequence

s * 1o}
- — mp(Fyv) — (X, v) -, (Y, %) — mp_1(Fyv) — ...
P o T P

L 7T1(Y, *) — 7T0<F) — 7T0(X) — 7T()(Y)

is exact in the sense that kernel equals image everywhere. Moreover, there
is an action of m (Y, *) on mo(F') such that two elements of my(F') have
the same image under i, in wo(X) if and only if they are in the same orbit
for the m (Y, %)-action.

Most of the proof of Lemma 7.3 is easy, once you know

LEMMA 7.4. Let o : A™ — X represent an element of m,(X,v). Then [a] = e if
and only if there is an (n + 1)-simplex w of X such that Ow = (v,...,v,q).

The proof of Lemma 7.4 is an exercise.

PROOF OF LEMMA 7.3: (a) To see that 0 : m,(Y,*) — m,_1(F,v) is a homo-
morphism if n > 2, suppose that we are given diagrams

n (%
A0

[%‘p i=n—1,nn+1,

Al Y

where the a; represent elements of m, (Y, *). Suppose that there is an (n + 1)-
simplex w such that

Ow = (, ... %, Qp_1, Qpy Qpt1)-

Then there is a commutative diagram

A8+1 ( 7U7"'7U70n7179n70n+1) X

[ / b

n+1
A _ Y,
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and
a(dOV) = (dOdOPY; dldﬂf% SRR dndo’Y)
= (dodr7, dod27, - . ., dodpn—_17, dodyn7y, dodn+17)
= (Ua ) doen—la d()en, d00n+1)
Thus [dob,] = [doOn—1][dobn+1], and so O([an-1][an+1]) = Olan-1]0[an+1] in
Tn—1(F,v).

(b) We shall show that the sequence

p*

0
Tn (X, v) — mp (Y, %) — 71 (F,v)

is exact; the rest of the proof is an exercise. The composite is trivial, since in
the diagram

ANV X

|

A" ———Y

po

with [a] € 7,(X,v), we find that dyoe = v. On the other hand, suppose that
v : A" — Y represents a class [y] such that J[y] = e. Choose a diagram

AT X

[

A" ——Y

Y

so that [dpf] = O[y]. But then there is a simplex homotopy

h
AL AT S R

giving dpf ~ v (rel JA™). Thus, there is a diagram

(A" x 1) U (DA™ x A1) (0, (ho,v,.--,0)) 5

| /

A™ x Al
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Moreover p - h is a homotopy v ~p - (h - d') (rel A™). [

Now for some definitions. For a Kan complex X and a vertex x of X, the path
space PX is defined by requiring that the following square is a pullback.

rPx — Hom(A!, X)

G

A — - Hom(A" X) = X.

*

Furthermore, the map 7 : PX — X is defined to be the composite

r Ck
PX - Hom(A!, X) —— Hom(A%, X) = X,

The maps (d€)* are fibrations for e = 0,1, by 5.3. In particular, PX is fibrant.

LEMMA 7.5. m;(PX,v) is trivial for i > 0 and all vertices v, and = is a fibration.

PRrROOF: d¢: A — Al is an anodyne extension, and so (d")* has the right lifting
property with respect to all maps OA™ C A", n > 0, (see the argument in 5.2).
Thus, the map PX — A® = x has the right lifting property with respect to all
such maps. Any two vertices of PX are homotopic, by finding extensions

IN! —— PX.

7
e
e
e
e
e
7
-

Al

If « : A™ — PX represents an element of 7, (PX, v), then there is a commutative
diagram
HATH (v,...

T
-
-~
P
-~
-~
—~
—~
—~
~
~
—

AnJrl’
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and so [a] = e in 7, (PX,v). Finally, the map 7 sits inside the pullback diagram

PX ——— Hom(A', X)
li
T Hom(0A', X)

lg

X — X x X
(*>1X)

and so 7 is a fibration since i* is, by 5.3. |

Define the loop space 2X to be the fibre of 7 : PX — X over the base point .
A simplex of QX is a simplicial map f : A™ x Al — X such that the restriction
of f to A™ x OA! maps into *. Now we can prove

LEMMA 7.6. 7;(QX, ) is abelian for i > 1.

PROOF: 7,(Q2X, %), as a set, consists of homotopy classes of maps of the form

A" x Al a X,

|~

(0A™ x AMY U (A™ x A1)

rel the boundary (OA™ x Al) U (A™ x JA). Show that 7, (QX, *) has a second
multiplication [a] x [3] (in the 1-simplex direction) such that [*] is an identity
for this multiplication and that x and the original multiplication satisfy the
interchange law

(laa] * [Br]) (2] % [B2]) = ([en][ee]) % ([B1][52])-

It follows that [][5] = [a] * [#], and that both multiplications are abelian. W
COROLLARY 7.7. Suppose that X is fibrant. Then m;(X,*) is abelian if i > 2.

The proof of Theorem 7.2 is now complete.

Let G be a group, and recall that the classifying space BG is fibrant, by 3.5.
BG@G has exactly one vertex . We can now show easily that BG is an Eilenberg-
Mac Lane space.
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PROPOSITION 7.8. There are natural isomorphisms

G ifi=1,

mi(BG,¥) = { 0 ifitl

PROOF: BG is a 2-coskeleton (see 3.5), and so m;(BG, x) = 0 for ¢ > 2, by 7.4.
It is an elementary exercise to check that the identification BG; = G induces an

isomorphism of groups 71 (BG, %) — G. mo(BG@) is trivial, since BG has only
one vertex. |

Suppose that f: Y — X is a map between fibrant simplicial sets. f is said to
be a weak equivalence if

for each vertex y of Y the induced map f, : m;(Y,y) — m(X, fy)
(7.9) is an isomorphism for ¢ > 1, and

the map f. : mo(Y) — mo(X) is a bijection.

THEOREM 7.10. A map f:Y — X between fibrant simplicial sets is a fibration
and a weak equivalence if and only if f has the right lifting property with respect
to all maps OA™ C A™, n > 0.

PROOF: (=) The simplicial homotopy A™ x Al — A" given by the diagram

«—— O
+—— O
+— O

in n, contracts A" onto the vertex 0. This homotopy restricts to a homotopy
Ay x A' — AP which contracts A2 onto 0.
Now suppose that we're given a diagram
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If there is a diagram

such that the lifting exists in the diagram
1
HA" _h-d | X

| 7]

then the lifting exists in the original diagram D. This is a consequence of the
fact that there is a commutative diagram

oar — @ oan ANy U (an x (1) -0y

)

n n 1
A o A" x A - Y

~.
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Now, the contracting homotopy H : A} x Al — AP determines a diagram
Are—d L pAn
dO «

AT x Al Ly

d! a(0)

 V—\)

where h; = « - j - H. There is a diagram

(OA" x {11 U (A x A1y (@)

|

OA™ x Al

X

since X is fibrant. Moreover, there is a diagram

(A™ x {1}) U (0A™ x Al) MY
J‘ /

A™ x Al

since Y is fibrant. It therefore suffices to solve the problem for diagrams

HA™ (o, *, ..., *) x
D, [ p
A" Y
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a(0)) of X, since the composite diagram

1
OA" — 4 gAn x AV D x

| [EEE

A" — S A" x Al —— Y

d! 9

37

has this form. Then xg represents an element [zo] of m,_1(X,*) such that
p«lzo] = € in w1 (Y, px). Thus, [z¢] = e in 7,_1(X, %), and so the trivializ-

ing homotopy hg : A"~ ! x Al — X for X determines a homotopy

h' = (ho,*,...,%) : OA™ x Al — X.

But again there is a diagram

(A" x {1} U (9A7 x Ay &Py
[ /

A™ x Al

so it suffices to solve the lifting problem for diagrams

px« is onto, so f ~ pa (rel 0A™) via some homotopy h”

oA" —F X

[ b

A" ———Y.

B

so there is a commutative diagram

aam — @ oan x AU (A" x o) Y, x

-7

—
—
—
—
—
—
—
—
—
—
—~
-

|

>

ATL

o A" x Al =

Y.

A" x Al - Y, and
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D5 is the composite of these two squares, and the lifting problem is solved.

(<) Suppose that p : X — Y has the right lifting property with respect to
all 0A™ C A™, n > 0. Then p has the right lifting property with respect to all
inclusions L C K, and is a Kan fibration in particular. It is then easy to see
that p, : 19X — meY is a bijection. Also, if x € X is any vertex of X and F,
is the fibre over p(x), then F, — % has the right lifting property with respect to
all 0A™ € A", n > 0. Then F, is fibrant, and mo(F,) = * and m;(F,,x) = 0,
i > 1, by the argument of Lemma 7.5. Thus, p. : m(X,z) — m(Y,px) is an
isomorphism for all ¢ > 1. [ |

8. Fundamental groupoid.

Let X be a fibrant simplicial set. Provisionally, the fundamental groupoid
m¢ X of X is a category having as objects all vertices of X. An arrow  — y in
7 X is a homotopy class of 1-simplices w : A — X (rel 9A') where the diagram

commutes. If vy represents an arrow x — y of m;X and vy represents an arrow
y — z; then the composite [vg][vs] is represented by dyjw, where w is a 2-simplex
such that the following diagram commutes

=

A2

The fact that this is well-defined should be clear. The identity at x is represented
by spx. This makes sense because, if vo : * — y and vg : y — z then dsgvg =
(vo,vo, S0y), and O(s1v2) = (Soy,va,v2). The associativity is proved as it was
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for my. In fact, 7y X (z,z) = m(X,x) specifies the group of homomorphisms
7§ X (z,z) from x to itself in m¢X, by definition. By solving the lifting problem

A% (,80%02) X

//?
AQ/
for v : © — y, one finds a vy : y — x (namely dow) such that [vg][vs] = 1.
But then [vs] is also epi since it has a right inverse by a similar argument. Thus
[v2][vo][v2] = [v2] implies [v2][vo] = 1,, and so m¢X really is a groupoid.

Now, let o : A™ — X represent an element of 7, (X,z) and let w : Al — X
represent an element of 7y X (z,y). Then there is a commutative diagram

(0A™ x AYY U (A™ x {0})
[ (w-prg,a)

h(w,a)

A" x Al X,

dO

Wi O

An

and w.« represents an element of 7, (X, y).

PROPOSITION 8.1. The class |w.a] is independent of the relevant choices of
representatives. Moreover, [a] — |w.a] is a group homomorphism which is func-
tional in [w], and so the assignment x +— m, (X, x) determines a functor on w¢X.

ProOF: We shall begin by establishing independence from the choice of repre-

sentative for the class [w]. Suppose that G : w — n (rel dA!) is a homotopy of
paths from z to y. Then there is a 2-simplex o of X such that

o = (30y7 7, CU).

Find simplices of the form h(, ) and h(, ) according to the recipe given above,
and let h, be the composite

oA" x A2 2 A2 % X
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There is a commutative diagram

(DA™ x A?) U (A™ x A3)

[

A™ x A?

since the inclusion ¢ is anodyne. Then the composite

1xd°

01
A" x Al — S A" x A2 S X

is a homotopy from w,a to n.a (rel 0A™), and so [w.a] = [n.a] in 7,(X, y).

Suppose that H : A" x Al — X gives «a N B (rel QA™), and choose a
homotopy h(w,8) : A" x Al — X as above. Let h,, denote the composite

Sow

OA™ x A2 2 A2 2% x

Then there is a commutative diagram

(DA™ x A%) U (A™ x A?)

j[ /

A™ x A?

for some map -y, since the inclusion j is anodyne. But then the simplex given by
the composite
d° | 1xd! 5 7
A" — A" x AT — A" X A — X
is a construction for both w,a and w, 3, so that [w.a] = [w.] in m, (X, y).

For the functoriality, suppose that w : A! — X and n : A’ — X represent
elements of 7y X (z,y) and 77X (y, ) respectively, and choose a 2-simplex 7 such
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that 0y = (n,d1v,w). Then [d17] = [n] - [w] in 7y X. Choose h(, ) and h(, .. q)
according to the recipe above. Then there is a diagram

(DA™ x A?)U (A" x A?)
i (v o pr, (h(n, wiar), , h(w, a))

A" x A2 X,

1xdt /
3

A™ x Al

and hence a diagram

(DA™ x Al ) " x {0})

\Tw
§

Newsa = (d17)0x

A™ x Al

dl

An

where hg4,~ is the composite

oA x AL AL M x

The statement that w, is a group homomorphism is easily checked. |

THEOREM 8.2. Suppose that the following is a commutative triangle of simpli-
cial set maps:

X g Y

N A

Z

with XY, and Z fibrant. If any two of f, g, or h are weak equivalences, then so
is the third.
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PRrROOF: There is one non-trivial case, namely to show that f is a weak equiva-
lence if g and h are. This is no problem at all for mg. Suppose y € Y is a vertex.
We must show that f, : m,(Y,y) — m,(Z, fy) is an isomorphism. y may not be
in the image of g, but there is an x € X and a path w : y — gz since my(g) is
epi. But then there is a diagram

(Y, y) _ el (Y, gz) L 1. (X, 2).

/| &

7Tn(Z7 fy) Wﬂ-n(zv fg:B)

The maps gu«, hs, [w]«, and [fw]. are isomorphisms, and so both of the maps
labelled f, are isomorphisms. |

There are three competing definitions for the fundamental groupoid of an
arbitrary simplicial set X. The most obvious choice is the classical fundamental
groupoid 7| X| of the realization of X; in the notation above, this is 77S|X]|. Its
objects are the elements of | X |, and its morphisms are homotopy classes of paths
in | X|. The second choice is the model GP, X of Gabriel and Zisman. GP, X is
the free groupoid associated to the path category P, X of X. The path category
has, as objects, all the vertices (elements of Xy) of X. It is generated, as a
category, by the 1-simplices of X, subject to the relation that, for each 2-simplex

o of X, the diagram
Vo dao U1
d>\ /00—
V2

commutes. The free groupoid G(A | X) associated to the simplex category
A | X is also a good model. We shall see later on, in Section 12 that m|X]|,
GP.X and G(A | X) are all naturally equivalent, once we have developed the
techniques for doing so.

9. Categories of fibrant objects.

Let Sy be the full subcategory of the simplicial set category whose objects are
the Kan complexes. Sy has all finite products. We have two distinguished classes
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of maps in Sy, namely the fibrations (defined by the lifting property) and the
weak equivalences (defined via simplicial homotopy groups). A trivial fibration
p: X — Y in S; is defined to be a map which is both a fibration and a weak
equivalence. A path object for X € S is a commutative diagram

XI

/ ‘/(d()adl)

XTXXX

where s is a weak equivalence and (dg,d;) is a fibration. The maps dy and d;
are necessarily trivial fibrations. Any Kan complex X has a natural choice of
path object, namely the diagram

Hom(A', X) ——

!
Y. Hom(@Al,X) (do,dl)

~)

X—— X x X «—r—-

where s is the map

(s
X 2 Hom(A", X) —— Hom(A'!, X).

(s°)* = s is a weak equivalence; in effect, it is a right inverse for the map

(d)”
Hom(A', X) —— Hom(A°, X),

and (d°)* is a trivial fibration, by 7.10, since it has the right lifting property
with respect to all inclusions OA™ C A", n > 0. (d°)* is isomorphic to one of
the components of the map Hom(A!, X) — X x X.

The following list of properties of S; is essentially a recapitulation of things
that we’ve seen:
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(A) Suppose given a commutative diagram

N A

Z.

If any two of f, g and h are weak equivalences, then so is the third.

B [he compnsite of two fibrations is a fibration. Ally iS()III()I‘leiSIIl is a
fibration.

(C) Pullback diagrams of the form

ZXyX—>X

2 ‘p

L ——Y

exist in the case where p is a fibration. Furthermore, pr is a fibration
which is trivial if p is trivial.

(D) For any object X there is at least one path space X7I.

(E) For any object X, the map X — x is a fibration.

Recall that we proved (A) outright in 8.2. (B) is an easy exercise. (C) holds
because fibrations and trivial fibrations are defined by lifting properties, by 7.10.
(D) was discussed above, and (E) isn’t really worth mentioning.

Following K. Brown’s thesis [15] (where the notion was introduced), a category
C which has all finite products and has distinguished classes of maps called
fibrations and weak equivalences which together satisfy axioms (A) — (E) is
called a category of fibrant objects (for a homotopy theory). We've proved:

THEOREM 9.1. Sy is a category of fibrant objects for a homotopy theory.

Other basic examples for us are the category CGHaus of compactly generated
Hausdorff spaces, and the category Top of topological spaces. In fact, more is
true. The fibrations of CGHaus are the Serre fibrations, and the weak equiv-
alences are the weak homotopy equivalences. A map i : U — V in CGHaus is
said to be a cofibration if it has the left lifting property with respect to all trivial
fibrations.
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PROPOSITION 9.2. The category CGHaus and these three classes of maps sat-
isfy the following list of axioms:

CM1: CGHaus is closed under all finite limits and colimits.
CM2: Suppose that the following diagram commutes in CGHaus:

X g Y

N A

Z.

If any two of f, g and h are weak equivalences, then so is the third.

CMa3: If f is a retract of g and g is a weak equivalence, fibration or cofibration,
then so is f.

CM4: Suppose that we are given a commutative solid arrow diagram

where i is a cofibration and p is a fibration. Then the dotted arrow exists,
making the diagram commute, if either ¢ or p is also a weak equivalence.

CM5: Any map f: X — Y may be factored:

(a) f=p-i wherep is a fibration and i is a trivial cofibration, and

(b) f =q-j where q is a trivial fibration and j is a cofibration.

ProoOF: The category CGHaus has all small limits and colimits, giving CM1
(see [66, p.182]). This fact is also used to prove the factorization axioms CMS5;
this is the next step.

The map p: X — Y is a Serre fibration if and only if it has the right lifting
property with respect to all inclusions j : |A}| — |A™|. Each such j is necessarily
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a cofibration. Now consider all diagrams

and form the pushout

Lliagee2b x — x,
D

[ i1 f=ro

| |1am] X, Y.
- fi

Then we obtain a factorization
f=fo=fi 1,

where 77 is a cofibration since it’s a pushout of such, and also a weak equivalence
since it is a pushout of a map which has a strong deformation retraction. We
repeat the process by considering all diagrams.

|AZ§’ L)ﬁ

J [fl

A" |—— V¥

Bp

and so on. Thus, we obtain a commutative diagram

X =X, — 2+ .x, 2 .x,
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which induces a diagram

But now 7 has the left lifting property with respect to all trivial fibrations, so
it’s a cofibration. Moreover, 7y is a weak equivalence since any compact subset of
li_rr>1 X; lies in some finite stage X;, and all the X; — X, are weak equivalences.

Finally, f is a fibration; in effect, for each diagram

|AL| —>th

| [foo

A" ——F—Y,

g

there is an index ¢ and a map a; making the following diagram commute:

|A | < lim X;
Xil /
X; Joo
\
A" 3 Y.

But then

AR —%— X;

[ lfi

A" —F—Y
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is one of the diagrams defining f;;1 and there is a diagram

Q;

A% X;

— .
\YZ

i+1

p X
/
N ;

which defines the lifting.

The other lifting property is similar, using

LEMMA 9.4. The map p: X — Y is a trivial fibration if and only if p has the
right lifting property with respect to all inclusions |OA™| C |A™|.

The proof is an exercise.

Quillen calls this proof a small object argument [75]. CM4 is really a conse-
quence of this argument as well. What we showed, in effect, was that any map
f X — Y has a factorization f = p-i such that p is a fibration and 7 is a weak
equivalence which has the left lifting property with respect to all fibrations.

Suppose now that we have a diagram

where p is a fibration and ¢ is a trivial cofibration. We want to construct the
dotted arrow (giving the non-trivial part of CM4). Then there is a diagram
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where j is a weak equivalence which has the left lifting property with respect to
all fibrations, and 7 is a (necessarily trivial) fibration. Thus, the dotted arrow r
exists. But then i is a retract of j, and so ¢ has the same lifting property. All of
the other axioms are trivial, and so the proof of Proposition 9.2 is complete.

A closed model category is a category C, together with three classes of maps
called cofibrations, fibrations and weak equivalences, such that the axioms CM1

— CM5 are satisfied. Proposition 9.2 is the statement that CGHaus has the
structure of a closed model category.

ProprosiTioN 9.5. CGHaus is a category of fibrant objects for a homotopy
theory. In fact the subcategory of fibrant objects in any closed model category
C is a category of fibrant objects for a homotopy theory.

Proor: (E) is part of the definition. For (D), the map A : X — X x X may
be factored

XI

/ ‘((d()adl)

XTXXX,

where s is a trivial cofibration and (dy,d;) is a fibration. For (B) and (C), we
prove:

LEMMA 9.6.

(a) Amap f: X — Y in C has the right lifting property with respect to all
cofibrations (respectively trivial cofibrations) if and only if f is a trivial
fibration (respectively fibration).

(b) U — V in C has the left lifting property with respect to all fibrations
(respectively trivial fibratons) if and only if i is a trivial cofibration (re-
spectively cofibration).

Proor: We’'ll show that f : X — Y has the right lifting property with respect
to all cofibrations if and only if f is a trivial fibration. The rest of the proof is
an exercise.
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Suppose that f has the advertised lifting property, and form the diagram

Xl—X>X

|l

V—Y,

p

where i is a cofibration, p is a trivial fibration, and r exists by the lifting property.
Then f is a retract of p and is therefore a trivial fibration. The reverse implication
is CMA4. |

Finally, since fibrations (respectively trivial fibrations) are those maps having
the right lifting property with respect to all trivial cofibrations (respectively
all fibrations), they are stable under composition and pullback and include all
isomorphisms, yielding (B) and (C). (A) is just CM2. This completes the
proof of Proposition 9.5.

We shall see that the category of fibrant objects structure that we have dis-
played for S is the restriction of a closed model structure on the entire simplicial
set category, as in the corollary above. This will be proved in the next section.

10. Minimal fibrations.

Minimal Kan complexes play roughly the same role in the homotopy theory of
simplicial sets as minimal models play in rational homotopy theory (there ought
to be an abstract theory of such things). Minimal Kan complexes appear as
fibres of minimal fibrations; it turns out that minimal fibrations are exactly the
right vehicle for relating the homotopy theories of S and CGHaus.

A simplicial set map ¢ : X — Y is said to be a minimal fibration if q is a
fibration, and for every diagram

(10.1) A" x Al h %
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the composites
dO
A" —2 A" x Al x
d
are equal. This means that, if two simplices z and y in X,, are fibrewise homo-
topic (rel OA™), then x = y.
Note that minimal fibrations are stable under base change.
More generally, write x ~~, y if there is a diagram of the form (10.1) such that
h(A™ x 0) = z, and h(A™ x 1) = y. The relation ~, is an equivalence relation
(exercise).

LEMMA 10.2. Suppose that x and y are degenerate r-simplices of a simplicial
set X such that Ox = Oy. Then x = y.

PROOF: (See also [67], p. 36.) Suppose that z = s,z and y = s,w. If m = n,
then
z=dnpr =dny =w,

and so x = y. Suppose that m < n. Then

z2=dmxr = dpSpw = Sy_1dw,

and so
T = SmSn—1dmW = Sy SmdmW.
Thus
Smdmw = dy,x = d,y = w.
Therefore x = s,w = y. |

Now we can prove:

ProposiTiON 10.3. Let p: X — Y be a Kan fibration. Then p has a strong
fibre-wise deformation retract q : Z — Y which is a minimal fibration.

ProOF: Let Z(©) be the subcomplex of X which is generated by a choice of
vertex in each p-class, and let i(?) : Z(9) ¢ X be the canonical inclusion. There
is a map 7(© : skg X — Z(© which is determined by choices of representatives.
Moreover pi(O)T(O) = Plsko x» and jo ~ i@ where Jo : skg X C X is the
obvious inclusion, via a homotopy hg : sko X x Al — X such that hg(z,0) = z
and ho(x,1) = 7O(z), and hg is constant on simplices of Z(9). hg can be
constructed fibrewise in the sense that p-hg is constant, by using the homotopies
implicit in the definition of ~, . The subcomplex Z ) has a unique simplex in
each p-equivalence class that it intersects, by Lemma 10.2.
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Let Z(M) be the subcomplex of X which is obtained by adjoining to Z(® a
representative for each homotopy class of 1-simplices « such that 9z ¢ Z(®) and
x is not p-related to a 1-simplex of Z(®). Again, Z(1) has a unique simplex in
each p-equivalence class that it intersects, by construction in degrees < 1 and
Lemma 10.2 in degrees > 1.

Let x be a non-degenerate 1-simplex of X. Then there is a commutative dia-
gram

(A x {0}) U (0A! x A1) (, holo)

X
[
p

1 1 1
Al x A 5T Al ——Y,

by the homotopy lifting property, where the constant homotopy is chosen for h,
if z € ZM . But then d(h,(A' x {1})) € Z© and so h, (A" x {1},) is p-related
to a unique 1-simplex 7 (z) of Z(M) via some diagram

OAl x AL _PTL HAl
Oha (Al x {1})
Alx Al 9= x

pr p

Al — Y,

pT ’

where g, is constant if 2 € Z(M, r()(z) = g, (A x 1), and
9:(A x {0}) = hy (A! x {1}).

This defines () : sk; X — ZM),

We require a homotopy hi : j; ~, iVr() such that iV : Z() c X and
71 : sky X C X are the obvious inclusions, and such that A is consistent with
ho. We also require that the restriction of h; to Z(*) be constant. This is done
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for the simplex x by constructing a commutative diagram

(aAl x A2) U (Al % A%) (Slh07(gm7 7h'$)) X

[ / b

1 2 1

where the lifting 6, is chosen to be the composite
Alx A2 25 AT S x

if x € ZW . Then hg can be extended to the required homotopy h; : j1 i)
by requiring that hq|, = 6, - (1 x d*).
Proceeding inductively gives i : Z = lim Z(™) ¢ X and r : X — Z such that

—
1x =~ ir fibrewise, and such that ¢ : Z — Y has the minimality property. Finally,
q is a Kan fibration, since it is a retract of a Kan fibration. |

LEMMA 10.4. Suppose that

is a fibrewise homotopy equivalence of minimal fibrations q and ¢'. Then f is an
isomorphism of simplicial sets.

To prove Lemma 10.4, one uses:

SUBLEMMA 10.5. Suppose that two maps
X / 7z X g Z
Y Y

are fibrewise homotopic, where g is an isomorphism and q is minimal. Then f
is an isomorphism.
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PROOF OF SUBLEMMA: Let the diagram

represent the homotopy. Suppose that f(x) = f(y) for n-simplices x and y of
X. Then inductively d;z = d;y, 0 <7 < n, and so the composites

ix1 rx1 h
8A"XA1LA”XA1L>X><A1—>Z,

and
n 1 X n p yxt 1 b
OA" x A" — A" X A" — X x A" — Z,
are equal (to a map h, : JA™ x Al —Y). Write h,, for the composite homotopy

X1

h
A" x Al — S X x Al - Y.

Then there is a commutative diagram

h’mah y ) h*
(A" x A2) U (9A" x A%) Wty ), sohe)

e

n 2 n
ATxA PrL A =gy Y

and the homotopy G - (1 x d?) shows that o = y. Thus, f is monic.

To see that f is epi, suppose inductively that f : X; — Z; is an isomorphism
for 0 <i<n-—1,and let x : A™ — Z be an n-simplex of Z. Then there is a
commutative diagram

HA™ (zoy ..., Tp) x
[ /
A" Z
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by the inductive assumption, and so one can find a diagram

(aAnXAl)U(AnX{l}) ( |(m0 ..... wn)vx) 7
q
J / [
n 1 n
AT XA yums A qr Y.
Then there is a diagram
X

]

A" LATx Al .7

d! h1
since g is epi. The restriction of z to JA™ is the composite g - (zg, ..., %), SO
that 0z = (zo,...,x,) since g is monic. Thus, there is a diagram

’h 7hZ 78h b R
(A™ x AZ) U (0A™ x A?) ((, h1yhz), 510 (@,e..20)) p

|

n 2 n
A" x A - A a—Y

Finally, the composite

l1><d0 2G’
A" X AT — A" XA — 7

is a fibrewise homotopy from f(z) to x, and so x = f(2). [ |

LEMMA 10.6. Suppose given a Kan fibration p and pullback diagrams

filp——X
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Suppose further that there is a homotopy h : fo — f1. Then there is a fibrewise
homotopy equivalence

-1 ~ —1
f1 b fz b-

N A

A

Proor: Consider the diagrams of pullbacks

fp——hTp——— X

pe[ ‘ph ‘p € = 0, 1.

A— S AXA' — Y

d h

Then there is a commutative diagram

filp—

o| 7

fo_leAlmAXAl,

by the homotopy lifting property. It follows that there is a diagram

1
folp—d s frlp x Al

R

_ T —
Po filp—————=h7"p

b

AT)AXAl
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and hence an induced map 6, as indicated. Similarly there are diagrams

_ X _
filp———n""'p

7

ffleAlmAXAl,

and
0
iy —5— frip x A

R

_ i —
p1 folp ————n""p

lpo lph
A— s Ax AL

dO

Form the diagram

fo'p x AG hlp

J / lph

fo_lpr2 A x AL

poXSl

by using the homotopy lifting property and the relations d10 = x10, = di (w(0. ¥

1)). Then there is a commutative diagram

0
Flpx A AX o1, A2

prr folp—2——n71p

-1 1
fop o A 7 Ax A,
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by the simplicial identities. Then ~, : w.0, ~ 1 is a fibrewise homotopy. There
is a similar fibrewise homotopy 0,w, ~ 1. [ |

COROLLARY 10.7. Suppose that q : Z — Y is a minimal fibration, and that
fi: X =Y ,1=0,1 are homotopic simplicial maps. Then there is a commutative
diagram

Y

fo'a — fita

N A

X

In particular, the pullbacks f; lq and fi 14 are isomorphic.

COROLLARY 10.8. Suppose that q : Z — Y is a minimal fibration with Y
connected. Suppose that F' is the fibre of q over a base point x of Y. Then, for
any simplex o : A™ — Y there is a commutative diagram

~Y

Fx A" — o 1q.

N

An

PROOF: Suppose that v and w are vertices of Y such that there is a 1-simplex
z of Y with 9z = (v, w). Then the classifying maps v : A° - Y and w: A® -V
are homotopic, and so there is an isomorphism F,, = F, of fibres induced by the
homotopy. In particular, there is an isomorphism F,, = F for any vertex v of Y.
Now let ig : A° — A" be the map that picks out the vertex 0 of A™. Finally,
recall (see the proof of 7.10) that the composite

A" AD AR

is homotopic to the identity on A”. |

THEOREM 10.9 (GABRIEL-ZISMAN). Suppose that ¢ : X — Y is a minimal
fibration. Then its realization |q| : | X| — |Y| is a Serre fibration.
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ProOOF: It is enough to suppose that Y has only finitely many non-degenerate
simplices, since the image of any continuous map |A"| — |Y| is contained in
some finite subcomplex of |Y|. We may also suppose that Y is connected. The
idea of the proof is to show that |q| : | X| — |Y| is locally trivial with fibre |F,
where I is the fibre over some base point * of Y.

Now suppose that there is a pushout diagram

oN" —4& . 7

L

A" Y,

g

where Z is subcomplex of Y with fewer non-degenerate simplices, and suppose
that U is an open subset of |Z| such that there is a fibrewise homeomorphism

U Xy |X| = U x |F|.

yuns

S

Let U! = |a|7Y(U) C |0A™|. Then there is an induced fibrewise homeomorphism

UIX‘y| |X| g U1><|F’.
prr

Ul

On the other hand the simplicial fibrewise homeomorphism

A" x F

S

A’I’L

[l

A" XyX
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induces a homeomorphism

VixF S V1 Xy |X]

over some open subset V! of |[A"| such that VIN|0A"| = Ul and U! is a retract
of V1. The map § restricts to a homeomorphism

Ul x F 0 Ut Xy 1 X]|

p&

Ul

over U'. Now consider the fibrewise homeomorphism

~1
Ul x |F| 0" Wyl x|F].
Ul
There is a homeomorphism
* 6_1
Vi |F| — (g “) v iR
pk prr
Vl

which restricts to 6 ~*w over UL. In effect 7* (6 1w)(v/, f) = (v, o(rv', f)), where
d tw(w, f) = (w, p(w, f)), and this definition is “functorial”. Thus, the fibrewise
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isomorphism

*(c—1
AR A U B 'S

N

Vl

restricts to w over U'. It follows that there is a fibrewise homeomorphism
(VIUp U) x F

~_

over the open set. V1 Uy U of |Y]. [ |

The following result of Quillen [76] is the key to both the closed model struc-
ture of the simplicial set category, and the relation between simplicial homotopy
theory and ordinary homotopy theory. These results will appear in the next
section.

(Vl UUl U) X|y| |X|

12

(VIup U)

THEOREM 10.10 (QUILLEN). The realization of a Kan fibration is a Serre fibra-
tion.

PRrROOF: Let p: X — Y be a Kan fibration. According to Proposition 10.3, one
can choose a commutative diagram

z—J x99 .z

Sl A

Y

where ¢ is a minimal fibrations, gj = 1z and jg is fibrewise homotopic to 1x. In
view of Theorem 10.9, it clearly suffices to prove the following two results:

LEMMA 10.11. g : X — Z has the right lifting property with respect to all
OA™ C A", n>0.
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LEMMA 10.12. Suppose that g : X — Z has the right lifting property with
respect to all OA™ C A", n > 0. Then |g| : | X| — |Z] is a Serre fibration.

ProoF or LEMMA 10.11: Suppose that the diagrams

X

Xxal—h . x o Y

p?“[ lp XXAITX
X—F—Y d! 1.7‘

X——7

9

represent the fibrewise homotopy, and suppose that the diagram

oA —% . X

i [g

A" 7

commutes. Then there are commutative diagrams

OAT x Al UL v A1 Ry

i1 lp

n 1 n
A" XA s AT Y

oA"Y . x 9 Ly J . x

A" Z Y,
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and hence a diagram

(6An % Al) U (An x {0}) (h(u X 1)’]'1])

e

n 1 n
A" x A - A" — Y

Let v, be the simplex classified by the composite

d? | M
A" — A" x AT — X.
The idea of the proof is now to show that gv; = v. The diagram

oA —Y% X

[ A

An

commutes, and consider the composite

v1 X1

h
Arx Al P o x At S x Lo

Then gh(v; x 1) is a homotopy gjgv; = gv; — gvi. Moreover, the homotopy on
the boundary is gh(u x 1). It follows that there is a commutative diagram

(8An > AQ) U (An > A%) (sﬂ(gh(u X 1))7 (ghl,gh(vl X 1)7 ))

[}

n 2 n
A" x A - A " Y.

Then the diagram
oA x A —PTL_, gAn
1 x 1 [ gu
Ay At £0X ) 5

yuns q

A" ——— Y

qu
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commutes, and so gv; = gjv = v by the minimality of q. |

PROOF OF LEMMA 10.12: Suppose that f : X — Y has the right lifting property
with respect to all 0A™ C A™, n > 0, and hence with respect to all inclusions of
simplicial sets. Then there is a commutative diagram

x X Ly

aen| s

XXYpT—R>Y’

and so f is a retract of the projection pr : X x Y — Y. But then |f| is a Serre
fibration. |

This also completes the proof of Theorem 10.10.

11. The closed model structure.

The results stated and proved in this section are the culmination of all of the
hard work that we have done up to this point. We shall prove here that the
entire simplicial set category S (not just the subcategory of fibrant objects) has
a closed model structure, and that the resulting homotopy theory is equivalent
to the ordinary homotopy theory of topological spaces. These are the central
organizational theorems of simplicial homotopy theory.

PrROPOSITION 11.1. Suppose that X is a Kan complex. Then the canonical map
nx : X — S|X]| is a weak equivalence in the sense that it induces an isomorphism
in all possible simplicial homotopy groups.

PROOF: Recall that S|X| is also a Kan complex.

nx induces an isomorphism in 7y: every map v : |A?| — |X| factors through
the realization of a simplex |o| : |A™| — | X| and so S|X| is connected if mo X = .
On the other hand X is a disjoint union of its path components and S| | preserves
disjoint unions, so that moX — S| X]| is monic.

Suppose that we have shown that nx induces an isomorphism

(nx)« : (X, ) — (S| X], n2)

for all choice of base points € X and ¢ < n. Then, using 10.10 for the path-
loop fibration X — PX — X determined by z (see the discussion following
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the proof of 7.3), one finds a commutative diagram

7Tn+1(X7 x) 17_X> 7Tn+1(S’X’7 77117)

o= ) lo

T (X, 2) m;X>7rn(S|QX|,77x),

and so we're done if we can show that PX and hence S|PX| contracts onto its
base point. But there is a diagram

(A9 x AU (PX x oaly & 1pxs2) by

=

PX x Al AY,

and h exists because t has the right lifting property with respect to all 0A™ C A™,
n > 0. [ |

If X is a Kan complex and zx is any vertex of X, then it follows from Propo-
sition 11.1 and adjointness that nx induces a canonical isomorphism

(X, x) Zm, (| X|,z), n>1,

where the group on the right is the ordinary homotopy group of the space | X|.
It follows that a map f : X — Y of Kan complexes is a (simplicial) weak
equivalence if and only if the induced map |f]: |X| — |Y] is a topological weak
equivalence. Thus, we are entitled to define a map f : X — Y of arbitrary
simplicial sets to be a weak equivalence if the induced map |f|: |X| — |Y] is a
weak equivalence of spaces. Our last major technical result leading to the closed
model structure of S is

THEOREM 11.2. Suppose that g : X — Y is a map between arbitrary simplicial
sets. Then g is a Kan fibration and a weak equivalence if and only if g has the
right lifting property with respect to all inclusions 0A™ C A™, n > 0.
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PROOF: Suppose that g : X — Y is a Kan fibration with the advertised lifting
property. We have to show that S|g| : S|X| — S|Y| is a weak equivalence. Y is
an arbitrary simplicial set, so we must define 7Y to be the set of equivalence
classes of vertices of Y for the relation generated by the vertex homotopy relation.
In other words, y ~ z if and only if there is a string of vertices

Y="Y0,Y1y---Yn =%

and a string of 1-simplices
Viy..-,Un

of X such that dv; = (y;—1,¥;) or Ov; = (y;,y;—1) fori=1,...,n. If Y is a Kan
complex, then this definition of myY coincides with the old definition. Moreover,

the canonical map 7y : Y — S|Y| induces an isomorphism oY — 7S|Y| for
all simplicial sets Y. The lifting property implies that g, : m¢ X — mgY is an iso-
morphism, so that the induced map myS|X| — 7(S|Y| is an isomorphism as well.
Finally, it suffices to show that the induced maps m;(S|X|,z) — m;(S|Y|, gz) of
simplicial homotopy groups are isomorphisms for all vertices z of X and all ¢+ > 1.
But Theorem 10.9 implies that the fibre of the fibration S|g| : S|X| — S|Y| over
g(x) is S|F,|, where

F,—X

b

AY —gz Y
is a pullback in the simplicial set category. F, is a contractible Kan complex
(see the corresponding argument for PX in 11.1), and so S|F,| is contractible
as well. The result then follows from a long exact sequence argument.

For the reverse implication, it suffices (see the proof of Theorem 10.10) to
assume that g : X — Y is a minimal fibration and a weak equivalence and then
prove that it has the lifting property. We may also assume that Y is connected.
Consider a diagram

OA" —&— X

[

A" ———Y
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and the induced diagram

OA" LA" XyX

I

A" ——— A"

1

It suffices to find a lifting for this last case. But there is a fibrewise isomorphism

A" XyX

by 10.8, where F, is the fibre over some vertex y of Y. Thus, it suffices to find a
lifting of the following sort:

But this can be done, since F), is a Kan complex such that m(S|F,|) is trivial,
and m;(S|F,|,*) = 0, ¢ > 1 for any base point %, and n : F,, — S|Fy| is a weak
equivalence by Proposition 11.1. [ |

A cofibration of simplicial sets is an inclusion map.

THEOREM 11.3. The simplicial set category S, together with the specified classes
of Kan fibrations, cofibrations and weak equivalences, is a closed model category.

Proor: CM1 is satisfied, since S is complete and cocomplete. CM2 follows
from CM2 for CGHaus. CM3 (the retract axiom) is trivial.
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To prove the factorization axiom CMS5, observe that a small object argument
and the previous theorem together imply that any simplicial set map f: X — Y
may be factored as:

X ! v X f Y,
A W

where 7 is anodyne, p is a fibration, j is an inclusion, and ¢ is a trivial fibration.
The class of inclusions i : U — V' of simplicial sets such that |i| : |[U| — |V] is a
trivial cofibration is saturated, by adjointness, and includes all A} C A™. Thus
all anodyne extensions are trivial cofibrations of S. To prove CM4 we must
show that the lifting (dotted arrow) exists in any commutative diagram

U—X

7
. s
Z[ e [p
7
//

V—Y,

where p is a fibration and i is a cofibration, and either ¢ or p is trivial. The case
where p is trivial is the previous theorem. On the other hand, if i is a weak
equivalence, then there is a diagram

where j is anodyne and p is a (necessarily) trivial fibration, so that s exists. But
then ¢ is a retract of an anodyne extension, so ¢ has the left lifting property with
respect to all fibrations (compare the proof of 9.4). |

The homotopy category Ho(S) is obtained from S by formally inverting the
weak equivalences. There are several ways to do this [75], [33], [15]. One may
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also form the category Ho(Top) by formally inverting the weak homotopy equiv-
alences; this category is equivalent to the category of CW-complexes and or-
dinary homotopy classes of maps. For the same reason (see [75]), Ho(S) is
equivalent to the category of Kan complexes and simplicial homotopy classes of
maps. The realization functor preserve weak equivalences, by definition. One
may use Theorem 10.10 (see the argument in 11.1) to show that the canonical
map € : |[S(Y)| — Y is a weak equivalence, for any topological space Y, and
so the singular functor preserves weak equivalences as well. It follows that the
realization and singular functors induce functors

Ho(S) <£> Ho(Top)

of the associated homotopy categories.

THEOREM 11.4. The realization and singular functors induce an equivalence of
categories of Ho(S) with Ho(Top).

PROOF: We have just seen that € : [S(Y)| — Y is a weak equivalence for all
topological spaces Y. It remains to show that n : X — S|X| is a weak equivalence
for all simplicial sets X. But 7 is a weak equivalence if X is a Kan complex, by
11.1, and every simplicial set is weakly equivalent to a Kan complex by CMJ5.
The composite functor S| | preserves weak equivalences. |

The original proof of Theorem 11.3 appears in [75], modulo some fiddling with
axioms (see [77]). Theorem 11.4 has been known in some form or other since the
late 1950’s (see [67], [33], [59]).

Although it may now seem like a moot point, the function complex trick of
Proposition 5.2 was a key step in the proof of Theorem 11.3. We can now amplify
the statement of Proposition 5.2 as follows:

ProprosiTiON 11.5. The category S of simplicial sets satisfies the simplicial
model axiom

SMT7: Suppose that i : U — V is a cofibration and p : X — Y is a fibration.
Then the induced map

(1% ,p+)
Hom(V, X) o Hom(U, X') Xtom(u,y) Hom(V, X)

is a fibration, which is trivial if either ¢ or p is trivial.

ProOOF: Use Proposition 5.2 and Theorem 11.2. [ |



Chapter II Model Categories

The closed model axioms have a list of basic abstract consequences, including
an expanded notion of homotopy and a Whitehead theorem. The associated
homotopy category is defined to be the result of of formally inverting the weak
equivalences within the ambient closed model category, but can be constructed
(in the CW-complex style) by taking homotopy classes of maps between objects
which are fibrant and cofibrant. These topics are presented in the first section
of this chapter.

The simplicial set category has rather more structure than just that of a closed
model category: the set hom(X,Y’) of maps between simplicial sets X and Y is
the set of vertices of the function complex Hom(X,Y'), and the collection of all
such function complexes determines a simplicial category. We’ve already seen
that the function complexes satisfy an exponential law and respect cofibrations
and fibrations in a suitable sense. The existence of the function complexes and
the interaction with the closed model structure can be abstracted to a definition
of a simplicial model category, which is given in Section 2, along with various ex-
amples. Basic consequences of the additional simplicial structure are presented,
with further examples, in Sections 3 and 4.

Sections 5, 6 and 7 are about detection principles for simplicial model struc-
tures. Generally speaking, a simplicial model category structure for the category
sC of simplicial objects in a category C is induced from the simplicial model struc-
ture on the simplicial set category in the presence of an adjoint pair of functors

F:S=2sC: G,

(or a collection of adjoint pairs) if G has a little extra structure (such as preserva-
tion of filtered colimits) in addition to being a right adjoint — this is Theorem 5.1.
In one major stream of examples, the category C is some algebraic species, such
as groups or abelian groups, and G is a forgetful functor. There is, however, an
extra technical condition on Theorem 5.1, namely that every cofibration of sC
having the left lifting property with respect to all fibrations should be a weak
equivalence. This condition can often be verified by brute force, as can be done
in the presence of a small object argument for the factorization axioms (eg.
simplicial abelian groups), but there is a deeper criterion, namely the existence
of a natural fibrant model (Lemma 6.1). The other major source of examples
has to do with G being a representable functor of the form G = hom(Z, ),
where Z is either small in the sense that home(Z, ) respects filtered colimits,
or is a disjoint union of small objects. In this setting, Kan’s EFx°°-construction
(see Section III.4) is used to construct the natural fibrant models required by

70
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Lemma 6.1. This line of argument is generalized significantly in Section 6, at
the cost of the introduction of cofibrantly generated closed model categories and
transfinite small object arguments.

Section 8 is an apparent return to basics. We develop a criterion for a pair of
adjoint functors between closed model categories to induce adjoint functors on
the homotopy category level, known as Quillen’s total derived functor theorem.
Quillen’s result is, at the same time, a non-abelian version of the calculus of
higher direct images, and a generalization of the standard result that cohomology
is homotopy classes of maps taking values in Eilenberg-Mac Lane spaces.

The category of simplicial sets, finally, has even more structure: it is a proper
simplicial model category, which means that, in addition to everything else, weak
equivalences are preserved by pullback over fibrations and by pushout along
cofibrations. This property is discussed in Section 9. Properness is the basis
of the standard results about homotopy cartesian diagrams, as well as being
of fundamental importance in stable homotopy theory. We discuss homotopy
cartesian diagrams in the context of Gunnarsson’s axiomatic approach to the
glueing and coglueing lemmas [40].

1. Homotopical algebra.

Recall that a closed model category C is a category which is equipped with
three classes of morphisms, called cofibrations, fibrations and weak equivalences
which together satisfy the following axioms:

CM1: The category C is closed under all finite limits and colimits.
CM2: Suppose that the following diagram commutes in C:

N

Z.

If any two of f, g and h are weak equivalences, then so is the third.

CMa3: If f is a retract of g and g is a weak equivalence, fibration or cofibration,
then so is f.
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CM4: Suppose that we are given a commutative solid arrow diagram

U———X

P
. s
Z‘/ i ‘/p
-
e

V —Y

where 7 is a cofibration and p is a fibration. Then the dotted arrow exists,
making the diagram commute, if either ¢ or p is also a weak equivalence.

CM5: Any map f: X — Y may be factored:

(a) f=p-i where pis a fibration and i is a trivial cofibration, and
(b) f =q-j where ¢ is a trivial fibration and j is a cofibration.

This set of axioms has a list of standard consequences which amplifies the
interplay between cofibrations, fibrations and weak equivalences, giving rise to
collection of abstract techniques that has been known as homotopical algebra
since Quillen introduced the term in [75]. This theory is is really an older friend
in modern dress, namely obstruction theory made axiomatic. The basic results,
along with their proofs, are sketched in this section.

We begin with the original meaning of the word “closed”:

LEMMA 1.1. Suppose that C is a closed model category. Then we have the
following:

(1) Amapi:U — V of C is a cofibration if and only if i has the left lifting
property with respect to all trivial cofibrations.

(2) The map i is a trivial cofibration if and only if it has the right lifting
property with respect to all fibrations.

(3) Amapp: X — Y of C is a fibration if and only if it has the right lifting
property with respect to all trivial cofibrations.

(4) The map p is a trivial fibration if and only if it has the right lifting
property with respect to all cofibrations.

The point of Lemma 1.1 is that the various species of cofibrations and fibrations
determine each other via lifting properties.

ProOOF: We shall only give a proof of the first statement; the other proofs are
similar.
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Suppose that i is a cofibration, p is a trivial fibration, and that there is a
commutative diagram

V—Y

Then there is a map 6 : V — X such that pf = 8 and 6i = «, by CMA4.
Conversely suppose that ¢ : U — V is a map which has the left lifting property
with respect to all trivial fibrations. By CM5, ¢ has a factorization

w

S

Vv

[b.

U

where j is a cofibration and ¢ is a trivial fibration. But then there is a commu-
tative diagram

U

Z'I

Vv

%%

I

v

N

and so 7 is a retract of j. CM3 then implies that ¢ is a cofibration. |

The proof of the Lemma 1.1 contains one of the standard tricks that is used to
prove that the axiom CM4 holds in a variety of settings, subject to having an
adequate proof of the factorization axiom CM5. Lemma 1.1 also immediately
implies the following:

COROLLARY 1.3.

(1) The classes of cofibrations and trivial cofibrations are closed under com-
position and pushout. Any isomorphism is a cofibration.

(2) The classes of fibrations and trivial fibrations are closed under composi-
tion and pullback. Any isomorphism is a fibration.



74 II. MOoODEL CATEGORIES

The statements in Corollary 1.3 are axioms in Quillen’s original definition of a
model category [75].

Quillen defines a cylinder object for an object A in a closed model category C
to be a commutative triangle

(1.4) 4 \\X\

where V : AUA — A is the canonical fold map which is defined to be the identity
on A on each summand, 7 is a cofibration, and o is a weak equivalence. Then a
left homotopy of maps f,g: A — B is a commutative diagram

where (f,g) is the map on the disjoint union which is defined by f on one
summand and g on the other, and the data consisting of

i=(ig,i1) : AUA — A

comes from some choice of cylinder object for A.

There are many choices of cylinder object for a given object A of a closed
model category C: any factorization of V : AUUA — A into a cofibration followed
by a trivial fibration that one might get out of CM5 gives a cylinder object for
A. In general, the object A needs to be cofibrant for its cylinder objects to be
homotopically interesting:

LEMMA 1.5.

(1) Suppose that A is a cofibrant object of a closed model category C, and that
the diagram (1.4) is a cylinder object for A. Then the maps ig,i1 : A — A
are trivial cofibrations.

(2) Left homotopy of maps A — B in a closed model category C is an equiv-
alence relation if A is cofibrant.
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PROOF: Denote the initial object of C by 0.
For the first part, observe that the diagram

is a pushout since cofibrations are closed under pushout by Lemma 1.1, and the
unique map () — A is a cofibration by assumption. It follows that the inclusions
iny, and ing are cofibrations, so that the compositions ig = (ig,i1) o iny and
i1 = (ip,11) o ing are cofibrations as well. Finally, the maps iy and i are weak
equivalences by CM2, since the map o is a weak equivalence.

To prove the second statement, first observe that if 7: AU A — AU A is the
automorphism which flips summands, then the diagram

which is constructed from (1.4) by twisting by 7, is a cylinder object for A. This
implies that the left homotopy relation is symmetric.

Subject to the same definitions, the map fo : A — B is clearly a left homotopy
from f: A — B to itself, giving reflexivity.

Suppose given cylinder objects
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where € = 0,1. Form the pushout

Az—>A1

Then the map
(foxig,itsiy) -
AUA ——
is a composite
igUl (i0wyitail) -

AUA 2 AguA—"" 4

The map i) LI 1 is a cofibration by the first statement of the lemma, and there is
a pushout diagram

011
AUA-L=2, A uA

(ch)vl%)l [(io*,h*i%)

Al Z—> A
1%

In particular, there is a cylinder object for A

AUA

(z'O*z'S,z'l*z'b[ \

A€O_—*>A

It follows that if there are left homotopies hg : A9 — B from fo to f1 and
hy : Ay — B from f; to fo, then there is an induced left homotopy h, : A — B
from fo to fg. [ |
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A path object for an object B of a closed model category C is a commutative
triangle

B
(1.6) / [ = (po; p1)

B

B——1B

A

where A is the diagonal map, s is a weak equivalence, and p (which is given by
po on one factor and by p; on the other) is a fibration.

Once again, the factorization axiom CMS5 dictates that there is an ample
supply of path objects for each object of an arbitrary closed model category. If a
simplicial set X is a Kan complex, then the function complex hom(A!, X) is a
path object for X, and the function space Y/ is a path object for each compactly
generated Hausdorff space Y.

There is a notion of right homotopy which corresponds to path objects: two
maps f,g: A — B are said to be right homotopic if there is a diagram

where the map (pg, p1) arises from some path object (1.6), and (f, ¢g) is the map
which projects to f on the left hand factor and g on the right hand factor.

LEMMA 1.7.

(1) Suppose that B is a fibrant object of a closed model category C, and that
B is a path object for B as in (1.6). Then the maps py and py are trivial
fibrations.

(2) Right homotopy of maps A — B in C is an equivalence relation if B is
fibrant.

Lemma 1.7 is dual to Lemma 1.5 in a precise sense. If C is a closed model
category, then its opposite C°? is a closed model category whose cofibrations
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(respectively fibrations) are the opposites of the fibrations (respectively cofibra-
tions) in C. A map in C° is a weak equivalence for this structure if and only if
its opposite is a weak equivalence in C. Then Lemma 1.7 is an immediate con-
sequence of the instance of Lemma 1.5 which occurs in C°P. This sort of duality
is ubiquitious in the theory: observe, for example, that the two statements of
Corollary 1.3 are dual to each other.

Left and right homotopies are linked by the following result:

PROPOSITION 1.8. Suppose that A is cofibrant. Suppose further that

AUA

(ioail)[ N‘q)

A———B

is a left homotopy between maps f,qg: A — B, and that

B
/ lp= (po,p1)
X

B

B———B

A
is a fixed choice of path object for B. Then there is a right homotopy

This result has a dual, which the reader should be able to formulate indepen-
dently. Proposition 1.8 and its dual together imply

COROLLARY 1.9. Suppose given maps f,g : A — B, where A is cofibrant and
B is fibrant. Then the following are equivalent:

(1) f and g are left homotopic.

(2) f and g are right homotopic with respect to a fixed choice of path object.
(3) f and g are right homotopic.
(4)

4) f and g are left homotopic with respect to a fixed choice of cylinder object.
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In other words, all possible definitions of homotopy of maps A — B are the same
if A is cofibrant and B is fibrant.

PrROOF OF PROPOSITION 1.8: The map iy is a trivial cofibration since A is
cofibrant, and (pg, p1) is a fibration, so that there is a commutative diagram

for some choice of lifting K. Then the composite K o 71 is the desired right
homotopy. |

We can now, unambiguously, speak of homotopy classes of maps between ob-
jects X and Y of a closed model category C which are both fibrant and cofibrant.
We can also discuss homotopy equivalences between such objects. The classical
Whitehead Theorem asserts that any weak equivalence f : X — Y of CW-
complexes is a homotopy equivalence. CW-complexes are spaces which are both
cofibrant and cofibrant. The analogue of this statement in an arbitrary closed
model category is the following:

THEOREM 1.10 (WHITEHEAD). Suppose that f : X — Y is a morphism of a
closed model category C such that the objects X and Y are both fibrant and
cofibrant. Suppose also that f is a weak equivalence. Then the map f is a
homotopy equivalence.

PRrROOF: Suppose, first of all, that f is a trivial fibration, and that

Xux—VY . x

(7;07@.1)[/

X

is a cylinder object for X. Then one proves that f is a homotopy equivalence by
finding, in succession, maps # and h making the following diagrams commute:

) —X
L)
Y

Y

N
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XuyuX —= (00 £,1) X
(ig, 11 | / If
X— —For Y.

Dually, if f is a trivial cofibration, then f is a homotopy equivalence.
Every weak equivalence f : X — Y between cofibrant and fibrant objects has
a factorization

in which ¢ is a trivial cofibration and p is a trivial fibration. The object Z is
both cofibrant and fibrant, so ¢ and p are homotopy equivalences. |

Suppose that X and Y are objects of a closed model category C which are
both cofibrant and fibrant. Quillen denotes the set of homotopy classes of maps
between such objects X and Y by 7(X,Y’). There is a category nC.; associated
to any closed model C: the objects are the cofibrant and fibrant objects of C,
and the morphisms from X to Y in 7C.s are the elements of the set 7(X,Y).

For each object X of C, use CMS5 to choose, in succession, maps

« S ox x

and

Jx ax
QX — RQX — x,

where ix is a cofibration, px is a trivial fibration, jx is a trivial cofibration, and
gx is a fibration. We can and will presume that mx is the identity map if X is
cofibrant, and that jx is the identity map if QX is fibrant. Then RQX is an
object which is both fibrant and cofibrant, and RQ X is weakly equivalent to X,
via the maps px and jx.

Any map f: X — Y lifts to a map Qf : QX — QY, and then Q) f extends to
amap RQf: RQX — RQY. The map Qf is not canonically defined: it is any
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morphism which makes the following diagram commute:

) —— QY

Za

QX ——Y
fomx

Note, however, that any two liftings f1, fo : QX — QY of the morphism f o mx
are left homotopic.

The argument for the existence of the morphism RQ f : RQX — RQY is dual
to the argument for the existence of Qf. If the maps fi,fo : QX — QY are
liftings of f o7y and g; : RQX — RQY is an extension of the map jy o f; for
i = 1,2, then f; is left homotopic to fo by what we’ve already seen, and so the
composites jy o f; and jy o fo are right homotopic, by Lemma 1.8. Observe
finally that any right homotopy between the maps jy f1, jy fo : QX — RQY can
be extended to a right homotopy between the maps g1,g92 : RQY — RQY. It
follows that the assignment f +— RQ f is well defined up to homotopy.

The homotopy category Ho(C) associated to a closed model category C can be
defined to have the same objects as C, and with morphism sets defined by

homy,() (X, Y) = 7(RQX, RQY).

There is a functor
v :C — Ho(C)

which is the identity on objects, and sends a morphism f : X — Y to the
homotopy class [RQ f] which is represented by any choice of map RQf : RQX —
RQY defined as above. If f : X — Y is a weak equivalence of C, then RQf :
RQX — RQY is a homotopy equivalence by the Whitehead Theorem, and so
~(f) is an isomorphism of Ho(C).

This functor v is universal with respect to all functors F' : C — D which invert
weak equivalences:

THEOREM 1.11. Suppose that F' : C — D is a functor such that F(f) is an
isomorphism of D for all weak equivalences f : X — Y of C. Then there is a
unique functor F, : Ho(C) — D such that F, o~y = F.

PrOOF: The functor F' : C — D takes (left or right) homotopic maps of C
to the same map of D, since it inverts weak equivalences. It follows that, if
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g: RQX — RQY represents a morphism from X to Y in Ho(C), one can specify
a well-defined morphism F([g]) of D by the assignment

(1.12) F.(lg]) = F(ny)F(jy) " F(9)F(jx)F(mx)~".

This assignment plainly defines a functor F : Ho(C) — D such that F,y = F.
Also, the morphisms y(7x) and v(jx) are both represented by the identity
map on RQX, and so the composite

Yy )vGy) " (@) Gix)vGix) 7!

coincides with the morphism [g] : X — Y of Ho(C). The morphism F([g]) must
therefore have the form indicated in (1.12) if the composite functor F.vy is to
coincide with F. |

REMARK 1.13. One can always formally invert a class ¥ of morphisms of a
category C to get a functor v : C — C[X7!] which is initial among functors
F : C — D which invert all members of the class of morphisms ¥ (see Schubert’s
book [82]), provided that one is willing to construct C[¥~!] in some higher set
theoretic universe. This means that the morphism “things” hom¢s-1)(X,Y) of
C[X7!] may no longer be sets. The whole point of Theorem 1.11 is that we have
found an explicit way to formally invert the class W E of weak equivalences of a
closed model category C to obtain the category Ho(C) without invoking a higher
universe. After the fact, all models of C[WW E~!] must be isomorphic as categories
to Ho(C) on account of the universal property of the functor v : C — Ho(C), so
that all possible constructions have small hom sets.

Let 7C.y denote the category whose objects are the cofibrant fibrant objects
of the closed model category C, and whose sets of morphisms have the form

homgc,,(X,Y) = m(X,Y).
It’s obvious that the functor v : C — Ho(C) induces a fully faithful imbedding
Vs : mCeyp — Ho(C),

and that every object of Ho(C) is isomorphic to an object which is in the image
of the functor +,. In other words the category 7C.¢ of homotopy classes of maps
between cofibrant fibrant objects of C is equivalent to the homotopy category
Ho(C).

This observation specializes to several well-known phenomena. In particular,
the category of homotopy classes of maps between CW-complexes is equivalent
to the full homotopy category of topological spaces, and the homotopy category
of simplicial sets is equivalent to the category of simplicial homotopy classes of
maps between Kan complexes.
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2. Simplicial categories.

A simplicial model category is, roughly speaking, a closed model category
equipped with a notion of a mapping space between any two objects. This has
to be done in such a way that it makes homotopy theoretic sense. Thus, besides
the new structure, there is an additional axiom, which is called Axiom SMY7 (See
2.1 below).

The initial property one wants is the following: let S be the category of sim-
plicial sets and let C be a model category, and suppose A € C is cofibrant and
X € C is fibrant. Then, the space of maps in C should be a functor to simplicial
sets

Hom¢ : C? xC — S

with the property that
7T0H0mc(A, X) = [A, X]C .

In addition, one would want to interpret 7, Hom¢ (A, X) in C.
There are other desirable properties; for example, if A is cofibrant and X — Y
a fibration in C, one would want

Hom¢(A, X) — Hom¢(A,Y)

to be a fibration of spaces — that is, of simplicial sets.
Before imposing the closed model category structure on C, let us make the
following definition:

DEFINITION 2.1. A category C is a simplicial category if there is a mapping
space functor
Home¢(+,-) : C? xC — S

with the properties that for A and B objects in C
(1) Hom¢ (A, B)o = home (A, B);
(2) the functor Hom¢(A,-) : C — S has a left adjoint

A®-:S—C
which is associative in the sense that there is a isomorphism
A (KxL)2(A®K)® L

natural in A € C and K,L € S;
(3) The functor Home (-, B) : C°? — S has left adjoint

home(-,B):S — C .
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Of course, the adjoint relationship in (3) is phrased
homg (K, Hom¢ (A, B)) = home (A, home (K, B)) .

Warning: The tensor product notation goes back to Quillen, and remains for
lack of a better operator. But be aware that in this context we do not usually
have a tensor product in the sense of algebra; that is, we don’t have a pairing
arising out of bilinear maps. Instead (see the next lemma), we have an adjoint
to an internal hom functor, and this is the sole justification for the notation.

Some immediate implications of the definition are the following.
LEMMA 2.2.

(1) For fixed K € S, there are adjoint functors
QK :C—=C

and
hom¢(K,-):C —C .

(2) For all K and L in S and B in C there is a natural isomorphism
hom¢ (K x L, B) 2 hom¢ (K, hom¢(L, B)).
(3) For alln >0, Hom¢ (A, B),, = hom¢(A ® A", B).
PRrOOF: For fixed K € S and A € C, the object A ® K represents the functor

homg (K, Hom¢(A,-)) : C — Sets.

A map A ERYL yields a natural transformation on representing objects
fR1:AK - A ®K

and we obtain the functor - ® K. The functor hom¢ (K, -) is obtained similarly.
The adjointness follows from 2.1.2 and 2.1.3. This proves part 1. Part 2 then
follows from the associativity built into 2.1.2. Part 3 follows from 2.1.2 and the
fact that homg (A", X) = X,,. [ |

REMARK: A consequence of Lemma 2.2.1 is that there is a composition pairing
of simplicial sets

Hom¢ (A, B) x Hom¢(B,(C) — Hom¢ (A, C)
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defined as follows. If f : A® A™ — B is an n-simplex of Hom¢(A, B) and g :
B®A™ — (C'is an n-simplex of Hom¢ (B, C') then their pairing in Hom¢ (A, C)
is the composition

1®d f®l1 g
ARA" — AQ (A" X A") 2 AQRA"® A" — B A" — C.

Here d : A" — A™ x A" is the diagonal. This pairing is associative in the obvious
sense and reduces to the composition pairing in C in simplicial degree zero. It is
also unital in the sense that if x — Home¢ (A, A) is the vertex corresponding to
the identity, then the following diagram commutes

* X HomC(A, B)

| =

Hom¢(A, A) x Hom¢(A, B) —— Hom¢ (A, B).

There is also a diagram using the identity of B. A shorthand way of encoding
all this structure is to say that C is enriched over simplicial sets. ]

Another immediate consequence of the definition is the following result.

LEMMA 2.3. For a simplicial category C then the following extended adjointness
isomorphisms hold:

(1) Homg(K,Hom¢(A, B)) =2 Hom¢(A ® K, B).
(2) Homg(K,Hom¢(A4, B)) = Hom¢(A, hom(K, B)).

Proor: This is an easy exercise using Lemma 2.2. |

Note that, in fact, Definition 2.1 implies that there are functors
®-:CxS—=C

and
home¢(+,-): S xC —C

satisfying 2.1.1, 2.1.2 and 2.2.1. In order to produce examples of simplicial
categories, we note the following:
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LEMMA 2.4. Let C be a category equipped with a functor
®-:CxS—C.

Suppose the following three conditions hold:

(1) For fixed K € S, -® K : C — C has a right adjoint hom¢ (K, ).

(2) For fixed A, the functor A® - : S — C commutes with arbitrary colimits
and A ®*x = A.

(3) There is an isomorphism A ® (K x L) =2 (A® K) ® L natural is A € C
and K, L € S.

Then C is a simplicial category with Hom¢ (A, B) defined by:
Hom¢ (A, B),, = hom¢(A ® A", B)

Proor: We first prove 2.1.2 holds. If K € S, write K as the coequalizer in a
diagram

| |ame = | |a™ - K.

q p

Then there is a coequalizer diagram

| |[AgAm = | [AeA™ - A K

q p
Hence there is an equalizer diagram

home (A ® K, B) — home(A® (| |A™),B) = home(A® (| |A™),B) .
P q
This, in turn, is equivalent to the assertion that the equalizer of the maps
homg ( UA"P, hom¢ (A, B)) = homg( UAnq,homc(A, B))
p q
is the induced map
homg (K, hom¢ (A4, B)) — homg( |_| A" hom¢(A, B))
P

so 2.1.2 holds. If we let hom¢ (K, -) be adjoint to - ® K, as guaranteed by the
hypotheses, 2.1.3 holds. Then finally, 2.1.1 is a consequence of the fact that
AR x = A |
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We now give some examples. Needless to say S itself is a simplicial category
with, for A, B, K € S
A K=AxK

and (a tautology)
Homg (A, B) = Homg(A, B)

and
homS(K, B) = HomS(K,B) .

Only slightly less obvious is the following: let S, denote the category of pointed
(i.e., based) simplicial sets. Then S, is a simplicial category with

A®K:A/\K+:AXK/*XK
where ()4 denote adding a disjoint basepoint
Homg (4, B), =homg (AAAY, B)

and
homg (K, B) = Homg(K, B)

with basepoint given by the constant map
K — x — B.

Note that Homg (4, B) € S, but homg (K, B) € S..

This example can be radically generalized. Suppose C is a category that is
co-complete; that is, C has all colimits. Let sC denote the simplicial objects in
C. Then if K € S, we may define, for A € sC, an object A ® K € sC by

(ARK),= || A,

keK,

where | | denotes the coproduct in C, and if ¢ : n — m is an ordinal number
map ¢*: (A® K),, — (A® K), is given by

e 35 4= ] 4

keK,, keK,, keK,

The first map is induced by ¢* : A,, — A,, the second by ¢* : K,, — K,,.
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THEOREM 2.5. Suppose that C is complete and complete. Then with this functor
-®-:8C xS — sC, sC becomes a simplicial category with

Homc(A, B),, = homgc (A ® A", B) .

Proor: This is an application of Lemma 2.3. First note that it follows from the
construction that there is a natural isomorphism

A® (K x L)~ (A K)® L.

And one has A ® x = A. Thus, we need only show that, for fixed K € S, the
functor - ® K : C — C has a right adjoint. To show this, one changes focus
slightly. For Y € sC, define a functor

FthOP—>S

by
Fy(A) =home(A,Y) .

Then the functor C°? — Sets given by
A+ Homg (K, Fy(A)), = homg(K x A" hom¢(A,Y))

is representable. To see this, write K x A™ as a coequalizer

|_|A”q :;|_|A"P — K x A"

q p

then the representing object is defined by the equalizer diagram

1Y =[] Ym, < homy(K,Y), .

q q

Letting the ordinal number vary yields an object homye(K,Y) and a natural
isomorphism of simplicial sets

(2.6) home (A, hom,¢(K,Y)) = Homg(K,home(A,Y)) ,
or a natural equivalence of functors

Fhomsc(K,Y)(') = HOIIIS (Ka FY()) .
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Now the morphisms X — Y in sC are in one-to-one correspondence with the
natural transformations Fx — Fy, by the Yoneda lemma. In formulas, this
reads

homSC(X, Y) = Nat(Fx, Fy) .

Now if K € S and X € sC we can define a new functor
Fx® K :C? — S

by
(Fx @ K)(A) = Fx(4) x K

we will argue below that
Nat(FX®K, Fy) = Nat(FX ® K, Fy) .
Assuming this one has:

homge (X, homc(K,Y)) = Nat(Fx, Fhom.c(k,v))
= Nat(FX, HOl’l’ls (K, Fy))

by (2.6). Continuing, one has that this is isomorphic to
Nat(FX X K, Fy) = Nat(FX®K, Fy) = homsc(X & K, Y)

so that
homge (X, homye(K,Y)) = homge (X @ K,Y) .

as required. Thus we are left with

LEMMA 2.7. There is an isomorphism

Nat(Fxgr, Fy) = Nat(Fx ® K, Fy) .
PROOF: It is easiest to show

Nat(Fx ® K, F') 2 homg (X @ K,Y) .
Given a natural transformation

d:Fxy ® K — Fy
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note that
(Fx ® K)(Xp)n = [] home(Xn, X,) .
keK,,

Thus, for each k € K,,, there is a map
S : X, — Ya

corresponding to the identity in the factor corresponding to k. These assemble
into a map

fo: (X ®K), |_|X —Y,

We leave it to the reader to verify that ylelds a morphism
[ X®K-—>Y

of simplicial objects, and that the assignment ® — f yields the desired isomor-
phism. |

ExXAMPLES 2.8. One can now assemble a long list of simplicial categories: We
note in particular

1) Let C be one of the following “algebraic” categories: groups, abelian groups,
rings, commutative rings, modules over a ring R, algebras or commutative al-
gebras over a commutative ring R, or Lie algebras. Then sC is a simplicial
category.
2) Let C be the graded analog of one of the categories in the previous example.
Then sC is a simplicial category. One might wish to examine the category of
graded commutative algebras over a commutative ring R, for example.
3) Let C = CA be the category of coalgebras over a field F. Then sCA is a
simplicial category.
4) Note that the hypotheses of C used Theorem 2.5 apply equally to C°?. Thus
s(CP) is also a simplicial category. But if s(C°P) is a simplicial category, so is
(s(C)°P)°P. But this is the category cC of cosimplicial objects in C. One must
interpret the functors - ® -, homcc(-,-), etc. in light of Theorem 2.5. Thus if
K eSS,

hom (K, A)" H A"

keK,

and
Hom. (A, B),, = hom. (A, hom. (A", B))

and A ® K is defined via Theorem 2.5.
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To conclude this section, we turn to the following question: suppose given
simplicial categories C and D and a functor G : D — C with left adjoint F'. We
want a criterion under which the simplicial structure is preserved.

LEMMA 2.9. Suppose that for all K € S and A € C there is a natural isomor-
phism F(A® K) 2 F(A) ® K. Then

(1) the adjunction extends to a natural isomorphism
Homp(FA, B) =~ Hom¢ (A, GB);
(2) for all K € S and B € D, there is a natural isomorphism

Ghomyp (K, B) 2 hom¢(K,GB) .

PROOF: Part (1) uses that Homp(F' A, B),, = homp(FA® A", B). Part (2) is
an exercise in adjunctions. |

We give some examples.

ExAMPLES 2.10.

1) Let G : D — C have a left adjoint F. Extend this to a pair of adjoint functors
by prolongation:
G:sD — sC

with adjoint F'. Thus G(X), = G(X),, and so on. Then, in the simplicial
structure of Theorem 2.5, F(X ® K) = F(X) ® K, since F' commutes with
colimits.

2) Let C be an arbitrary simplicial category and A € C. Define
G:C—S

by G(B) = Hom¢(A, B). Then F(X) = A® X and the requirement on 2.9 is
simply the formula
A X xK)2 (A X)® K .

3. Simplicial model categories.

If a category C is at once a simplicial category and a closed model category,
we would like the mapping space functor to have homotopy theoretic content.
This is accomplished by imposing the following axiom.
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3.1 AxioM SMY7. Let C be a closed model category and a simplicial category.
Suppose j : A — B is a cofibration and q : X — Y is a fibration. Then

(3%,qx)
Hom¢ (B, X) A Hom¢ (A, X) Xtome(4,y) Home (B,Y)

is a fibration of simplicial sets, which is trivial if j or q is trivial.

A category satisfying this axiom will be called a simplicial model category.
The next few sections will be devoted to producing a variety of examples, but in
this section we will explore the consequences of this axiom.

ProprosiTION 3.2. Let C be a simplicial model category and q : X — Y a
fibration. Then if B is cofibrant

¢« : Hom¢ (B, X) — Hom¢(B,Y)
is a fibration in S. Similarly, if j : A — B is a cofibration and X is fibrant, then

j* : Home (B, X) — Hom¢ (A, X)

is a fibration.

PROOF: One sets A to be the initial object and Y to be the final object, respec-
tively, in Axiom SMT. [ |

In other words, Homeg(+, -) has entirely familiar homotopical behavior. This is
one way to regard this axiom. Another is that SMT is a considerable strength-
ening of the lifting axiom CM4 of a closed model category.

PropPoOSITION 3.3. Axiom SMY7 implies axiom CM4; that is, given a lifting
problem in simplicial category C satisfying SM7

A—X

. //7'
j‘/ /// q‘/

B—Y

with j a cofibration and q a fibration, then the dotted arrow exists if either j or
q is trivial.
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PROOF: Such a square is a zero-simplex in
HOII’IC (Av X) XHome (A,Y) HomC (B7 Y)

and a lifting is a pre-image in the zero simplices of Hom¢ (B, X). Since trivial
fibrations are surjective, the result follows. |

But more is true: Axiom SMY7 implies that the lifting built in CM4 is unique
up to homotopy. To explain that, however, requires a few words about homotopy.
First we record

ProOPOSITION 3.4. Let C be a simplicial model category and j : K — L a
cofibration of simplicial sets. If A € C is cofibrant, then

1®j:A®K - A®Q L
is a cofibration in C. If X € C is fibrant
j* +home(L, X) — home (K, X)
is a fibration. If j is trivial, then so are 1 ® j and j*.

PRrROOF: For example, one needs to show 1 ® 7 has the left lifting property with
respect to all trivial fibrations ¢ : X — Y in C. This is equivalent, by adjointness,
to show j has the left lifting property with respect to

¢« : Hom¢(A, X) — Home(A,Y)

for all trivial fibrations ¢. But ¢, is a trivial fibration of simplicial sets by SM7.
The other three claims are proved similarly. |

Recall the definitions of left and right homotopy from the section 1. The
following implies that if A is cofibrant, then A ® A! is a model for the the
cylinder on A.

LEMMA 3.5. Let C be a simplicial model category and let A € C be cofibrant.
Then if ¢ : A' — x is the unique map

1¢g: AA' 5 Apx~ A
is a weak equivalence. Furthermore,
d1|_|d02A|_|AHA®A1

is a cofibration and the composite

dold 1®q
AUA — A A — A

is the fold map.
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PrOOF: The first claim follows from Proposition 3.4, since
di: A2 AR A" - AR A

is a weak equivalence. The second claim follows from 3.4 also since d; | |dy is

equivalent to
1@j: A®0A - A® Al

where j : 9A — Al is inclusion of the boundary. For the third claim one checks

that (1®¢q)ody = (1®¢q)ody=1. |
Thus, if C is a simplicial model category and A € C is cofibrant, then two

morphisms f,g: A — X are homotopic if and only if there is a factoring

AuaBatdo 4o A

(3.6) f ug‘ %

X

This, too, is no surprise. As a further exercise, note that if one prefers right
homotopy for a particular application, one could require a factoring

hom¢ (A[l], X)

A —— X x X = hom¢(0A[1], X)
fxyg
In using this formulation, one wants X to be fibrant so that j* is a fibration.
To formulate the next notion, let A be cofibrant and j : A — B a cofibration.
Given two maps f,g: B — X sothat jof = jog, wesay f and g are homotopic
under A if there is a homotopy

H:BoA'— X
sothat Ho(j®1): A® A' — X is the constant homotopy on j o f. That is,
h® (j ®1) is the composite
1® jof
AA' S Aex= A5 X

where ¢ : A' — % is the unique map. There is an obvious dual motion of
homotopic over Y.

The following result says that in a simplicial model category, the liftings re-
quired by axiom CM4 are unique in a strong way.
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PROPOSITION 3.8. Let C be a simplicial model category and A a cofibrant object.
Consider a commutative square

where j is a cofibration, q is a fibration and one of j or q is trivial. Then any
two solutions f,g : B — X of the lifting problem are homotopic under A and
over Y.

ProOF: The commutative square is a zero-simplex « in
HOII’IC (A, X) XHomc(A,Y) Homc(B, Y)

Let spa be the corresponding degenerate 1-simplex. Then sga is the commutative
square

AQA — o X

o1 I

BA!' — YV

where the horizontal maps are the constant homotopies. Let
fyg € Home (B, X )o = home (B, X)

be two solutions to the lifting problem. Thus (i*,¢.)f = (i*,¢«)g = a. Then by
SMY7, there is a 1-simplex

B € Home (B, X); = home(B ® A, X)
so that d18 = f, dof8 = g, and (i*, ¢«)3 = spa. Then
B:BA!' - X

is the required homotopy. [ |
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We now restate a concept from Section 1. For a simplicial model category C,
we define the homotopy category Ho(C) as follows: the objects are the objects
of C and the morphisms are defined by

(39) [A, X]c = homC(B, Y)/ ~

where ¢ : B — A is a trivial fibration with B cofibrant, i : X — Y is a trivial
cofibration with Y fibrant and f ~ g if and only if f is homotopic to g. It is
an exercise that ~ is in fact an equivalence relation, and it is a consequence of
Proposition 3.8 that [A, X]¢ is well-defined.

There is some ambiguity in the notation: [A, X]c depends not only on C, but
on the particular closed model category structure.

In the sequel, [, | means [, |g.

The following result gives homotopy theoretic content to the functors - @ K
and hom¢ (K, -).

PrOPOSITION 3.10. Let C be a simplicial model category and A and B a cofi-
brant and a fibrant object of C, respectively. Then

(K, Home (A, B)] = [A® K, Blc

and
[K,Hom¢ (A, B)] = [A,hom¢ (K, B)c .

PrOOF: Note that Hom¢ (A, B) is fibrant, by Proposition 3.2. Hence
[K,Hom¢ (A, B)] = homg (K, Hom¢ (A, B))/ ~
where ~ means “homotopy” as above. But, since
AR (Kx A= (A K)® Al
we have that

homg (K, Hom¢ (A, B))/ ~ = hom¢(A® K, B)/ ~
= [A®KaB]C

where we use Proposition 3.4 to assert that A ® K is cofibrant. |

We now concern ourselves with developing a way of recognizing when SM7
holds.
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PROPOSITION 3.11. Let C be a closed model category and a simplicial category.
Then the axiom SMYT holds if and only if for all cofibrations i : K — L in S and
cofibrations j : A — B in C, the map

(j@l)U(l@i):(A@L)U(A®K) (BRK)—BQ®L.

is a cofibration which is trivial if either j or i is.

PrROOF: A diagram of the form

K Hom((B, X)

|

L——— Homc (A, X) XHomc(A,Y) HomC(B, Y)
is equivalent, by adjointness, to a diagram

(A® L) Uaer) (BOK) —— X

| |

B®L Y .

The result follows by using the fact that fibrations and cofibrations are deter-
mined by various lifting properties. |

From this we deduce

COROLLARY 3.12. (Axiom SMTb) Let C be a closed model category and a
simplicial category. The axiom SMY is equivalent to the requirement that for
all cofibrations j : A — B in C

(A® A") Uagoan) (B®0A™) — B A"
is a cofibration (for n > 0) that is trivial if j is, and that
(A® AY) Uagey) (B {e}) — Ba Al

is the trivial cofibration for e =0 or 1.
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PROOF: Let i : K — L be a cofibration of simplicial sets. Then, since 7 can be
built by attaching cells to K, the first condition implies

(A® L) Uaex) (B® K) — (B® L)

is a cofibration which is trivial if j is. The second condition and proposition 1.4.2
(applied to Bs) yields that (j ® 1) U (1 ® ) is trivial if i is. |

In the usual duality that arises in these situations, we also have
ProprosITION 3.13. Let C be a simplicial category and a model category and

suppose ¢ : K — L is a cofibration in S and q : X — Y a fibration in C. Then
the following are equivalent:

(1) SM7,

(2) hom¢(L, X) — hom¢ (K, X) Xhome(k,v)yhome(L,Y) is a fibration which
is trivial if q or j is;

(3) (SM7a) hom¢ (A", X) — hom¢(OA"™, X) Xphome(9an,y)yhome (A", Y) is
a fibration which is trivial if q is, and

homc (Al, X) — hOIl’lc (6, X) Xhomc(e,Y) homc (Al, Y)
is a trivial fibration for e = 0, 1.

ExXAMPLE 3.14. A simplicial model category structure on CGHaus We can now
show that the category CGHaus of compactly generated Hausdorft spaces is a
simplicial model category. To supply the simplicial structure let X € CGHaus
and K € S. Define

XK =X Xge |K|

where | - | denotes the geometric realization and X . the Kelly product, which
is the product internal to the category CGHaus. Then if X and Y are in
CGHaus, the simplicial set of maps between X and Y is given by

HomgoGHaus (X Y)n = homogHaus (X X A" Y)
regarded as a set. And the right adjoint to - ® K is given by
homcgHaus(K> X) = F(| K[, X)

where F denotes the internal function space to CGHaus.
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We have seen that CGHaus is a closed model category with the usual weak
equivalences and Serre fibrations. In addition, Proposition 3.13 immediately
implies that CGHaus is a simplicial model category.

It is worth pointing out that the realization functor | - | and its adjoint S(-)
the singular set functor pass to the level of simplicial categories. Indeed, we've
seen that if X € S and K € S, then

| X x K| = |X| Xke | K|
This immediately implies that if Y € CGHaus, then
SF(|K|,Y) = Homg (K, SY)

and
HomcgHaus(| X Y) = Homg (X, SY).

4. Detecting weak equivalences.

LEMMA 4.1. Suppose that f : X — Y is a morphism of a simplicial model
category C which induces an isomorphism in the homotopy category Ho(C). Then
f is a weak equivalence.

ProOOF: The map f induces an isomorphism in the homotopy category if and
only if f induces a homotopy equivalence RQX — RQY of the associated cofi-
brant fibrant models. It suffices, therefore, to assume that X and Y are fibrant
and cofibrant, and that f: X — Y is a homotopy equivalence.
Choose a factorization
J

X——7

R

Y

where j is a trivial cofibration and p is a fibration. The map j is a homotopy
equivalence, so it suffices to show that the fibration p : Z — Y of cofibrant
fibrant objects is a weak equivalence if it is a homotopy equivalence.

Choose a homotopy inverse s : Y — Z for the map p, and choose a homotopy
H:Z® A — Z from ps to the identity 1y. There is a diagram

y—9S% 7

{27
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The composite map H,d' is a section of p, and this composite is homotopic to
s. We can therefore assume that the homotopy inverse s is a section of p.

Choose a homotopy h : Z® A' — Z from sp to 1. The lifting ~ exists in the
diagram

A —— - Hom(ZY
s1(ph) &Y)

since p, is a fibration. Write k : Z ® Al — Z for the 1-simplex do(y) of

Hom(X, X). Then k is a fibrewise homotopy from sp to 1z, meaning in partic-
ular that the following diagram commutes:

7oAl —k g

”| b

L ———>Y.

p

Now suppose that the diagram

commutes, where j is a cofibration. One can form the diagram

(Ao AHYu (Bx{0}) (k(a®1),s0)

j*[ / Tp

B® Al Y
¥ sP(B®1)
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since the map j, is a trivial cofibration. Now check that the map 6 defined by
the composite

d° K
B—B®A — 7

satisfies pf = (8 and 6j = a. The map p therefore has the right lifting property
with respect to all cofibrations, and is therefore a trivial fibration. |

It may seem unlikely, but Lemma 4.1 is probably the the most important
technical consequence of having a simplicial model structure in hand, as opposed
to just a closed model structure. It will be used many times in the sequel. Here
is a sample application:

LEMMA 4.2. Suppose that f : A — B is a map between cofibrant objects in
a simplicial model category C. Then f is a weak equivalence if and only if the
induced map

f*:Hom(B,Z) — Hom(A, Z)
is a weak equivalence of simplicial sets for each fibrant object Z of C.

ProOOF: We use the fact, which appears as Lemma 11.9.4 below, that a map f :
A — B between cofibrant objects in a closed model category has a factorization

.

A———B

f

such that j is a cofibration and the map ¢ is left inverse to a trivial cofibration
1:B— X.

If f: A— B is a weak equivalence, then the map j: A — X is a trivial cofi-
bration, and hence induces a trivial fibration j* : Hom(X, Z) — Hom(A, Z) for
all fibrant objects Z. Similarly, the trivial cofibration ¢ induces a trivial fibration
i*, so that the map p* : Hom(B, Z) — Hom(X, 7) is a weak equivalence.

Suppose that the map f* : Hom(B, Z) — Hom(A, Z) is a weak equivalence
for all fibrant Z. To show that f is a weak equivalence, we can presume that the
objects A and B are fibrant as well as cofibrant. In effect, there is a commutative
diagram

_f

e
o ——

f
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in which the objects A and B are fibrant, and the vertical maps are trivial
cofibrations, and then one applies the functor Hom( ,Z) for Z fibrant and
invokes the previous paragraph.

Finally, suppose that A and B are fibrant as well as cofibrant, and presume
that f* : Hom(B, Z) — Hom(A, Z) is a weak equivalence for all fibrant Z. We
can assume further that f is a cofibration, by taking a suitable factorization.
The map f* : Hom(B,A) — Hom(A, A) is therefore a trivial Kan fibration,
and hence surjective in all degrees, so that there is a map ¢g : B — A such that
g-f=14. The maps f-¢g and 1 are both preimages of the vertex f under the
trivial fibration f* : Hom(B, B) — Hom(A, B), so that there is a homotopy
f g ~ 1p. In particular, f is a homotopy equivalence and therefore a weak
equivalence, by Lemma 4.1. |

5. The existence of simplicial model category structures.

Here we concern ourselves with the following problem: Let C be a category and
sC the category of simplicial objects over C. Then, does sC have the structure of
a simplicial model category? We will assume that there is a functor G : sC — S
with a left adjoint

F:S—sC.

Examples include algebraic categories such as the categories of groups, abelian
groups, algebras over some ring R, commutative algebras, lie algebras, and so
on. In these cases, G is a forgetful functor. See Example 2.10.

Define a morphism f: A — B is sC to be

a) a weak equivalence if Gf is a weak equivalence in S;
b) a fibration if Gf is a fibration in S;

c) a cofibration if it has the left lifting property with respect to all trivial
fibrations in sC.

A final definition is necessary before stating the result. Let {X,}aes be a
diagram in C. Then, assuming the category C has enough colimits, there is a
natural map

h_r)nG(Xa) — G(h_n}Xa).
I I

This is not, in general, an isomorphism. We say that G commutes with filtered

colimits if this is an isomorphism whenever the index category [ is filtered.

THEOREM 5.1. Suppose C has all limits and colimits and that G commutes
with filtered colimits. Then with the notions of weak equivalence, fibration, and
cofibration defined above, sC is a closed model category provided the following
assumption on cofibrations holds: every cofibration with the left lifting property
with respect to fibrations is a weak equivalence.
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We will see that, in fact, sC is a simplicial model category with the simplicial
structure of Theorem 2.5.

The proof of Theorem 5.1 turns on the following observation. As we have seen,
a morphism f : X — Y is a fibration of simplicial sets if and only if it has the
right lifting property with respect to the inclusions for all n, k

Ay — A"
and f is a trivial fibration if and only if it has the right lifting property with

respect to the inclusions 9A™ — A" of the boundary for all n. The objects
AP, 0A™ and A™ are small in the following sense: the natural map

li_r)nhoms( by Xa) — homS(AZ,li_n)lXa)
I I

is an isomorphism for all filtered colimits in S. This is because A} has only
finitely many non-degenerate simplices. Similar remarks hold for 9A™ and A™.

LEMMA 5.2. Any morphism f: A — B in sC can be factored
ALx%B
where the morphism j is a cofibration and q is a trivial fibration.

Proor: Coproducts of cofibrations are cofibrations, and given a pushout dia-
gram

Ag — Ay

Ay —B

in sC, then 7 a cofibration implies j is a cofibration, and that if X — Y is a
cofibration in S, then FFX — FY is a cofibration in sC. Inductively construct
objects X,, € sC with the following properties:

a) One has A = X and there is a cofibration j, : X,, — X,41.
b) There are maps ¢, : X,, — B so that ¢, = ¢u+1 © jn and the diagram

A——X,

N

B
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commutes, where A — X, is the composite j,_10--- 0 jo.

¢) Any diagram

FOA™ — P X

.

FAmLB

can be completed to a diagram

FOA™ — P X,

N

FAm—>Xn+1 Qn——l—l>B

where the bottom morphism is .

Condition ¢) indicates how to construct X, 1 given X,,. Define j, : X,, —
X1 by the pushout diagrams

LJFaAm—————»Xn

[ B

L|[FA™ ——— X,

where the coproduct is over all diagrams of the type presented in c).

Then condition ¢) automatically holds. Further, g,11 : X,,11 — B is defined
and satisfies condition b) by the universal property of pushouts. Lastly, condition
a) holds by the remarks at the beginning of the proof.

Now define X = li_n}Xn and notice that we have a factoring

AL X LB
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of the original morphism. The morphism j is a cofibration since directed colimits
of cofibrations are cofibrations. We need only show ¢ : X — B is a trivial
fibration. This amounts to showing that any diagram

OA" — GX

| |

A" —— GB

can be completed. But GX = lii>nn G X,, by hypothesis on G, and the result
follows by the small object argument. |

The same argument, but using the trivial cofibrations in S

Ay — A"
for n, k > 0, proves the following lemma.
LEMMA 5.3. Any morphism f: A — B in sC can be factored
AlxLp

where q is a fibration and j is a cofibration which has the left lifting property

with respect to all fibrations.

PrROOF OF THEOREM 5.1: The Axioms CM1-CM3 are easily checked. The
axiom CM5b is Lemma 5.2; the axiom CMba follows from Lemma 5.3 and
the assumption on cofibrations. For axiom CM4, one half is the definition of
cofibration. For the other half, one proceeds as follows. Let
1:A— B
be a trivial cofibration. Then by Lemma 5.3 we can factor the morphism ¢ as
ALXx%B

where j is a cofibration with the left lifting with respect to all fibrations, and ¢
is a fibration. By the hypothesis on cofibrations, j is a weak equivalence. Since
1 is a weak equivalence, so is q. Hence, one can complete the diagram
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and finds that 7 is a retract of j. Hence 7 has the left lifting property with respect
to fibrations, because j does. This completes the proof. |

We next remark that, in fact, sC is a simplicial model category. For this, we
impose the simplicial structure guaranteed by Theorem 2.5. Thus if X € sC and
K €S, we have that

(A K)y= | | An.
kEK,
From this, one sees that if X € S

FIXxK)2F(X)® K.
This is because F', as a left adjoint, preserves coproducts. Thus Lemma 2.9
applies and
Ghomc (K, B) = homg(K,GB).
THEOREM 5.4. With this simplicial structure, sC becomes a simplicial model
category.

ProOOF: Apply Proposition 3.13.1. If j : K — L is a cofibration in S and
q: X — Y is a fibration in sC, the map

Ghomc(L, X) — G(homc (K, X) Xnhom,c(k,v) homye(L,Y))
is isomorphic to

homs (L, GX) — hOl’IlS (K, GX) Xhoms (K,GY) hOHlS (L, GY)

by the remarks above and the fact that G, as a right adjoint, commutes with
pullbacks. Since S is a simplicial model category, the result holds. |

5.5 A REMARK ON THE HYPOTHESES. Theorem 5.1 and, by extension, Theo-
rem 5.4 require the hypothesis that every cofibration with the left lifting property
with respect to all fibrations is, in fact, a weak equivalence. This is so Lemma 5.3
produces the factoring of a morphism as a trivial cofibration followed by a fi-
bration. In the next section we will give some general results about when this
hypothesis holds; however, in a particular situation, one might be able to prove
directly that the factoring produced in Lemma 5.3 actually yields a trivial cofi-
bration. Then the hypothesis on cofibrations required by these theorems holds
because any cofibration with the left lifting property with respect to all fibrations
will be a retract of a trivial cofibration. Then one need say no more.

For example, in examining the proof of Lemma 5.3 (see Lemma 5.2), one
sees that we would have a factorization of f : A — B as a trivial cofibration
followed by a fibratiion provided one knew that 1.) F(A}) — F(A™) was a weak
equivalence or, more generally, that F' preserved trivial cofibrations, and 2.)
trivial cofibrations in sC were closed under coproducts, pushouts, and colimits
over the natural numbers.
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6. Examples of simplicial model categories.

As promised, we prove that a variety of simplicial categories satisfy the hy-
potheses necessary for Theorem 5.4 of the previous section to apply.
We begin with a crucial lemma.

LEMMA 6.1. Assume that for every A € sC there is a natural weak equivalence
eqa:A— QA

where QA is fibrant. Then every cofibration with the left lifting property with
respect to all fibrations is a weak equivalence.

PROOF: This is the argument given by Quillen, on page 11.4.9 of [75]. Let
j : A — B be the given cofibration. Then by hypothesis, we may factor

A—A 04

B—x

to get a map u : B — QA so that uj = £4. Then we contemplate the lifting
problem

A / hom,c (A, QB)

//?
p
. >
j - q
///
P

B—Y s hom,(9A!,QB) = QB x QB
where ¢ is induced by A! C Al, f is the composite

A4 L B % QB = homye(x, QB) — homye (AL, QB)

and
g = (ngQjou) .
Note that f is adjoint to the constant homotopy on

epoj=Qjoea: A—QB.
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Then ¢ is a fibration since
Ghomg¢ (K, X) = homg(K,GX) ,
and S is a simplicial model category. Hence, since j is a cofibration, there exists
H : B — hom,(A',QB)
making both triangles commute. Then H is a right homotopy from
ep:B— Q@B

to @Qj o u, and this homotopy restricts to the constant homotopy on eg o j =
Qjoea: A— @QB. In other words, we have a diagram

A—4 04

7%

such that the upper triangle commutes and the lower triangle commutes up
to homotopy. Apply the functor G to this diagram. Then G preserves right
homotopies, and one checks directly on the level of homotopy groups that Gj is
a weak equivalence, which, by definition, implies j is a weak equivalence. |

EXAMPLE 6.2. Suppose every object of sC is fibrant. Then we may take €4 :
A — QA to be the identity. This happens, for example, if the functor G : sC —
S factors through the sub-category of simplicial groups and simplicial group
homomorphisms. Thus, Theorem 5.4 applies to

simplicial group s, simplicial abelian groups and simplicial R-modules, where G is the
forgetful functor;

(1) more generally to simplicial modules over a simplicial ring R, where G is
the forgetful functor,

(2) for a fixed commutative ring R; simplicial R-algebras, simplicial com-
mutative R-algebras and simplicial Lie algebras over R. Again G is the
forgetful functor.
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Another powerful set of examples arises by making a careful choice of the form
the functor G can take.

Recall that an object A € C is small if hom¢ (A4, ) commutes with filtered
colimits. Fix a small Z € C and define

(6.3) G:sC—S
by
G(X) =homy(Z,X) .

Then G has left adjoint
FK=7®K

and G(-) commutes with filtered colimits. Thus, to apply Theorem 5.4, we need
to prove the existence of the natural transformation

e: A— QA

as in Lemma 6.1. Let
Ex:S—S

be Kan’s Extension functor!. Then for all K € S there is a natural map
ex : K - ExK

which is a weak equivalence. Furthermore, most crucially for the application
here, Ex(-) commutes with all limits. This is because it’s a right adjoint. Finally,
if Ex" K is this functor applied n times and

Ex"er :Ex"K — Ex"T' K

the induced morphism, then Ex>™ K = h_n>1 Ex"™ K is fibrant in S and the induced
map
K — Ex* K

is a trivial cofibration.
LEMMA 6.4. Suppose the category C is complete and cocomplete. Fix n > 0.

Then there is a functor

Qo()n :sC —C

I This construction is discussed in Section III.4 below.
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so that, for all Z € C, there is a natural isomorphism of sets
home (Z, (QoA),) = Ex(Homye(Z, A)), -

PRrROOF: Recall that that the functor Ex on S is right adjoint to the the subdi-
vision functor sd. Then one has a sequence of natural isomorphisms

ExHomgc(Z, A),, = homg(A", Ex Hom(Z, A))
= homg(sd A", Hom,c(Z, A))
=~ homge(Z @ sd A", A)
=~ homge(Z, homge (sd A™, A))
= home(Z, homge (sd A", A)g).

The last isomorphism is due to the fact that Z is a constant simplicial object
and maps out of a constant simplicial object are completely determined by what
happens on zero simplices. Thus we can set

(QoA), = homgc(sd A", A)g. [ |
The simplicial object Qg A defined by
n— (QoA), = homge(sd A", A)gy

is natural in A; that is, we obtain a functor )y : sC — sC. Since we regard Z € C
as a constant simplicial object in sC

Hom:(Z,Y ), = homy(Z @ A", Y)
= home(Z,Y,)
one immediately has that
Hom(Z,QpA) =2 ExHomge(Z, A) .
Finally the natural transformation e : K — Ex™ K yields a natural map
ga:A— QoA
and, by iteration, maps
Qnea:QiA — QUTTA.
Define QA = li_rr>1Q6LA. The reader will have noticed that QpA and QA are

independent of Z.

Now fix a small object Z € C and regard Z as a constant simplicial object
in sC. Then we define a morphism A — B in sC to be a weak equivalence (or
fibration) if and only if the induced map

Homy:(Z,A) — Homy(Z, B)

is a weak equivalence (or fibration) of simplicial sets.
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PROPOSITION 6.5. If Z is small, the morphism €4 : A — QA is a weak equiva-
lence and QA is fibrant.

PROOF: Since Z is small, we have that
Hom-(Z,QA) = Ex™ Homyc(Z, A).
The morphism €4 is a weak equivalence if and only if
Homy(Z,A) — Homgc(Z,QA) = Ex*™ Homyc,(Z, A)
is a weak equivalence and QA — x is a fibration if and only if
Hom:(Z,QA) = Ex™ Homyc(Z, A) — Homgc(Z, %) = %
is a fibration. Both of these facts follow from the properties of the functor
Ex>(+). |

COROLLARY 6.6. Let C be a complete and cocomplete category and Z € C
a small object. Then sC is a simplicial model category with A — B a weak
equivalence (or fibration) if and only if

Hom(Z, A) — Homy(Z, B)

is a weak equivalence (or fibration) of simplicial sets.

In practice one wants an intrinsic definition of weak equivalence and fibration,
in the manner of the following example.

EXAMPLE 6.7. All the examples of 6.2 can be recovered from Corollary 6.6. For
example, C be the category of algebras over a commutative ring. Then C has a
single projective generator; namely A[z], the algebra on one generator. Then one
sets Z = Alz], which is evidently small, and one gets a closed model category
structure from the previous result. However, if B € sC, then

Homc(A[z], B) =< B

in the category of simplicial sets, so one recovers the same closed model category
structure as in Example 6.2.

If C is a category satisfying 5.1 with a single small projective generator, then C
is known as a category of universal algebras. Setting Z to be the generator, one
immediately gets a closed model category structure on sC from Corollary 6.6.
This is the case for all the examples of 6.2.
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To go further, we generalize the conditions of Theorem 5.1 a little, to require
the existence of a collection of functors G; : sC — S, i € I, each of which has a
left adjoint F; : S — sC. We now say that a morphism f: A — B of sC is

a) a weak equivalence if G, f is a weak equivalence of simplicial sets for all
1€ 1
b) a fibration if all induced maps G, f are fibrations of S;

c) a cofibration if it has the left lifting property with respect to all trivial
cofibrations of sC.

Then Theorem 5.1 and Theorem 5.4 together have the following analogue:

THEOREM 6.8. Suppose that C has all small limits and colimits and that all of
the functors G; : C — S preserve filtered colimits. Then with the notions of weak
equivalence, fibration and cofibration defined above, and if every cofibration with
the left lifting property with respect to all fibrations is a weak equivalence, then
sC is a simplicial model category.

PRrROOF: The proof is the same as that of Theorem 5.1, except that the small
object arguments for the factorization axiom are constructed from all diagrams
of the form

F,0A™ —— A F A, —— A
[ l and ‘ ‘ |
FEA™ — B F;A" — B
Theorem 6.8 will be generalized significantly in the next section — it is a

special case of Theorem 7.8.

Now fix a set of small objects Z; € C, i € I, and regard each Z; as a constant
simplicial object in sC. Then we define a morphism A — B in sC to be a weak
equivalence (or fibration) if and only if the induced map

Homg(Z;, A) — Homyc(Z;, B)

is a weak equivalence (or fibration) of simplicial sets. In the case where C is
complete and cocomplete, we are still entitled to the construction of the natural
map €4 : A — QA in sC. Furthermore, each of the objects Z; is small, so that
Proposition 6.5 holds with Z replaced by Z;, implying that the map €4 is a weak
equivalence and that QA is fibrant. Then an analogue of Lemma 6.1 holds for
the setup of Theorem 6.8 (with G replaced by G; in the proof), and we obtain
the following result:
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THEOREM 6.9. Suppose that C is a small complete and cocomplete category,
and let Z; € C, 1 € I, be a set of small objects. Then sC is a simplicial model
category with A — B a weak equivalence (respectively fibration) if and only if
the induced map

Homc(Z;, A) — Homyc(Z;, B)
is a weak equivalence (respectively fibration) for all i € 1

EXAMPLE 6.10. Suppose that C is small complete and cocomplete, and has a set
{P,} of small projective generators. Theorem 6.9 implies that C has a simplicial
model category structure, where A — B is a weak equivalence (or fibration) if

Homsc (Pa, A) — Homsc (Pa, B)

is a weak equivalence (or fibration) for all c.

Note that the requirement that the objects P, are projective generators is not
necessary for the existence of the closed model structure. However, if we also
assume that the category C has sufficiently many projectives in the sense that
there is an effective epimorphism P — C' with P projective for all objects C' € C,
then it can be shown that a morphism f : A — B of sC is a weak equivalence
(respectively fibration) if every induced map

Hom,: (P, A) — Homy: (P, B)

arising from a projective object P € C is a weak equivalence (respectively fibra-
tion) of simplicial sets. This is a result of Quillen [75, I1.4], and its proof is the
origin of the stream of ideas leading to Theorem 6.9. We shall go further in this
direction in the next section.

To be more specific now, let C be the category of graded A-algebras for some
commutative ring A and let, for n > 0,

P, = Alz,]

be the free graded algebra or an element of degree n. Then {P, },>¢ form a set
of projective generators for C. Thus sC gets a closed model category structure
and B — C in sC is a weak equivalence if and only if

(B)n — (C)n

is a weak equivalence of simplicial sets for all n. Here (-),, denotes the elements
of degree n. This is equivalent to the following: if M is a simplicial graded
A-module, define

.M = H,.(M,0)
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where 0 is the alternating of the face operators. Then B — C in sC is a weak
equivalence if and only if
B — m,.C

is an isomorphism of bigraded A-modules.
This formalism works for graded groups, graded abelian groups, graded A-
modules, graded commutative algebras, graded Lie algebras, and so on.

EXAMPLE 6.11. Let F be a field and let C = CA be the category of coalgebras
over F. Then, by [87, p.46] every coalgebra C' € CA is the filtered colimit of its
finite dimensional sub-coalgebras. Thus C.A has a set of generators {C, } where
C,, runs over a set of representatives for the finite dimensional coalgebras. These
are evidently small. Hence, sC.A has a closed model category structure where
A — B is a weak equivalence if and only if

HomsCA(Com A) - HomsCA(Cou B)

is a weak equivalence for all C,. The significance of this example is that the C,,
are not necessarily projective.

7. A generalization of Theorem 5.1.

The techniques of the previous sections are very general and accessible to vast
generalization. We embark some ways on this journey here. First we expand on
what it means for an object in a category to be small. Assume for simplicity
that we are considering a category C which has all limits and colimits. We shall
use the convention that a cardinal number is the smallest ordinal number in a
given bijection class.

Fix an infinite cardinal number 7, and let Seq() denote the well-ordered set
of ordinals less than 7. Then Seq(7) is a category with hom(s,?) one element
if s <t and empty otherwise. A v-diagram in C is a functor X : Seq(vy) — C.
We will write hm X, for the colimit. We shall say that X is a v-diagram of

cofibrations if each of the transition morphisms X, — X; is a cofibration of C.
DEFINITION 7.1. Suppose that (3 is an infinite cardinal. An object A € C is
(B-small if for all v-diagrams of cofibrations X in C with v > (3, the natural map

li_n}homc(A, Xs) — home (A, lii>nXS)
v gl

is an isomorphism. A morphism A — B of C is said to be (3-small if the objects
A and B are both 3-small.
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ExaMpPLE 7.2. The small objects of the previous sections were w-small, where
w is the first infinite cardinal. Compact topological spaces are also w-small, but
this assertion requires proof.

Supposethat X : Seq(vy) — Top is a y-diagram of cofibrations. Then X is a
retract of a y-diagram of cofibrations X, where each of the transition morphlsms
X, — X, is a relative CW-complex. In effect, set Xo = Xp, and set X,

lim X, for limit ordinals o < . Suppose given maps
—s<a

Ts — Ts
Xs — X5 — X;

with m4rs = 1. Then X s+1 18 defined by choosing a trivial fibration 7441 and a
relative CW-complex map jsy1 : X, — XS+1 (ie. X5+1 is obtained from X by
attaching cells, and js41 is the corresponding inclusion), such that the following

diagram commutes:
X,
e
X

— Xy,
ls+1

where the map 541 : Xs — Xs41 is the cofibration associated to the relation
s < s+ 1 by the functor X. Then there is a lifting in the diagram

.jerlrs <
X, X

is+1l TH/’ l”sﬂ

Xs+1 T Xs—|—1

so that the section r, extends to a section r441 of the trivial fibration 7m441. The
inclusion
X() =X 0 — h_I>IlX s
vy
is a relative CW-complex map, and every compact subset of the colimit only

meets finitely many cells outside of Xy. Every compact subset of hi>n X, is
gl

therefore contained in some subspace X,. It follows that every compact subset

of lim X is contained in some Xj.
_>,y
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We next produce an appropriate generalization of saturation.

DEFINITION 7.3. A class M of morphisms in C is (3-saturated if it is closed
under

1) retracts: Suppose there is a commutative diagram in C

X X’ X
zl li’ lz
Y Y’ Y

with the horizontal composition the identity. Then if i' € M , then
i€ M.

2) coproducts: if each j, : Xo — Yo isin M, then | |, jo : L, Xa — L, Ya
is in M;

3) pushouts: given a pushout diagram in C

if i is in M, then so is j.

4) colimits of 3-sequences: Suppose we are given a (3-sequence
X :Seq(B) — C

with the following properties: a) for each successor ordinal s+1 € Seq(f3),
the map Xy — Xy is in M, and b) for each limit ordinal s € Seq([3),
the map lim  X; — X, is in M. Then
—t<s
X — lim X
%
B

is in M for all s € Seq(f3).
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Up until now we have considered only saturated clesses of morphisms with
(8 = w, the cardinality of a countable ordinal. In this case, one doesn’t need the
extra care required in making the definition of what it means to be closed under
colimits.

LEMMA 7.4. Let C be a closed model category. Then the class of cofibrations
and the class of trivial cofibrations are both (3-saturated for all 3.

ProoOF: This is an exercise using the fact that cofibrations (or trivial cofibra-
tions) are characterized by the fact that they have the left lifting property with
respect to trivial fibrations (or fibrations). [ |

The next step is to turn these concepts around.

DEFINITION 7.5. Let Mg be a class of morphisms in C. Then the (3-saturation
of M is the smallest (3-saturated class of morphisms in C containing M.

We now come to the crucial axiom.

DEFINITION 7.6. A closed model category is cofibrantly generated with respect
to a cardinal (3 if the class of cofibrations and the class of trivial cofibrations are
the (B-saturations of sets of 3-small morphisms Mg and M respectively.

REMARKS 7.7.

1) Suppose that 5 and 7 are cardinals such that § < ~. Then every y-saturated
class is (-saturated, because every sequence X : Seq(3) — C can be extended
to a sequence X, : Seq(y) — C having the same colimit. It follows that the
(-saturation of any set of morphisms is contained in its y-saturation. Observe
also that every [-small object is v-small, directly from Definition 7.1. The size
of the cardinal 8 in Definition 7.6 therefore doesn’t matter, so long as it exists.
One says that the closed model category C is cofibrantly generated in cases where
the cardinal 3 can be ignored.

2) Until now, we've taken  to w. Then the category of simplicial sets is cofi-
brantly generated, for example, by the usual small object argument. Similarly,
modulo the care required for the assertion that finite CW-complexes are w-small
(Example 7.2), the category of topological spaces is cofibrantly generated with
respect to w. We will see larger cases later.

3) One could require one cardinal [ for cofibrations and ; for trivial cofibra-
tions. However, 0 = max{(3y, 1} would certainly work in either case, by 1).

To give the generalization of Theorem 5.1 we establish a situation. We fix a
simplicial model category C and a simplicial category D. Suppose we have a set
of functors G; : D — C, indexed by the elements ¢ in some set I, and suppose
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each G; has a left adjoint F; which preserves the simplicial structure in the sense
that there is a natural isomorphism

F(X®K)2F(X;)® K

for all X € C and K € S. Define a morphism f : A — B in D to be a weak
equivalence (or fibration) is

is a weak equivalence (or fibration).

THEOREM 7.8. Suppose the simplicial model category C is cofibrantly generated
with respect to a cardinal (3, and that

(1) all of the functors G; commute with colimits over Seq([3), and

(2) the functors G; take the 3-saturation of the collection of all maps F;A —
F; B arising from maps A — B in the generating family for the cofibrations
of C and elements j of I to cofibrations of C.

Then if every cofibration in D with the left lifting property with respect to all
fibrations is a weak equivalence, D is a simplicial model category.

PROOF (OUTLINE): There are no new ideas—only minor changes from the ar-
guments of Section 5. The major difference is in how the factorizations are

constructed. For example, to factor X — Y as X 2, 7 %Y where 7 is a cofibra-
tion which has the left lifting property with respect to all fibrations and ¢ is a
fibration, one forms a (-diagram {Zs} is D where

1) ZOZX;

ii) if s € Seq(f) is a limit ordinal, Z; =lim _ Z; and

t<
iii) if s 4+ 1 is a successor ordinal, there is a pushout diagram

UUFi(A) — 7
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where f runs over all diagrams

A——Gi(Zs)

L

where A — B is in the set M; of (-small cofibrations in C whose -
saturation is all trivial cofibrations. |

EXAMPLE 7.9. Suppose that C is a cofibrantly generated simplicial model cat-
egory and I is a fixed small category. Write C! for the category of functors
X : I — C and natural transformations between them. There are i-section func-
tors G; : C! — C defined by G;X = X (i), i € I, and each such G; has a left
adjoint F; : C — C! defined by

FD(j)= || D

i—j in I

Say that a map X — Y of C! is a pointwise cofibration if each of the maps G; X —
G,;Y is a respectively cofibration of C. If A — B is a generating cofibration for
C, the induced maps F;A(j) — F;B(j) are disjoint unions of cofibrations and
hence are cofibrations of C. The induced maps maps F; A — F;B are therefore
pointwise cofibrations of C!. The functors G; preserve all colimits, and so the
collection of pointwise cofibrations of C! is saturated (meaning S-saturated for
some infinite cardinal # — similar abuses follow). The saturation of the collection
of maps F;A — F;B therefore consists of pointwise cofibrations of C?.
A small object argument for C! produces a factorization

for an arbitrary map f : X — Y of C!, with ¢ a fibration, and for which j is in
the saturation of the collection of maps F;C — F;D arising from the generating



120 II. MOoODEL CATEGORIES

set C — D for the class of trivial cofibrations of C. But again, each induced
map F;C(j) — F;D(j) is a trivial pointwise cofibration of C, and the j-section
functors preserve all colimits. The collection of maps of C! which are trivial
cofibrations in sections is therefore saturated, and hence contains the saturation
of the maps F;C — F;D. It follows that the map j is a weak equivalence as well
as a cofibration. In particular, by a standard argument, every map of C! which
has the left lifting property with respect to all fibrations is a trivial cofibration.

It therefore follows from Theorem 7.8 that every diagram category C! taking
values in a cofibrantly generated simplicial model category has a simplicial model
structure for which the fibrations and weak equivalences are defined pointwise.
This result applies in particular to diagram categories Top! taking values in
topological spaces.

Here’s the analog of Lemma 6.1:

PROPOSITION 7.10. Suppose there is a functor Q) : D — D so that QX is fibrant
for all X and there is a natural weak equivalence ex : X — QX. Then every
cofibration with the left lifting property with respect to all fibrations is a weak
equivalence.

PrROOF: The argument is similar to that of Lemma 6.1; in particular, it begins
the same way.
The map j has the advertised lifting property, so we may form the diagrams

A 04

| A

B—«

and

A—B] hom(A', QB)

|

P @iow

where sepj is the constant (right) homotopy on the composite

AL B2 0B
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The functors G; preserve right homotopies, so the diagram

A 04

7%

remains homotopy commutative after applying each of the functors G;. It fol-
lows that the map G;(j) is a retract of the map G;(e4) in the homotopy category
Ho(C), and is therefore an isomorphism in Ho(C). But then a map in a simpli-
cial model category which induces an isomorphism in the associated homotopy
category must itself be a weak equivalence: this is Lemma 4.1. |

ExXAMPLE 7.11. The factorization axioms for a cofibrantly generated simplicial
model category C can always be proved with a possibly transfinite small ob-
ject argument (see, for example, the proofs of Proposition V.6.2 and Lemma
IX.1.17). Such arguments necessarily produce factorizations which are natural
in morphisms in C, so that there is a natural fibrant model X < X for all objects
X of C. It follows that there are natural fibrant models for the objects of any
diagram category C! taking values in C. We therefore obtain a variation of the
proof of the existence of the closed model structure for C! of Example 7.9 which
uses Proposition 7.10. This means that the requirement in Theorem 7.8 that
every cofibration which has the left lifting property with respect to all fibrations
should be a weak equivalence is not particularly severe.

EXAMPLE 7.12. As an instance where the cofibrant generators are not w-small,
we point out that in Section IX.3 we will take the category of simplicial sets, with
its usual simplicial structure and impose a new closed model category structure.
Let E, be any homology theory and we demand that a morphism f: X — Y in
S be a

1) E. equivalence if E, f is an isomorphism
2) E, cofibration if f is a cofibration as simplicial sets

3) E. fibration if f has the right lifting property with respect to all E, trivial
cofibrations.

The FE, fibrant objects are the Bousfield local spaces. In this case the E,-trivial
cofibrations are the saturation of a set of F, trivial cofibrations f : A — B where
B is (-small with 3 some infinite cardinal greater than the cardinality of F,(pt).
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One has functorial factorizations, so Example 7.11 can be repeated to show that
S’ has a simplicial model category structure with f : X — Y a weak equivalence
(or fibration) if and only if X (i) — Y (i) is an E, equivalence (or E, fibration)
for all <.

8. Quillen’s total derived functor theorem.

Given two closed model categories C and D and adjoint functors between
them, we wish to know when these induce adjoint functors on the homotopy
categories. This is Quillen’s Total Derived Functor Theorem. We also give
criteria under which the induced adjoint functors give an equivalence of the
homotopy categories.

The ideas of this section are a generalization to non-abelian settings of an old
idea of Grothendieck which can be explained by the following example. If R is
a commutative ring and M, N are two R-modules, one might want to compute
Torf(M ,N), p > 0. However, there is a finer invariant, namely, the chain
homotopy type of M ®pr P, where P, is a projective resolution of N. One calls
the chain homotopy equivalence class of M ®r P, by the name TorR(M ,IN).
This is the total derived functor. The individual Tor terms can be recovered by
taking homology groups.

For simplicity we assume we are working with simplicial model categories,
although many of the results are true without this assumption.

DEFINITION 8.1. Let C be a simplicial model category and A any category.
Suppose F' : C — A is a functor that sends weak equivalences between cofibrant
objects to isomorphisms. Define the total left derived functor

LF : Ho(C) — A.

by LF(X) = F(Y) where Y — X is a trivial fibration with Y cofibrant.

It is not immediately clear that LF is defined on morphisms or a functor.
If f:X — X’ is a morphism in C and ¥ — X and Y/ — X’ are trivial
cofibrations with Y and Y’ cofibrant, then there is a morphism ¢ making the
following diagram commute:

y 2.y’

(8.2) l l

x 1. x

and we set LF'(f) = LF(g).
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LEMMA 8.3. The objects LF(X) and morphisms LF(f) are independent of the
choices and LF : Ho(C) — A is a functor.

PRrROOF: First note that LF'(f) is independent of the choice of g in diagram (8.2).
This is because any two lifts ¢ and ¢’ are homotopic and one has

FY)UF(Y) — F(Y ® AY) £5L, Py’

FHUF(1) lg
F(Y)

where H is the homotopy. Next, if we let f be the identity in (8.2), the same
argument implies LF(X) is independent of the choice of Y. Finally, letting
f = f1 o f2 be a composite in diagram (8.2) the same argument shows LF'(f; o
f2) =LF(f1) o LF(f2). u

REMARK 8.4. For those readers attuned to category theory we note that LF
is in fact a Kan extension in the following sense. Let 7 : C — Ho(C) be the
localization functor and

C L&HO(C )

s
F pid
W7

A

the diagram of categories. There may or may not be a functor Ho(C) — A
completing the diagram; however, one can consider functors 7' : Ho(C) — A
equipped with a natural transformation
er Ty — F.

The Kan extension is the final such functor T, if it exists. If R denotes this Kan
extension, final means that given any such T, there is a natural transformation
o :T — R so that ep = egoy. The Kan extension is unique if it exists. To
see that it exists one applies Theorem 1, p. 233 of Mac Lane’s book [66]. This

result, in this context reads as follows: one forms a category X | v consisting of
pairs (Z, f) where Z € C and f : X — Z is a morphism in Ho(C). Then if
R(X) = h£1 F(Z)
X1y
exists for all X, then R exists. However, the argument of Lemma 6.3 says that
the diagram F' : (X | 7v) — A has a terminal object. In fact, X | v has a

terminal object, namely X — Y where Y — X is a trivial fibration (which has
an inverse in Ho(C)) with Y cofibrant. This shows that R = LF. [
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COROLLARY 8.5. Let X € C. If X is cofibrant, then LF'(X) = F(X). IfY — X
is any weak equivalence, with Y cofibrant, then LF X = FY .

PrOOF: The first statement is obvious and the second follows from

FY 2LF(Y) S LF(X)
since Y — X is an isomorphism in Ho(C). [
ExaMPLE 8.6. Let C = C,R be chain complexes of left modules over a ring R,
and let A = nAb be graded abelian groups. Define

F(C)=H.(M ®grC)
for some right module M. Then

LF(C)=H.(M ®gr D)
where D — C'is a projective resolution of C. There is a spectral sequence

Tor (M, H,C) = (LF(C))p+q.

In particular, if H,C = N concentrated in degree 0,

LF(C) = Torf (M, N),

bringing us back to what we normally mean by derived functors.

If G : C — A sends weak equivalences between fibrant objects to isomorphisms,
one also gets a total right derived functor

RG : Ho(C) — A.

It is also a Kan extension, suitably interpreted: it is initial among all functors
S :Ho(C) — A equipped with a natural transformation ng : ' — S~.

Now suppose we are given two simplicial model categories C and D and a
functor F' : C — D with a right adjoint GG. The following is one version of the
total derived functor theorem:

THEOREM 8.7. Suppose F preserves weak equivalences between cofibrant ob-
jects and G preserves weak equivalences between fibrant objects. Then LF :
Ho(C) — Ho(D) and RG : Ho(D) — Ho(C) exists and RG is right adjoint to
LF.
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ProoOF: That LF and RG exist is a consequence of Lemma 8.3 and its analog
for total right derived functors. We need only prove adjointness.

If X € C, choose Y — X a trivial fibration with Y cofibrant. Hence LF(X) =
F(Y). Now choose F(Y) — Z, a trivial cofibration with Z fibrant. Then
RG o LF(X) = G(Z) and one gets a unit,

n:X — RGoLF(X)
by X —«Y - GF(Y) — G(Z).
Similarly, let A € D. Choose A — B a trivial cofibration with B fibrant. Then

RG(A) = G(B). Next choose C — G(B) a trivial fibration with C' cofibrant.
Then LF o RG(A) = F(C) and one gets a counit ¢ : LF o RG(A) — A by

F(C)— FGB — B «— A.
We now wish to show
LFn ERG
LF(X) — LFoRGoLF(X) — LF(X)

is an isomorphism. In evaluating egg we set A = LF(X) = F(Y), so that

B=2Z. FactorY - GF(Y) - G(Z) and Y ENGRN G(Z) where j is a cofibration
(so C is cofibrant) and ¢ is a trivial fibration. Then er¢ is given by

Fq
F(C) — FGZ — Z < FY.

Furthermore there is a commutative square

Y —— GF(Y)

]

C——G(2)
and F'j = PLFnx. Expanding the diagram gives:
F(Y)—— FGFY —— FY

b1k

F(O) s FGz — 7
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The line across the top is the identity and the indicated map is an isomorphism
in the homotopy category. Hence we have proved the assertion.
The other assertion—that

& GS
RG(A) = RG o LF o RG(A) S RG(A)

is an isomorphism—is proved similarly. The result now holds by standard argu-
ments; e.g., [66] Thm. 2v), p. 81. [ |

An immediate corollary used several times in the sequel is:

COROLLARY 8.8. Under the hypotheses of Theorem 8.7 assume further that for
X € C cofibrant and A € D cofibrant

X —-GA

is a weak equivalence if and only if its adjoint X — A is a weak equivalence.
Then LF and RG induce an adjoint equivalence of categories:

Ho(C) = Ho(D).

PROOF: We need to check that n : X — RG o LF(X) is an isomorphism and
e : LF o RG(A) — A is an isomorphism. Using the notation established in the
previous argument, we have a sequence of arrows that define 7:

X <Y —-GZ

Now Y is cofibrant and Z is fibrant, and F'Y — Z is a weak equivalence; so
Y — GZ is a weak equivalence and this shows 7 is an isomorphism. The other
argument is identical. |

In practice one may not know a priori that F' and G satisfy the hypotheses
of Theorem 8.7. The following result is often useful. We shall assume that the
model categories at hand are, in fact, simplicial model categories; however, it is
possible to prove the result more generally.

LEMMA 8.9. Let F' : C — D be a functor between simplicial model categories,
and suppose F' has a right adjoint G. If G preserves fibrations and trivial fibra-
tions, then F' preserves cofibrations, trivial cofibrations and weak equivalences
between cofibrant objects.
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Proor: It follows from an adjointness argument that F' preserves trivial cofi-
brations and cofibrations; for example, suppose j : X — Y is a cofibration in C.
To show Fj is a cofibration, one need only solve the lifting problem

FX—A

. /7’
FJJ/ P lq
//

FY — B

for every trivial fibration ¢ in D. This problem is adjoint to

X ——GA

P
|7 o

Y —GB

which has a solution by hypothesis.
Now suppose f : X — Y is a weak equivalence between cofibrant objects.

Factor f as X L. Z LY where J is a trivial cofibration and ¢ a trivial fibration.
We have just shown F'j is a weak equivalence. Also ¢ is actually a homotopy
equivalence: there is a map s : Y — Z so that gs = 1y and sq ~ 1;. Here X
and Y are cofibrant. We claim that F'q is a homotopy equivalence, so that it is
a weak equivalence by Lemma 4.1.

To see that Fq is a homotopy equivalence, note that F'(q)F(s) = 1py. Next
note that since Z is cofibrant, Z @ A! is a cylinder object for Z and, since F
preserves trivial cofibrations F(Z @ A') is a cylinder object for F(Z). Hence

REMARK 8.10. As usual, the previous result has an analog that reverses the
roles of F' and G namely, if F' preserves cofibrations and trivial cofibrations,
then G preserves fibrations, trivial fibrations, and weak equivalences between
fibrant objects. The proof is the same, mutatis mutandis.

EXAMPLE 8.11. Let I be a small category and S’ the category of I diagrams.
Then S’ becomes a simplicial model category, where a morphism of diagrams
X — Y is a weak equivalence or fibration if and only if X (i) — Y (¢) is a weak
equivalence of I-diagrams. The constant functor S — S’ preserves fibrations
and weak equivalences, so (by Lemma 8.9), the left adjoint

F=1lm:58" = §
H
I
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preserves weak equivalences among cofibrant diagrams. Hence the total left
derived functor
Llim : Ho(ST) — Ho(S)
—
I

exists. This functor is the homotopy colimit and we write Llim = holim. In
—7 ——

a certain sense, made precise by the notion of Kan extensions in Remark 8.4, is
the closest approximation to colimit that passes to the homotopy category. In
any application it is useful to have an explicit formula for holim X in terms of

I
the original diagram X this is given by the coend formula

holim X = / B(i | 1) ® X(i).
I

These are studied in detail elsewhere in these notes.
This example, can be vastly generalized. If C is any cofibrantly generated
simplicial model category, C! becomes a simplicial model category and one gets

holim : Ho(C") — Ho(C)
I

in an analogous manner. |

9. Homotopy cartesian diagrams.

We return, in this last section, to concepts which are particular to the cate-
gory of simplicial sets and its close relatives. The theory of homotopy cartesian
diagrams of simplicial sets is, at the same time, quite deep and essentially ax-
iomatic. The axiomatic part of the theory is valid in arbitrary categories of
fibrant objects such as the category of Kan complexes, while the depth is im-
plicit in the passage from the statements about Kan complexes to the category
of simplicial sets as a whole. This passage is non-trivial, even though it is com-
pletely standard, because it involves (interchangeably) either Quillen’s theorem
that the realization of a Kan fibration is a Serre fibration (Theorem 1.10.10) or
Kan’s Ex®™ construction (see II1.4).

A proper closed model category C is a closed model category such that

P1 the class of weak equivalences is closed under base change by fibrations,
and

P2 the class of weak equivalences is closed under cobase change by cofibra-
tions.
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In plain English, axiom P1 says that, given a pullback diagram

of C with p a fibration, if g is a weak equivalence then so is g,. Dually, axiom
P2 says that, given a pushout diagram

with ¢ a cofibration, if f is a weak equivalence then so is f,.

The category of simplicial sets is a canonical example of a proper closed model
category (in fact, a proper simplicial model category). Furthermore, this is the
generic example: most useful examples of proper closed model categories inherit
their structure from simplicial sets. The assertion that the category of simplicial
sets satisfies the two axioms above requires proof, but this proof is in part a
formal consequence of the fact that every simplicial set is cofibrant and every
topological space is fibrant. The formalism itself enjoys wide applicability, and
will be summarized here, now.

A category of cofibrant objects is a category D with all finite coproducts (in-
cluding an initial object ¢ ), with two classes of maps, called weak equivalences
and cofibrations, such that the following axioms are satisfied:

(A) Suppose given a commutative diagram

N

A
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in D. If any two of f, g and h are weak equivalences, then so is the third.

(B) The composite of two cofibrations is a cofibration. Any isomorphism is a
cofibration.

(C) Pushout diagrams of the form

exist in the case where ¢ is a cofibration. Furthermore, i, is a cofibration
which is trivial if ¢ is trivial.

(D) For any object X there is at least one cylinder space X ® I.

(E) For any object X, the unique map () — X is a cofibration.

To explain, a trivial cofibration is a morphism of D which is both a cofibration
and a weak equivalence. A cylinder object X ® I for X is a commutative diagram

Xux—Y .x

i = (io,il)[ /

X1

in which ¢ is a cofibration and ¢ is a weak equivalence, just like in the context
of a closed model category (see Section 1 above). Each of the components i. of
1 must therefore be a trivial cofibration.

The definition of category of cofibrant objects is dual to the definition of
category of fibrant objects given in Section 1.9. All results about categories of
fibrant objects therefore imply dual results for categories of cofibrant objects, and
conversely. In particular, we immediately have the dual of one of the assertions
of Proposition 1.9.5:

PrROPOSITION 9.1. The full subcategory of cofibrant objects C.. in a closed model
category C, together with the weak equivalences and cofibrations between them,
satisfies the axioms (A) - (E) for a category of cofibrant objects.
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REMARK 9.2. One likes to think that a category of cofibrant objects structure
(respectively a category of fibrant objects structure) is half of a closed model

structure. This intuition fails, however, because it neglects the power of the
axiom CM4.

COROLLARY 9.3.

(1) The category of simplicial sets is a category of cofibrant objects.

(2) The category of compactly generated Hausdorff spaces is a category of
fibrant objects.

LEMMA 9.4. Suppose that f : A — B is an arbitrary map in a category of
cofibrant objects D. Then f has a factorization f = q-j, where j is a cofibration
and q is left inverse to a trivial cofibration. In particular, q is a weak equivalence.

PrOOF: The proof of this result is the mapping cylinder construction. It’s also
dual of the classical procedure for replacing a map by a fibration.
Choose a cylinder object

AUA—Y .4

(io,h)l /

A®1

for A, and form the pushout diagram

f

A————B

Then (fo)-ig = f, and so there is a unique map ¢ : B, — B such that ¢- f, = fo
and q - i« = 1p. Then f = q- (f.i1).
The composite map f,21 is a cofibration, since the diagram

AuAiELLBuA

(iO,il)[ [(io*,f*il)



132 II. MOoODEL CATEGORIES

is a pushout. |

LEMMA 9.5. Suppose that

is a pushout in a category of cofibrant objects D, such that i is a cofibration and
u is a weak equivalence. Then the map u, is a weak equivalence.

Proor: Trivial cofibrations are stable under pushout, so Lemma 9.4 implies
that it suffices to assume that there is a trivial cofibration j : B — A such that
u - j =1 B-

Form the pushout diagram

B—J) .4
jl
A Jx
il
C’ﬁf)

J

Then j is a trivial cofibration.

Let f: D — C be the unique map which is determined by the commutative
diagram
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Form the prism

A u B
I\ |
Z ~
D u B.
C 0 D

such that the front and back faces are pushouts (ie. push out the triangle on the

left along u). Then 4 is a weak equivalence, since j is a weak equivalence and

u -7 = 1. It therefore suffices to show that the map f, is a weak equivalence.
The bottom face

D—% B,

1

C——0D

is a pushout, and the map f is a weak equivalence. The morphism

A
27N
D 7 C

is therefore a weak equivalence in the category A | D, and the argument of
Lemma 9.4 says that this map has a factorization in A | D of the form f = ¢q- 7,
where j is a cofibration and ¢ is left inverse to a cofibration. It follows that
pushing out along u preserves weak equivalences of A | D, so that f, is a weak
equivalence of D. |

COROLLARY 9.6. The category S of simplicial sets is a proper simplicial model
category.
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PRrROOF: Axiom P2 is a consequence of Lemma 9.5 and Corollary 9.3. The cate-
gory CGHaus of compactly generated Hausdorff spaces is a category of fibrant
objects, so the dual of Lemma 9.5 implies Axiom P1 for that category. One
infers P1 for the simplicial set category from the exactness of the realization
functor (Proposition 1.2.4), the fact that the realization functor preserves fibra-
tions (Theorem 1.10.9), and the fact that the canonical map n: X — S|X]| is a
weak equivalence for all simplicial sets X (see the proof of Theorem 1.11.4). W

REMARK 9.7. Axiom P1 for the category of simplicial sets can alternatively be
seen by observing that Kan’s Ex> preserves fibrations and pullbacks (Lemma
I11.4.5), and preserves weak equivalences as well (Theorem II1.4.6). Thus, given
a pullback diagram

with p a fibration and g a weak equivalence, if we want to show that g, is a weak
equivalence, it suffices to show that the induced map Ex> g, in the pullback
diagram

Ex® X X 95 peooy

| |EX°<>p

EXOO A T) EXinfty W
Ex™ g

is a weak equivalence. But all of the objects in this last diagram are fibrant and
the map Ex™ g is a weak equivalence, so the desired result follows from the dual
of Lemma 9.5.

The following result is commonly called the glueing lemma. The axiomatic
argument for it that is given here is due to Thomas Gunnarsson [40].
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LEMMA 9.8. Suppose given a commutative cube

(9.9)

1/

135

Ch D,
fc
: B2 fD
J2
Co D,

in a category of cofibrant objects D. Suppose further that the top and bottom
faces are pushouts, that i1 and i, are cofibrations, and that the maps fa, fB
and fo are weak equivalences. Then fp is a weak equivalence.

Proor: It suffices to assume that the maps j; and jo are cofibrations. To see
this, use Lemma 9.4 to factorize j; and js as cofibrations followed by weak
equivalences, and then use Lemma 9.5 to analyze the resulting map of cubes.

Form the diagram

Aq

fa

Ji Bl
C jl* D
! fA* !
B/ 0 fC’*
fC /
npg D/
jo 2 .
Cy Ds.
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by pushing out the top face along the left face of the cube (9.9). The square

Ay —— B’

CQ — D/
is a pushout, so the square

B "B .p,

| |

D/ TL—D) DQ
is a pushout, and 0 is a cofibration. The map f 4, is a weak equivalence, since j; is
a cofibration and f4 is a weak equivalence. Similarly, fco. is a weak equivalence,
since ji1, is a cofibration and fo is a weak equivalence. The map fg =np - fa«
is assumed to be a weak equivalence, so it follows that ng is a weak equivalence.
Then np is a weak equivalence, so fp = np - fo. is a weak equivalence. |

The dual of Lemma 9.8 is the co-glueing lemma for categories of fibrant objects:

LEMMA 9.10. Suppose given a commutative cube

A1 Bl
\ X
fA Cl D,
/B
(9.11)
A2 fc B2 fD
\ XQJ
Cs Dy

in a category of fibrant objects £. Suppose further that the top and bottom
squares are pullbacks, that the maps p; and py are fibrations, and that the maps
fB, fc and fp are weak equivalences. Then the map f4 is a weak equivalence.
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Either of the two methods of proof of Corollary 9.6 given above (see also
Remark 9.7), together with Lemma 9.10, now yield the following expanded con-
sequence for the full category of simplicial sets:

COROLLARY 9.12. Suppose given a commutative cube

X1 Yl
fX W1 Zl
fy
fw
X2 Y2 fZ
Wo Zs

of morphisms in the category S of simplicial sets. Suppose further that the top
and bottom squares are pullbacks, that the maps p; and po are fibrations, and
that the maps fy, fw and fz are weak equivalences. Then the map fx is a
weak equivalence.

Corollary 9.12 is the basis for the theory of homotopy cartesian diagrams in
the category of simplicial sets. We say that a commutative square of simplicial
set maps

X——Y

(9.13) ‘ If

W———Z7

is homotopy cartesian if for any factorization

y —1 7

(9.14) x %

Y
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of f into a trivial cofibration ¢ followed by a fibration p the induced map
X S WxgY

is a weak equivalence.

In fact (and this is the central point), for the diagram (9.13) to be homotopy
cartesian, it suffices to find only one such factorization f = p o such that the
map i, is a weak equivalence. This is a consequence of the following:

LEMMA 9.15. Suppose given a commutative diagram

of f as trivial cofibration i; followed by a fibration p; for j = 1,2. Then the
induced map i1, : X — W Xz Y] is a weak equivalence if and only if the map
195 : X — W Xz Y5 is a weak equivalence.

PRrROOF: There is a lifting # in the diagram

YL)YQ

7

Vi ——— 7,

b1
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by the closed model axioms. Form the commutative cube

WXZYi Yl
0. %% A
0
1w
WXZYVQ Y2 1Z
W A

Then the map 6, is a weak equivalence by Corollary 9.12. There is a commutative
diagram

, W xzY;
1%
X 0.
w Xz Yv27
and the desired result follows. [ |

REMARK 9.16. The argument of Lemma 9.15 implies that the definition of ho-
motopy cartesian diagrams can be relaxed further: the diagram (9.13) is homo-
topy cartesian if and only if there is a factorization (9.14) such that p is a fibration
and i is a weak equivalence, and such that the induced map i, : X — W x5 Y
is a weak equivalence.

The way that the definition of homotopy cartesian diagrams has been phrased
so far says that the diagram
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is homotopy cartesian if a map induced by a factorization of the map f into a
fibration following a trivial cofibration is a weak equivalence. In fact, it doesn’t
matter if we factor f or g:

LEMMA 9.17. Suppose given a commutative diagram

X——>Y

|l

W—Z7

9

in the category of simplicial sets. Suppose also that we are given factorizations
Y f AN J Z
Y W

of f and g respectively such that ¢ and j are trivial cofibrations and p and q are
fibrations. Then the induced map i. : X — W Xz Y Is a weak equivalence if
and only if the map j. : X — W xz Y is a weak equivalence.

PrROOF: There is a commutative diagram

X —"% W,V

j*l lix1

VNVXZY—.>WXZY.
1x1

The map p is a fibration, so the map j x 1 is a weak equivalence, and ¢ is a
fibration, so 1 x ¢ is a weak equivalence, all by Corollary 9.12. |

The coglueing lemma also has the following general consequence for homotopy
cartesian diagrams:
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COROLLARY 9.18. Suppose given a commutative cube

Xl\ Yl\
fX W1 Zl
fy
XZ\fW YQ\ [z
Wy Zo

of morphisms in the category S of simplicial sets. Suppose further that the top
and bottom squares are homotopy cartesian diagrams, and that the maps fy,
fw and fz are weak equivalences. Then the map fx is a weak equivalence.

A homotopy fibre sequence of simplicial sets is a homotopy cartesian diagram
in S
J

X —Y

L

*TZ-

In effect, one requires that the composite f o j factor through the base point x of
Z, and that if f = poi is a factorization of f into a trivial cofibration followed
by a fibration, then the canonical map X — F'is a weak equivalence, where F is
the fibre of p over z. More colloquially (see also Remark 9.16), this means that
X has the homotopy type of the fibre F' of any replacement of the map f by a
fibration up to weak equivalence. It is common practice to abuse notation and
say that

J f
X =Y —>Z7
is a homotopy fibre sequence, and mean that these maps are a piece of a homo-
topy cartesian diagram as above. Every fibration sequence

F—F—B

is plainly a homotopy fibre sequence.
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ExXAMPLE 9.19. Suppose that
xLyv Lz

is a homotopy fibre sequence, relative to a base point x of Z, and that there is
a vertex y € Y such that f(y) = x. Suppose that the canonical map ¥ — x is a
weak equivalence. Then X is weakly equivalent to the loop space Q7 for some
(and hence any) fibrant model Z for Z. To see this, choose a trivial cofibration
j:Z — Z, where Z is a Kan complex, and use the factorization axioms to form

the commutative square
Yy ——Y
7z ——— 7,

where both maps labelled j are trivial cofibrations and p is a fibration. Let F
denote the fibre of the fibration p over the image of the base point z in Z. Then
Corollary 9.18 implies that the induced map X — F' is a weak equivalence. Now
consider the diagram

Y x, Pz R,

| ‘w

Y ——— 7,

where PZ is the standard path space for the Kan complex Z and the base
point x, and 7 is the canonical fibration. Then the map y : x — Y is a weak
equivalence, so that the inclusion QZ — Y x Z PZ of the fibre of the fibration
pry, is a weak equivalence, by properness, as is the inclusion F' — Y x Z PZ of
the fibre of prr. In summary, we have constructed weak equivalences

X S F Y x;PZ—QZ.

This collection of ideas indicates that it makes sense to define the loop space
of a connected simplicial set X to be the loops QX of a fibrant model X for X
— the loop space of X is therefore an example of a total right derived functor,
in the sense of Section II.7.
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Here is a clutch of results that illustrates the formal similarities between ho-
motopy cartesian diagrams and pullbacks:

LEMMA 9.20.
(1) Suppose that

is a commutative diagram in the simplicial set category such that the
maps « and (3 are weak equivalences. Then the diagram is homotopy
cartesian.

(2) Suppose given a commutative diagram

X4 X5 X3
Y Yo Ys

in S. Then

(a) if the diagrams I and II are homotopy cartesian then so is the
composite diagram I + I1

X1 —— X3

.

Y1—>Y37

(b) if the diagrams I + II and II are homotopy cartesian, then I is
homotopy cartesian.
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The proof of this lemma is left to the reader as an exercise.

The stream of results and definitions beginning with Corollary 9.12 for sim-
plicial sets holds much more generally for arbitrary proper simplicial model cat-
egories, in view of the following result (and its dual):

LEMMA 9.21. Let C be a proper simplicial model category. Consider a diagram

D, < ¢, X,
[ A
Dy« Oy X,

J2
where j; and jy are cofibrations and the three vertical maps are weak equiva-
lences. Then the map D; Uc, X1 — D2 Uc, X2 is a weak equivalence.

PROOF: We use the proper hypothesis to reduce to the case C'; = Cy and X; =
X5 and then argue appropriately.
First notice that there is a pushout diagram

X ——mm Xo

l |

D1 Ucl X1 E— D1 UC’1 XQ.

Since X7 — D7 Ug, X7 is a cofibration (because j; is) and X7 — X5 is a weak
equivalence, properness implies D; Ug, X1 — D1 U, Xa is a weak equivalence.
Thus we may assume X; = X, = X.

Next notice that there is a pushout diagram

Cl —>CQ

| |

D1 — D1 Ucl 02.

Since j; is a cofibration and C; — (s is a weak equivalence, properness implies
D; — Dy Ug, Oy is a weak equivalence. Now

Dy Uc, X = (Dl Uc, 02) Uc, X
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and we are reduced to considering the diagram

D1 Ug, Co Csy X
T T
Dl CQ X.

Note that Cy — D; Ug, Oy is a cofibration and D; Ug, Cy — Do is a weak
equivalence. Thus we may assume C7; = Cy = C.
Now factor Dy — D5y as

D, 5 7% D,

where j is a trivial cofibration and ¢ is a fibration. Then ¢ is a trivial fibration,
and the composite C' — Z is a cofibration. There is a pushout diagram

D1 —>D1 UcX

d |

Z —— Z U X.

Since j is a trivial cofibration, so is D; Uc X — Z Ug X. We will argue that
Z Uc X — Dy Ue X is a homotopy equivalence and we’ll be done. To see this
last claim, note that there is a left s : Dy — Z solving the lifting problem

C ——Z7

//?
i q
e

_D2 = DQ.

Then ¢s = 1p, and sq and 1z are both solutions to the lifting problem
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so sq and 1z are homotopic under C. Thus Z Uc X — Dy Uc X has a section
induced from s and is a homotopy equivalence. Now invoke Lemma 4.1. |

The dual of Lemma 9.21 is an obvious generalization of the statement of
Corollary 9.12. The proofs of the statements in 9.15 — 9.18 and Lemma 9.20
are formal consequences of properness for the simplicial set category and Corol-
lary 9.12, and can therefore be promoted to arbitrary proper simplicial model
categories C. Thus, we are entitled to say that a diagram

in C is homotopy cartesian if for any factorization

y —1 7

N A

Y
of f into a weak equivalence i followed by a fibration p the induced map

X S Wx, Y

is a weak equivalence. Then the standard calculus of homotopy cartesian dia-
grams in simplicial sets obtains in this extended context.

We close with a further application of categories of cofibrant objects structures.
Let C be a fixed choice of simplicial model category having an adequate supply
of colimits. Suppose that 3 is a limit ordinal, and say that a cofibrant (3-sequence
in C is a functor X : Seq() — C, such that all objects X; are cofibrant, each
map X; — X1 is a cofibration, and X; = h_r}nKt X; for all limit ordinals t < (3.
The cofibrant 8-sequences, with ordinary natural transformations between them,
form a category which will be denoted by Cg. Say that a map f: X — Y in Cg
is a weak equivalence if all its components f : X; — Y; are weak equivalences of
C, and say that g : A — B is a cofibration of Cg if the maps g : A; — B, are
cofibrations of C, as are all induced maps B; Ua, A;11 — Bit1.
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LEMMA 9.22. Let C be a simplicial model category having all filtered colimits.
With these definitions, the category Cg of cofibrant 3-sequences in C satisfies the
axioms for a category of cofibrant objects.

PROOF: Suppose that A — B — C are cofibrations of Cg. To show that the
composite A — C is a cofibration, observe that the canonical map C;U4, A;41 —
C;+1 has a factorization

CiUa, Aipa Cit1

7

Ci Up, Bi+1
and there is a pushout diagram

B;Uy, Aiyn —— Bina

| |

CiUg, Ajpg ——— C; U, Biqq.

Suppose that

C—D
is a pushout diagram of Seq((3)-diagrams in C, where A, B and C are cofibrant

(-sequences and the map i is a cofibration of same. We show that D is a cofibrant
(B-sequence and that 7, is a cofibration by observing that there are pushouts

CiUa, Aiy1 — D; Up, Biya

| |

C112—}—1 Di—|—17
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and that the maps D; — D, Up, B;;1 are cofibrations since B is a cofibrant
(-sequence.

Suppose that A is a cofibrant (#-sequence, and let K be a simplicial set. Then
the functor A ® K : Seq(8) — C is defined by (A® K); = A; ® K. The functor
X — X ® K preserves cofibrations and filtered colimits of C, so that A ® K is
a cofibrant (3-sequence. Furthermore, if K — L is a cofibration of S then the
induced map A ® K — A ® L is a cofibration of Cg: the proof is an instance of
SMT7. It follows that the obvious diagram

AQOA' — s Ao AY

|

A® A

is a candidate for the cylinder object required by the category of cofibrant objects
structure for the category Cg. |

LEMMA 9.23. Suppose that C is a simplicial model category having all filtered
colimits. Suppose that f : A — B is a cofibration and a weak equivalence of Cg.
Then the induced map

fe:limA; — lim B;
— —
i< i<B

is a trivial cofibration of C.

PROOF: Suppose given a diagram

ImA; —— X
H
1<

limB;, ——Y
—
i<
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where p is a trivial fibration of C. We construct a compatible family of lifts

(9.24) fz-[ % lp

as follows:

1) Let 05 be the map induced by all §; for i < s at limit ordinals s < /3.
2) Given a lifting 6; as in diagram (9.24), form the induced diagram

Bi UAi Ai+1 L X

P
f*[ Oiss ‘p

e

Bz’—i—l — Y.

The map f,. is a trivial cofibration of C, since f is a cofibration and a weak
equivalence of Cg, so the indicated lift ;1 exists. [ |

COROLLARY 9.25. Suppose that C is a simplicial model category having all
filtered colimits, and that f : X — Y is a weak equivalence of cofibrant [3-
sequences in C. Then the induced map

fs:lim X; — limY;
— —
i<p i<p

is a weak equivalence of C.

ProoF: We have it from Lemma 9.22 that Cgs is a category of cofibrant objects,
and Lemma 9.4 says that f : X — Y has a factorization f = ¢ - j, where j
is a cofibration and ¢ is left inverse to a trivial cofibration. Then j is a trivial
cofibration since f is a weak equivalence, and so Lemma 9.23 implies that both
j and p induce weak equivalences after taking filtered colimits. |

The dual assertion for Corollary 9.25 is entertaining. Suppose, again, that 3 is
a limit ordinal and that C is a simplicial model category having enough filtered
inverse limits. Define a fibrant 5-tower in C to be (contravariant) functor X :
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Seq(f)°? — C such that each X; is a fibrant object of C, each map X;11 — X;
is a fibration of C, and X; = h;n tXi for all limit ordinals ¢ < (3. Then the
1<

dual of Lemma 9.22 asserts that, for pointwise weak equivalences and a suitable
definition of fibration, the category of fibrant (-towers in C has a category of
fibrant objects structure. The dual of Lemma 9.23 asserts that the inverse limit
functor takes trivial fibrations of fibrant -towers to trivial fibrations of C, and
then we have

LEMMA 9.26. Suppose that C is a simplicial model category having all filtered
inverse limits, and that f : X — Y is a weak equivalence of fibrant (-towers in
C. Then the induced map

fs:lim X; — limY;
— —
i< 1<

is a weak equivalence of C.

For fibrant (-towers X : Seq((3)°? — S taking values in simplicial sets, one
can take a different point of view, in a different language. In that case, fibrant 3-
towers are globally fibrant Seq(/3)°P-diagrams, and inverse limits and homotopy
inverse limits coincide up to weak equivalence for globally fibrant diagrams, for
all 8. Homotopy inverse limits preserve weak equivalences, so inverse limits
preserve weak equivalences of fibrant §-towers. Homotopy inverse limits and
homotopy theories for categories of diagrams will be discussed in Chapters 6
and 7.



Chapter III Classical results and constructions

This chapter is a rather disparate collection of stories, most of them old and
well known, but told from a modern point of view.

The first section contains several equivalent descriptions of the fundamental
groupoid, one of which (ie. left adjoint to a classifying space functor) is powerful
enough to show that the fundamental groupoid of a classifying space of a small
category is the free groupoid on that category (Corollary 1.2), as well as prove
the Van Kampen theorem (Theorem 1.4).

The second section, on simplicial abelian groups, contains a complete devel-
opment of the Dold-Kan correspondence. This correspondence is an equivalence
of categories between chain complexes and simplicial abelian groups; the result
appears as Corollary 2.3. We also give an elementary description of the proper
simplicial model structure for the category of simplicial abelian groups (The-
orem 2.6, Proposition 2.11, and Remark 2.12), and then use this structure to
derive the standard isomorphism

H"(X,A) 2 [X,K(A,n)]

relating cohomology to homotopy classes of maps which take values in an Eilen-
berg-Mac Lane space (Corollary 2.17). We close Section 2 by showing that every
simplicial abelian group is non-canonically a product of Eilenberg-Mac Lane
spaces up to homotopy equivalence (Proposition 2.18).

We have included Section 3, on the Hurewicz theorem, as further evidence for
the assertion that many results in the Algebraic Topology canon have very clean
simplicial homotopy proofs. We use Postnikov towers and the Serre spectral
sequence, both of which appear here for the first time in the book and are
described more fully in later chapters. The Hurewicz homomorphism itself has
a very satisfying functorial description in this context: it is the adjunction map
X — ZX from a simplicial set X to the corresponding free abelian simplicial
group ZX.

Section 4 contains a modernized treatment of Kan’s Ex> functor. This functor
gives a combinatorial (even intuitionistic), natural way of mapping a simplicial
set into a Kan complex, via a weak equivalence. The construction is there-
fore preserved by left exact functors which have right adjoints — these appear
throughout topos theory [38]. We have seen similar applications already in Chap-
ter I in connection with detecting simplicial model structures on categories of
simplicial objects. The main theorem here is Theorem 4.7. The proof is an
updated version of the original: the fundamental groupoid trick in Lemma 4.2
may be new, but the heart of the matter is Lemma 4.6.

151
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There are two different suspension functors for a pointed simplicial set X,
namely the smash product S A X (where S = A'/OA! is the simplicial circle),
and the Kan suspension ¥ X. These are homotopy equivalent but not isomorphic
constructions which have natually homeomorphic realizations. They further rep-
resent two of the standard subdivisions for the suspension of a pointed simplicial
complex. Both have their uses; in particular, the Kan suspension is more easily
related to the classifying space of a simplicial group which appears in Chapter
V, and hence to Eilenberg-Mac Lane spectra [52]. We give a full treatment of
the Kan suspension in Section 5, essentially to have it “in the bank” for later.
Along the way, we say formally what it means for a simplicial set to have an
extra degeneracy. This last idea has been in the folklore for a long time — it
means, most succinctly, that the identity map on a simplicial set factors through
a cone.

1. The fundamental groupoid, revisited.

Recall from Section 1.8 that the classical fundamental groupoid 7|X| of the
realization of a simplicial set X coincides with the groupoid ;S| X| associated
to the singular complex S| X|. In that section, there is a remark to the effect that
this groupoid is equivalent to the free groupoids GP,X and G(A | X) which
are associated, respectively, to the path category P, X and the simplex category
A | X for X. This claim has the following precise form:

THEOREM 1.1. The groupoids G(A | X), GP.X and w|X| are naturally equiv-
alent as categories.

Proor: A functor f : G — H between groupoids is an equivalence if and only
if
(1) the induced function f : homg(a,b) — hompg(f(a), f(b)) is a bijection for
every pair of objects a,b of G, and

(2) for every object ¢ of H there is a morphism ¢ — f(a) in H.

The groupoids GP,S|X| and 7| X | are naturally isomorphic. The 1-simplices of
S| X | are paths of | X|, and [d10] = [doo]o|da0] for every 2-simplex o : |A%| — | X]|
of S|X|. It follows that there is a functor vx : GP.S|X| — m|X| which is
defined by sending a path to its associated homotopy class. The inverse of vx
is constructed by observing that homotopic paths in |X| represent the same
element of GP,S|X]|.

The next step is to show that the functor GP, takes weak equivalences of
simplicial sets to equivalences of groupoids. If f is a weak equivalence of S, then
f has a factorization f = q o j where ¢ is a trivial fibration and j is a trivial
cofibration. The map ¢ is left inverse to a trivial cofibration, and every trivial
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cofibration is a retract of a map which is a filtered colimit of pushouts of maps
of the form A} C A™. It suffices, therefore to show that GP, takes pushouts of
maps A} C A" to equivalences of categories.

The induced map GP,(A}) — GP,(A") is an isomorphism of groupoids if
n > 2. The groupoid GP,(A}) is a strong deformation retract of GP,(A?!) in the
category of groupoids for ¢ = 0, 1. Isomorphisms and strong deformation retrac-
tions of groupoids are closed under pushout, and so G P, takes weak equivalences
of simplicial sets to equivalences of groupoids as claimed. It follows in particular
that the groupoids GP,X and m|X]| are naturally equivalent.

We can assign, to each 1-simplex z : dyz — doz, the morphism (d°)~!(d!) of
G(A | X) arising from the diagram

This assignment defines a functor wx : GP,.X — G(A | X), since the following
diagram of simplicial maps commutes:

X/ \Va
VA

Let v, : A — A" denote the simplicial map which picks out the last vertex n
of the ordinal number n. Then the assignment

A" L x A A D x
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is the object function of a functor A | X — P.X. Write vy : G(A | X) —
GP, X for the induced functor on associated groupoids. Then the composite
functor vx owx is the identity on G P, X, and the composite wx ovx is naturally
isomorphic to the identity on G(A | X). The natural isomorphism is determined
by the maps

A0 T U x

14

A’I’L

of the simplex category A | X. [ |

From now on, the fundamental groupoid of a simplicial set X, in any of its
forms, will be denoted by 7X.

A simplicial set map f : X — BC associates to each n-simplex z of X a
functor f(z): n — C which is completely determined by the 1-skeleton of x and
the composition relations arising from 2-simplices of the form

A A" S X
It follows that f can be identified with the graph morphism

X1 —> Mor(C')

-

Xo ——— Ob(C

f

subject to the relations f(dio) = f(doo) - f(dao) arising from all 2-simplices o
of X. The path category P,X is the category which is freely associated to the
graph

X1 = Xo

and the 2-simplex relations, so that there is an adjunction isomorphism
homeat (P X, C') = homg (X, BC).

A small category C' is completely determined by its set of arrows and com-
position relations. It follows that the path category P.BC of the nerve BC is
isomorphic to C'. We therefore immediately obtain the following assertion:
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COROLLARY 1.2. Let C' be a small category. Then the fundamental groupoid
wBC of the nerve of C' is equivalent, as a category, to the free groupoid GC on
the category C'.

Corollary 1.2 may be used to give a direct proof of the fact that the fundamen-
tal group m BQA of the nerve of the Q-construction QA on an exact category
A is isomorphic to the 0" K-group KoA of A (see [48]).

REMARK 1.3. In the proof of Theorem 1.1, observe that the composite
S|X| — BP.S|X| — BGP.S|X| =5 7|X]|

sends a path o : A — S|X]| of | X| to its homotopy class [a] (rel DA!). Tt follows
that the composite
S|X| — BP,S|X| — BGP.S|X]|

induces isomomorphisms (S| X|, z) = 7 (BGP,.S| X, x) for all choices of vertex
x € S|X|. We have also seen that the functor GP, takes weak equivalences of
simplicial sets to equivalences of groupoids, so that the commutativity of the
diagram

X—BP,X— BGP. X
nl 77*[ [77*
S| X| ——— BP.S|X| ——— BGP,S|X|
implies that the composite
X —- BP,X — BGP, X
induces isomorphisms
m (X, z) 2 m(BGP. X, x) 2 homgp, x (x, )
for any choice of vertex x € X, if X is a Kan complex.
Note, in particular, that if X is connected, then there is a deformation retrac-

tion map of groupoids r : GP,X — homgp, x (z,x) for any choice of vertex of
X. This map r determines a composite map

X — BP,X — BGP.X — B(homgp. x (z, 1)),
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which induces isomorphisms
m1(X,y) 2 m(Bhomgp, x (z,2)) = homgp, x (x, z)
for all vertices y of X. It follows that there is a map
X — B(m(X,z))

which induces isomorphisms on all fundamental groups if X is a connected Kan
complex with base point x.

Again, the fundamental groupoid construction takes weak equivalences of sim-
plicial sets to equivalences of groupoids. It follows, in particular, that there is a
purely categorical definition of the fundamental group 71 (X, z) of an arbitrary
simplicial set X at a vertex x, given by

m (X, z) = hom, x (z, z).

This definition can be used, along with the observation that the fundamental
groupoid construction m = G P, has a right adjoint and therefore preserves col-
imits, to give a rather short proof of the Van Kampen theorem:

THEOREM 1.4 (VAN KAMPEN). Suppose that

A—t X

I

B—Y

is a pushout diagram of simplicial sets, where the map j is a cofibration, and A,
B and X are connected. Then, for any vertex x of A, the induced diagram

T (A, z) —— m (X, 7)

i |

m1(B,x) —— m (Y, z)

is a pushout in the category of groups.
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ProoOF: The glueing lemma I1.9.8 implies that we can presume that the map i
is also a cofibration.

The induced maps i, : TA — 7X and j, : TA — @B of fundamental
groupoids are monomorphisms on objects, and so the strong deformation r :
mA — m(A,x), by suitable choice of paths in X andB, can be extended to a
strong deformation

in a suitable diagram category in groupoids, meaning that the homotopy A :
7A — mA! giving the deformation extends to a homotopy

Us

B TA I X

[

7TBl <Z—7TA1 ]—>7TX1

But then, if
(A7) — (X, )
i [
m(B,z) — G
is a pushout in the category of groups, it is also a pushout in the category of
groupoids, and so the group G is a strong deformation retraction of the groupoid
7Y, since the diagram
TA SN X
i |
™B — 1Y

is a pushout in groupoids. The group G is therefore isomorphic to w1 (Y, z). W
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2. Simplicial abelian groups: the Dold-Kan correspondence.

Suppose that A is a simplicial abelian group, and define

n—1
NA, = () ker(d;) C Ay.
=0

The maps

(=1)"dn
NA, — NA,

form a chain complex, on account of the simplicial identity
dn—ldn = dn—ldn—l-

Denote the corresponding chain complex by N A; this is the normalized chain
complex associated to the simplicial abelian group A. The assignment A — N A
is plainly a functor from the category sAb of simplicial abelian groups to the
category Ch, of chain complexes.

The Moore complex of a simplicial abelian group A has the group A,, of n-
simplices of A as n-chains, and has boundary 0 : A,, — A,,_1 defined by

(9 = Z(—l)zdz : An — An—l-
1=0

Of course, one has to verify that 92 = 0, but this is a consequence of the simplicial
identities. The notation A will be used for the second purpose of denoting the
Moore complex of the simplicial abelian group A — this could be confusing, but
it almost never is.

Let DA, denote the subgroup of A, which is generated by the degenerate
simplices. The boundary map 0 of the Moore complex associated to A induces
a homomorphism

0: An/DAn — Anfl/DAnfl.

The resulting chain complex will be denoted by A/D(A), meaning “A modulo
degeneracies”. One sees directly from the definitions that there are chain maps

NAL a2 a/pay,

where 7 is the obvious inclusion and p is the canonical projection.
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THEOREM 2.1. The composite

NaZh a/p(a)

is an isomorphism of chain complexes.
PROOF: Write

J
N;Ap = () ker(d;) C An,
=0

and let D;(A,) be the subgroup of A,, which is generated by the images of the
degeneracies s; for ¢ < j. One shows that the composite

p
NjAn — An — An/Dj(An)
is an isomorphism for all n and j < n. Let ¢ denote this composite.
This is proved by induction on j. The case j = 0 is easy: any class [z] €
Ay, /s0(Ap—1) is represented by x — sodpx, and do(z — sedpx) = 0, so ¢ is onto;
if dpx = 0 and x = sgy, then

0 = dox = dosoy = ¥,

so x = 0.
Suppose that the map

is known to be an isomorphism if k¥ < j, and consider the map
¢ : N]An — An/Dg<An)

Form the commutative diagram

Ny Ay —2 A, /D; (A

[ |

NjAn T An/Dj (An)

112
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On account ot the displayed isomorphism, any class [z] € A,,/D;(A,) can be
represented by an element x € N;_1A,. But then x — s;d;z is in N;A,, and
represents [z], so the bottom map ¢ in the diagram is onto. The simplicial
identities imply that the degeneracy s; : A,-1 — A, maps N;_;A,_; into
N;_1A,, and takes D;_1(A,—1) to D;_1(A,), and so there is a commutative
diagram

Nj—lAn—1L> n—1/Dj—1(An—1)

| ‘

Nj—lAn An/Dj—l(An)~

I

Furthermore, the sequence

0— An_1/Dj_1(An-1) = Ap/Dj-1(An) — An/Dj(An) — 0

is exact. Thus, if ¢(xz) = 0 for some x € N;A,, then z = s;y for some y €
N;_1A,. But (again), djz = 0, so that

0=djz =djs;y =y,

so that z = 0, and our map is injective. |

Every simplicial structure map d* : A,, — A,, corresponding to a monomor-
phism d : m — n of ordinal numbers takes N A,, into NA,,. In fact, such maps
are 0 unless d is of the form d = d" : n — 1 — n. Put a different way, suppose
given a collection of abelian group homomorphisms

0:C, —Ch_1, n>0.

Associate to each ordinal number n the group C),, and map each ordinal number
monomorphism to an abelian group homomorphisms by the rule

(=n"o

0 if d is not some d", and
d—
n Cn_q ifd=d".

Then we get a contravariant functor on the category of ordinal number mor-
phisms from such an assignment if and only if we started with a chain complex.
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There is a simplicial abelian group whose n-simplices have the form
P VA

Note that the direct sum is indexed over all ordinal number epimorphisms whose

source is n. The map
0" : @ NA, — P NA,

n—k m-—»r

associated to the ordinal number map 6 : m — n is given on the summand
corresponding to ¢ : n — k by the composite
dr in
NA, — NA, — P N4,
m—»r
where

t d
m-—»s<—k

is the epi-monic factorization of the composite

(% o
m — n — k.

Note as well that there is a morphism of simplicial abelian groups which is
given in degree n by the map

\IJ:EBNA;CHA”,

n—k

which is given at the summand corresponding to ¢ : n — k by the composite

NA, < A, — A,,.

PROPOSITION 2.2. The map V is a natural isomorphism of simplicial abelian
groups.

PROOF: An induction on the degree n starts with the observation that NAy =
Ap, and that there’s only one map from the ordinal number 0 to itself. Suppose
that ¥ is known to be an isomorphism in degrees less than n. Then any degen-
eracy sjx € A, is in the image of ¥, because x is in the image of ¥ in degree
n — 1. On the other hand, ¥ induces an isomorphism of normalized complexes,
so ¥ is epi in degree n by Theorem 2.1.
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Suppose that (z,) maps to 0 under ¥, where x, is the component of (z,)
which corresponds to o0 : n — k. If £k < n, then o has a section d : k — n,
and the component of d*(x,) which corresponds to the identity on k is z,. But
Vd*(z,) =0, so d*(z,) = 0 by the inductive hypothesis, and so z, = 0 in N Ay.
Thus, z, = 0 for ¢ : n - k with £ < n. The remaining possibly non-trivial
component is z;, € NA,. But the restriction of ¥ to NA, is the inclusion
NA, — A,, so that x;_ = 0 as well. [ |

Implicit in the above is a definition of a functor
I': Chy — sAb

from chain complexes to simplicial abelian groups, with

P(C)n = @ Ck

n—k

for a chain complex C, and with simplicial structure maps given by the recipe
above. The following result is now obvious from the work that we have done:

COROLLARY 2.3 (DoLD-KAN). The functors
N :sAb — Ch; and I':Chy — sAb

form an equivalence of categories.

PROOF: The natural isomorphism I''V(A) = A is Proposition 2.2, and the nat-
ural isomorphism NT'(C) = C can be derived from Theorem 2.1 by collapsing
I'(C) by degeneracies. |

There is a subcomplex N;A of the Moore complex A, which is defined by

g:o ker(d;) formn > j+2,

NjAn:{ .
NA, forn <j+1.

To see that these groups form a subcomplex, one has to verify that given = €
N; A, with n > j + 2, then

a3 (~1)'di(x)) =0
i=j+1

if k < j. This is a consequence of the simplicial identities dpd; = d;_1d that
hold for ¢ > k.
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Observe that NgA = A, that N;;1A C N;A, and that NA = N;>oN;A. Let
i; denote the inclusion of N;j; 1A into N;A.
Now define abelian group homomorphisms f; : N;A,, — N;1 A, by specifying
that
x — sjy1djyi(x) ifn>j+2, and
fi(x) = . .
T ifn<j+1.

One has to check that f; takes values in N;;1A,, but this is an easy simplicial
identity argument. The simplicial identities also imply that the collection of
maps f; defines a chain map f; : N;A — N;;1A. It is easily seen that the
composite f; - ¢; is the identity on the chain complex N, A.

Now define a abelian group homomorphisms ¢; : N;A,, — N;A,+1 by

() (—1)sj41 ifn>j+1, and
J 0 otherwise.

Then a little more calculating in the night shows that
1-— ijfj = 6tj ~|—t38 : NjAn — NjAn

in all degrees n, and that both sides of the equation are 0 in degrees n < j + 1.
It follows that the composite abelian group homomorphisms

fo f1 fa fn—2
An:NOAn—>N1An—>N2An_>"'—> n—lAn:NAn

define a chain map f: A — NA such that f-7: NA — NA is the identity. The
collection of homomorphisms 7" : A,, — A,,+1 defined by

T =149 ip—otn_1fn—2--fo+io - in-stn_ofn_s-- fo+- - +iot1fo+to

specifies a chain homotopy 7 - f ~ 14.
The chain maps i, f and the chain homotopy T are natural with respect to
morphisms of simplicial abelian groups A. We have proved

THEOREM 2.4. The inclusion i : NA — A of the normalized chain complex in
the Moore complex of a simplicial abelian group A is a chain homotopy equiv-
alence. This equivalence is natural with respect to simplicial abelian groups

A.
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The simplicial abelian group structure on A induces an abelian group structure
on the set

7"'n(Aa 0) = [(Anv aAn)’ (A’ 0)]

of homotopy classes of pairs of maps which satisfies an interchange law with
respect to the canonical group structure for the homotopy group. It follows that
the homotopy group structure and the induced abelian group structure coincide.
In particular, there is a natural isomorphism

m(A,0) = H,(NA)

for n > 0. Theorem 2.4 therefore immediately implies the following:

COROLLARY 2.5. Suppose that A is a simplicial abelian group. Then there are
isomorphisms

(A, 0) 2 Hy(NA) = H,(A),

where H,(A) is the n'" homology group of the Moore complex associated to A.
These isomorphisms are natural in simplicial abelian groups A.

The group Ag of vertices of A acts on the simplicial set underlying A, via the
composite

cx1 +
Ay x A — Ax A — A,

where ¢ : Ay — A is the simplicial abelian group homomorphism given by
inclusion of vertices, and + is the abelian group structure on A. It follows that
multiplication by a vertex a induces an isomorphism of homotopy groups

T (A,0) — 7,(A, )

for n > 0. It also follows that a homomorphism f : A — B of simplicial abelian
groups is a weak equivalence of the underlying Kan complexes if and only if f
induces a homology isomorphism (or quasi-isomorphism) f. : NA — N B of the
associated normalized chain complexes. Equivalently, f is a weak equivalence
if and only if the induced map f : A — B of Moore complexes is a homology
isomorphism.

Say that a simplicial abelian group homomorphism f : A — B is a weak equiv-
alence if f is a weak equivalence of the underlying Kan complexes. We say that f
is a fibration if the underlying simplicial set map is a Kan fibration. Finally, cofi-
brations in the category sAb of simplicial abelian groups are morphisms which
have the left lifting property with respect to all maps which are fibrations and
weak equivalences.
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THEOREM 2.6. With these definitions, the category sAb of simplicial abelian
groups satisfies the axioms for a closed model category.

This result is a consequence of Theorem I1.5.1 — see also Remark I1.6.2. One
can also argue directly as follows:

ProOF: The limit axiom CM1, the weak equivalence axiom CM2 and the
retraction axiom CM3 are trivial to verify.

A map p : A — B of simplicial abelian groups is a fibration if and only if
it has the right lifting property with respect to all morphism ¢ : ZA} — ZA"
induced by the inclusions A} C A". The simplicial abelian group ZA} is a
degreewise direct summand of ZA™. Note as well that the each of these maps 7 is
a weak equivalence, because the underlying inclusions are weak equivalences and
therefore integral homology isomorphisms. A small object argument therefore
implies that any map f : C' — D of simplicial abelian groups has a factorization

_fp

C
N
E

such that p is a fibration and j is a morphism which has the left lifting property
with respect to all fibrations, is a weak equivalence, and is a monomorphism in
each degree. In particular, j is a cofibration and a weak equivalence, and so the
corresponding factorization axiom is verified.

Similarly, a map p : A — B is a fibration and a weak equivalence if and only
if it has the right lifting property with respect to all morphisms ZOA"™ — ZA"
induced by the inclusions JA™ C A". It follows again by a small object argument
that any map f : C' — D has a factorization

f

——D

C
N
E

such that ¢ is a fibration and a weak equivalence, and such that 7 is a cofibra-
tion and a levelwise monomorphism. We have therefore completely verified the
factorization axiom CMS5.

By standard nonsense, any map « which is a cofibration and a weak equivalence
is a retract of a map of the form j in the proof of the factorization axiom, so
that o has the left lifting property with respect to all fibrations. This implies
the lifting axiom CMA4. |
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REMARK 2.7. It is a corollary of the proof of Theorem 2.6 that all cofibrations
of sAb are levelwise monomorphisms.

LEMMA 2.8. Suppose that f : A — B is a homomorphism of simplicial abelian
groups which is surjective in all degrees. Then f is a fibration of simplicial
abelian groups.

PROOF: Suppose given a commutative diagram of simplicial set maps

AP g

I

A" ——— B.

g

Then, by the assumptions, there is a simplex 6 € A,, such that f(0) = 5. But
then
Olap —a Ay — A

factors through the kernel K of f, and so 6| Ar — o extends to an n-simplex z of
K in the sense that there is a commutative diagram of simplicial set maps

Q‘An —
A ————

=

A’I’L

Then (0 — z)[ar = aand f(0 —z) = B. [ |
LEMMA 2.9.

(1) A homomorphism f : A — B of simplicial abelian groups is surjective (in
all degrees) if and only if the associated chain complex map f : NA — NB
is surjective in all degrees.

(2) The homomorphism f : A — B of simplicial abelian groups is a fibration
if and only if the induced abelian group maps f : NA, — NB, are
surjective for n > 1.
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PRrooOF: For (1), note that the map f : NA — NB of normalized chain com-
plexes is a retract of the map f : A — B of Moore complexes. Thus, if the
simplicial abelian group homomorphism f : A — B is surjective in all degrees,
then so is the associated map of normalized chain complexes.

Conversely, one shows that if f : N; ;1A — N;4 1B is surjective in all degrees,
then the abelian group homomorphisms f : N;A,, — N;B,, are surjective for all
n > 0. This is proved by induction on n. Take x € N;B,,. Then x — s;{1d;;1%
is in N;j;41B,, and so is in the image of f : Nj 1A, — N;j;1B,. Also, dj;1 €
N; B, _1 and is therefore in the image of f : N;A,,_1 — N;B,,_; by the inductive
assumption. It follows that z is in the image of f : N;A,, — N;B,,.

For (2), suppose that f : A — B is a fibration of simplicial abelian groups.
Then the existence of solutions to the lifting problems of the form

0

Ay ——A

|

A" — B

implies that f: NA,, — NB, is surjective for n > 1.
Conversely, suppose that f : NA, — NB,, is surjective in non-zero degrees.
Form the diagram

N —

K(?ToA, 0) X K (o B,0) B T) B

K (moA,0) K (mB,0),

[

where (for example) K(mpA,0) is the constant simplicial abelian group on the
abelian group mgA. The hypotheses imply that applying the normalization func-
tor to the map 6 gives a surjective chain map

0: NA— NK(T('()A,O) X NK (7¢B,0) NB = WoA[O] Xﬂ'oB[O] NB,
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and so (1) implies that the simplicial abelian group map
0:A— K(?T()A,O) XK(ﬂ'oB,O) B

is surjective in all degrees and therefore a fibration by Lemma 2.8. The map
fi« : K(mpA,0) — K(myB,0) is a fibration, so that pr is a fibration. It follows
that f = pr -0 is a fibration. |

COROLLARY 2.10. The homomorphism f : A — B is a trivial fibration of sim-
plicial abelian groups if and only if the induced morphism f : NA — NB of
normalized chain complexes is surjective in all degrees, with acyclic kernel.

It follows that the category Ch. of chain complexes of abelian groups inherits
a closed model structure from the simplicial abelian group category, in which the
fibrations are the chain maps f : C' — D such that f is surjective in degree n for
n > 1, and where the weak equivalences are the quasi-isomorphisms, or rather
the maps which induce isomorphisms in all homology groups. The cofibrations
of Ch, are those maps which have the left lifting property with respect to all
trivial fibrations.

One can, alternatively, give a direct proof of the existence of this closed model
structure on the chain complex category Ch,. The proof of the factorization
axioms is a small object argument which is based on some rather elementary
constructions. Explicitly, let Z[n] be the chain complex consisting of a copy of
the integers Z in degree n and 0 elsewhere, and let Z(n+1) be the chain complex

n+l =1 n
-0 Z —7Z—0—---

Then maps Z[n] — C classify n-cycles of C, and Z(n+1) is the free chain complex
on an element of degree n + 1. Write x for the generator of Z[n] in degree n
and write y for the generator of Z(n + 1) in degree n + 1. There is a canonical
map j : Zn] — Z(n + 1) which is defined by j(z) = d(y). Then f: C — D is a
fibration if and only if f has the right lifting property with respect to all chain
maps 0 — Z(n + 1) for n > 0. Further, one can show that f is a trivial fibration
if and only if f : Cy — Dy is surjective and f has the right lifting property with
respect to all maps j : Zn] — Z{n + 1), n > 0.

The chain complex category Ch, has a natural cylinder construction. For
any chain complex C, there is a chain complex C with

Ccl =

n

{ Cn@cn@cn—i—l lfTLZ 1, and
{(z,9,2) € Co®Co® Ch|(x —y) + 0z =0} ifn=0.
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and with
a<x7ya Z) = (a$7 aya (_1)n(x - y) + 82)

Then there is a commutative diagram of chain maps

CI

Ak

where p is the fibration defined by p(z,y, z) = (x,y) and s is a weak equivalence
which is defined by s(z) = (x,z,0). It is an exercise to show that there is a
homotopy h : D — C' from f to ¢ if and only if the maps f,g : C — D are
chain homotopic.

PROPOSITION 2.11. The category of simplicial abelian groups admits a simpli-
cial model structure.

Proor: If K is a simplicial set and A is a simplicial abelian group, then there
is a simplicial abelian group A ® K, which is defined by

A9 K = A ZK,

where (in this case) ZK denotes the free simplicial abelian group associated to
K. Equivalently, on the level of n-simplices, there is a canonical isomorphism

ARK = P A,

ceK,

with simplicial structure maps induced in an obvious way from the corresponding
maps for A and the simplicial set K. Dually, the simplicial abelian group struc-
ture on A induces a simplicial abelian group structure on the simplicial function
space Hom(K, A). Finally, for simplicial abelian groups A and B, one defines
the simplicial set Homgap (A, B) to have n-simplices given by the set (actually
abelian group) of simplicial abelian group homomorphisms A ® A™ — B. Then
there are natural isomorphisms

HOInSAb(A ® K, B) = HOIII(K, HOII’lSAb(A, B)
>~ Homgap (A, Hom(K, B)).
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The first of these isomorphisms follows from the exponential law
hOIIlSAb(A X K, B) = homs(K, HomsAb(A, B)),

which itself is a specialization of the simplicial set exponential law. The second
follows from the definition of Homgap (A, B), together with the observation
that the simplicial set K is a colimit of its simplices. It’s obvious now that
if f: A — B is a fibration of simplicial abelian groups and 7 : K — L is a
cofibration of simplicial sets, then the induced map
(", f)
Hom(L, A) —— Hom(K, A) Xtiom(x,s) Hom(L, B)

is a fibration of simplicial abelian groups which is trivial if either ¢ or f is trivial,
just by remembering that the underlying simplicial set map has the same prop-

erties. This is Quillen’s axiom SM7(a), whence the simplicial model structure
on sAb. |

Proposition 2.11 can also be proved by appealing to Theorem I1.5.4.
REMARK 2.12. The category of simplicial abelian groups is also a proper sim-
plicial model category (see Section II.8). In particular,

(1) weak equivalences are stable under pullback along fibrations, and

(2) the pushout of a weak equivalence along a cofibration is a weak equiva-

lence.

The first requirement means that, in the pullback diagram

CxpA—9 .4

P

c— B,

9

if p is a fibration and ¢ is a weak equivalence, then g, is a weak equivalence.
This follows from the corresponding property for the category of simplicial sets.
The second requirement says that, given a pushout diagram

A#C

Ik

B—— - BU4C,

*
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if ¢ is a cofibration and f is a weak equivalence, then f, is a weak equivalence.
But of course 7 and i, are monomorphisms which have the same cokernel, and so
a comparison of long exact sequences in homology shows that f, is a homology
isomorphism.

The simplicial model structure on the simplicial abelian group category gives
rise to a canonical choice of cylinder for cofibrant objects A. In effect, tensoring
such an A with the commutative simplicial set diagram

OAY — S AV

|~

Al

gives a natural diagram of simplicial abelian group homomorphisms of the form

ApA—Y 4
i*Z(dO,dl)[ /

A® Al

The map 7, coincides up to isomorphism with the map
10i: AQ A" - A A,
while the map d° coincides with
1ed: A A’ - A Al

Since A is cofibrant, the simplicial model structure implies that 1 ® ¢ is a cofi-
bration and 1 ® d° is a trivial cofibration. It follows that the map s is a weak
equivalence.

The free simplicial abelian group ZX on a simplicial set X is a cofibrant
simplicial abelian group, and there is a natural isomorphism ZX @ K = Z(X x K).
It follows that an ordinary simplicial homotopy X x A! — B taking values in a
simplicial abelian group B induces a homotopy ZX ® A! — B for the cylinder
7ZX ® Al. Since ZX is cofibrant and B is fibrant, the existence of a simplicial
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homotopy X x A! — B between maps f and g is equivalent to the existence
of a chain homotopy between the induced maps f.,g. : ZX — B of Moore
complexes: the induced maps N f., Ng. : NZX — N B must be chain homotopic
by formal nonsense, and so the induced maps of Moore complexes must be chain
homotopic by Theorem 2.4. There is a classical alternative method of seeing this
point, based on the following

LEMMA 2.13. Any “homotopy” h: A®Q A' - B from f: A — Btog: A— B
gives rise to a chain homotopy between the associated maps of Moore complexes.

PROOF: Let 6, : n — 1 be the ordinal number morphism such that 6;(i) = 0 if
and only if ¢ < j. Now, given the map h, define abelian group homomorphisms
hj : A, — B,11, 0 < j <n, by specifying that

hj(a) = h(s;(a) ® 6;).
Then, as a consequence of the simplicial identities and the relations

d(g)_{ej—l if 1 <7,
e ifi> g,

and

0,01 ifi<j,
s:(6;) = { e
Oj if ¢ > ]
in the simplicial set A', one finds the relations

doho = f,

dpy1hn, = g,

dih; = h;_yd;  if i < 7,
dj+1hj = dji1hjt,

dih; = hydi_y  ifi>j+1,
sih; = hjy18i if 1 < 7, and
sihj = hjs;_1 if i > 7.

It’s now straightforward to verify that the collection of alternating sums
n
§ = Z(—l)lhi : A, — Bpy
i=0

forms an explicit chain homotopy between the Moore complex maps f and g. B
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It follows that every simplicial abelian group homomorphism A®A! — B gives
rise to a chain homotopy of maps NA — N B between the associated normalized
complexes. The converse is far from clear, unless A is cofibrant.

The following result establishes the relation between weak equivalence and
homology isomorphism:

PROPOSITION 2.14. The free abelian simplicial group functor X +— ZX pre-
serves weak equivalences.

Proor: The existence of a contracting simplicial homotopy of a simplicial set
X onto a base point implies that the map * C X induces a weak equivalence
Zx — Z.X, since the simplicial contracting homotopy gives rise to a homotopy
7ZX ® A' — ZX in the simplicial abelian group category. It follows that the
canonical weak equivalences € : S|A™| — A™ are homology isomorphisms in the
sense that they induce weak equivalences €, : ZS|A"| — ZA™. An excision
argument and an induction on n therefore implies that the maps € : S|sk,, X| —
sk,, X are homology isomorphisms for any simplicial set X, so that the map
€: S| X| — X is a homology isomorphism as well.

Any weak equivalence f : X — Y induces a homotopy equivalence of Kan
complexes S|f| : S|X| — S|Y|. This map S|f| is a homology equivalence, so f
is a homology equivalence. |

Write m(ZX, A) to denote homotopy classes of maps between the named ob-
jects in the simplicial abelian group category, computed with respect to the
cylinder object ZX ® Al

The free abelian simplicial group functor X — ZX and the inclusion functor
t : sSAb C S both preserve weak equivalences. These functors are also adjoint.
It follows that they induce corresponding functors ¢ : Ho(sAb) — Ho(S) and
Z : Ho(S) — Ho(sAb), and that these functors are adjoint.

One way of seeing this (see also Section I1.7) begins with the observation that
there is a map [X, A] — [ZX, A];ap (where [, |sap denotes morphisms in the
homotopy category Ho(sAb)) which is defined to be the composite

(X, A] — [ZX,ZA].ap — [ZX, Alsab,

where the first function is induced by the free simplicial abelian group functor,
and € : ZA — A is one of the adjunction maps. The corresponding composite

(X, A) — 1(ZX,ZA) — 1(ZX, A)
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is an isomorphism, since Z(X x Al) 2 ZX ® Al. All sources are cofibrant and
all targets are fibrant, so there is a commutative diagram

(X, A) ——— m(ZX,ZA) —=— n(ZX, A)

g[ gl ‘g

(X, Al ———— [ZX,ZA] — 22X, A

in which all vertical maps are canonical bijections. It follows that the bottom
horizontal composite is a bijection.

Let U denote the forgetful functor sAb — S. The adjointness of the induced
functors on the homotopy category level is also a consequence of a formal prin-
ciple (Brown’s “adjoint functor lemma” [15, p.426], but see Section I1.7): the
adjunction maps € : ZU — 1 and 1 : 1 — UZ induce natural transformations of
the corresponding induced functors between the homotopy categories, and these
transformations satisfy the triangle identities.

Now observe that there is a commutative diagram of isomorphisms

m(ZX,A) ___
(2.15) N[g T
T~
Ton(NZX, NA) = mon(ZX, NA) ——— non(ZX, A)

in which the map labelled by N is induced by the normalization functor, and is
well defined because ZX is cofibrant and A is fibrant, and the other labelled maps
are induced by the chain homotopy equivalencesi: NA C Aandi: NZX C ZX.
The dotted arrow takes the homotopy class of a simplicial abelian group map
f :ZX — A to the chain homotopy class which is represented by the map of
Moore complexes induced by f. In particular, we have proved

PROPOSITION 2.16. Suppose that X is a simplicial set and A is a simplicial
abelian group. Then the group of simplicial homotopy classes w(ZX, A) can
be canonically identified up to isomorphism with the group of chain homotopy
classes mop(ZX, A) between the associated Moore complexes.

As a consequence of the proof of Proposition 2.16, we have the following:
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COROLLARY 2.17. Suppose that X is a simplicial set and B is an abelian group.
Then there are canonical isomorphisms

[X,K(B,n)]| = H"(X, B),

for n > 0.

PROOF: The simplicial abelian group K (B, n) is I'B[n|, where B[n] is the chain
complex which consists of the abelian group B concentrated in degree n. We
know that the set [X, K(B,n)] of morphisms in Ho(S) is canonically isomor-
phic to the set w(X, K(B,n)) of simplicial homotopy classes, which in turn is
isomorphic to the set (really group) of homotopy classes

m(2ZX,K(B,n)) = n(ZX,T'B[n])

in the simplicial abelian group category. But from the diagram (2.15), there is
are isomorphisms

m(ZX,T'Bn]) = ncn(ZX, NT B[n))
>~ 1on(2X, Bln]),

and 7o (ZX, B[n]) is the n* cohomology group of the complex hom(ZX, B). B

Suppose that C is a chain complex, let Z,, denote the subgroup of n-cycles and
let B, = 9(Cy+1) be the subgroup of boundaries in C,,. Pick an epimorphism
p: F, - Z,, where F,, is a free abelian group. Then the kernel K, of the
composite

F, » 7, - H,C

is free abelian, and the composite
P
K, cF,— Z,

factors through a map p’ : K,, — B,. Since K, is free abelian and the map
Cpi1 — B, is surjective, the map p’ lifts to a map p : K,, — Cy,11. Write F,,C
for the chain complex

n+1 n
= 0—- K, —F,—0—---

Then the epimorphism F;,, — H,C defines a quasi-isomorphism

qn : F,C — H,C|n],
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while the maps labelled p define a chain map
pn: F,C — C

which induces an isomorphism H,,(F,,C) = H,,C. It follows that there are quasi-
isomorphisms

P H.Cln) = P F.C 22
n>0 n>0

Note that the canonical map

P H.Cln] — [] HaCIn)

n>0 n>0

is an isomorphism of chain complexes.

If the chain complex C' happens to be the normalized complex N A of a sim-
plicial abelian group A, then this construction translates through the functor I"
into weak equivalences of simplicial abelian groups

H K(mp,A,n) «— @FFnNA — A.

n>0 n>0

These objects are fibrant in the category of simplicial sets, and so the weak
equivalences induce homotopy equivalences of simplicial sets, proving

ProOPOSITION 2.18. Suppose that A is a simplicial abelian group. Then, as
a simplicial set, A is non-canonically homotopy equivalent to the product of
Eilenberg-Mac Lane spaces

H K(m,A,n).

n>0

The key point in the argument for Proposition 2.18 is that a subgroup of a free
abelian group is free, or at least projective. An analogous statement holds for
modules over a principal ideal domain R so the simplicial abelian group A in the
statement of the proposition can be replaced (at least) by a simplicial module
over such a ring.

This is implicit above, but there is a natural short exact sequence

0— K(A,n) — WEK(A,n) — K(An+1) — 0
which are constructed by applying the functor I' to the short exact sequence

0— An] - An+1) - An+1] — 0



3. THE HUREWICZ MAP 177

of chain complexes. The simplicial abelian group WK (A, n) is contractible, and
the sequence

K(A,n) — WEK(A,n) - K(A,n+1)

is one of the standard fibre sequences which is used to construct an equivalence
K(A,n) ~ QK(A,n+ 1) in the literature. There is one final observation about
the Eilenberg-Mac Lane spaces K(A,n) = I'A[n] and the fibration p which is
very commonly used:

LEMMA 2.19. The map p : WK(A,n) — K(A,n + 1) is a minimal fibration,
and K(A,n) is a minimal Kan complex, for all n > 0.

PROOF: There is a relation x ~, y (in the sense of Section I1.10) if and only if
(x —y) =~ 0, so it suffices to show that z ~, 0 implies that z = 0 for any simplex
z of WK(A,n). But z ~, 0 forces z to be in the fibre K(A,n), and so to show
that p is a minimal fibration we need only prove that K(A,n) is a minimal Kan
complex.

Suppose that z is an r-simplex of K(A,n). If z ~ 0 in K(A,n) (rel 9A"),
then d;z = 0 for all ¢, so that z is a normalized r-chain of K(A,n). By the
Dold-Kan correspondence, NK(A,n), = A[n],, which group is 0 if r # n, so it
suffices to concentrate on the case r = n. There are identifications NK(A,n), =
K(A,n), = A, and the resulting map K(A,n),, — m,(K(A,n),0) is an isomor-
phism. Thus z ~ 0 (rel 0A™) means that z — 0 in 7,(K(A,n),0). But then
z=0. |

3. The Hurewicz map.

Suppose that X is a simplicial set. The Hurewicz map h : X — 7Z.X is alternate
notation for the adjunction homomorphism which associates to an n-simplex x
of X the corresponding generator of the free abelian group ZX,, on X,,. If X
happens to be a connected Kan complex with base point %, then h induces a
composite homomorphism of groups

TnX — o (ZX, %) — 7, (2X ) Z%,0) = H, (X, Z),
where H,(X,Z) is reduced homology of X. The map
hy : mp X — H,(X,7)

will denote this composite — h, is the Hurewicz homomorphism. The simplicial
set X will be a connected Kan complex with base point * throughout this sec-
tion, and all homology groups will be integral, so we shall write H, X to mean

H.(X,Z). For ease of notation, write

72X =7X]7 .
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The Hurewicz homomorphism h, : m, X — H, X is the traditional map. To
see this, let S™ = A™/JA™, with the obvious choice of base point. Then 7, X is
pointed simplicial homotopy classes of maps S™ — X, and the homotopy group

T (ZS™) = H, 5"

is a copy of the integers, canonically generated by the homotopy elemen x,, which
is represented by the composite map

st oz s 7sm.

It is now easily seen, by drawing an appropriate commutative diagram, that if
a: S™ — X represents an element [a] € 7, X, then

he([]) = on(kn) € Hy X,
as in the standard definition.

Suppose that p : F — B is a Kan fibration, where B is a simply connected Kan
complex with base point %, and let F' be the fibre over *. There is a complete
description of the Serre spectral sequence

EP = H,(B,H,F) = H,,,B

given below in IV.5.1, but it is non-standard. To recover the more usual form,
filter the base B by skeleta sk,, B, and form the pullback diagrams

FLE—FF

3 ‘p

sk, B—— B

to obtain a filtration F), E of the total space E and fibrations p, : F,,F — sk, B
for which 7 sk,, B acts trivially on the homology H,.F' of F.

Recall that N, B denotes the set of non-degenerate n-simplices of B. The
pushout diagram

|_| OA" ——sk,,_1 B
reN, B

1

|_| A" — ¢k, B
xEN, B
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can be pulled back along p to obtain an identification of the filtration quotient
F,E/F,_1FE with the wedge

Vi an)/p0A).

reN, B

The spectral sequence
H.(OA™ H,F) = H, ;p *(0A™)

of IV.5 is used, along with the fact that H,F splits off H,p~*(OA™) to show that
there is an isomorphism

H.p ' (0A™) = H,F ® H,F[n — 1],

and that the map induced in homology by the inclusion p~1(0A™) C p~1(A")
can be identified up to isomorphism with the projection

H.F® H.Fn—1]— H.F
In particular, there is an isomorphism
H,(p~'(A™)/p~"(0A™)) = H,F[n],
and hence isomorphisms

H.F,E/F,.E)= @ H.F[n].
reEN, B

Thus,
Hp+q(FpE/Fp—1E) = @ HyF,
xEN,B

and it’s a matter of chasing simplices through the boundary map of the normal-
ized complex NZB ® H,F to see that the Ey-term of the spectral sequence for
H.FE arising from the skeletal filtration for B has the form

EP? = Hy(B, H,F).

All appeals to the Serre spectral sequence in the rest of this section will be
specifically to this form.



180 III. CLASSICAL RESULTS AND CONSTRUCTIONS

Now suppose that Y is a pointed Kan complex, and observe that the canonical
path object PY is that pointed function complex

PY = Hom, (Al,Y),

where Al is a copy of the standard 1-simplex Al, pointed by the vertex 1. Fur-
thermore, the loop space Y can be identified with the complex Hom, (S*,Y),
and the path loop fibration for Y is the fibre sequence
" d
Hom,(S',Y) — Hom, (AL Y) — Y,

where 7 : A! — S is the canonical map.
There is a canonical contracting pointed homotopy

h:ALAAL = AL

which is defined by the picture

in the poset 1. This homotopy A induces a contracting homotopy

hx
Hom, (Al,Y) A Al — Hom,(AL,Y)

for the path space on Y, by adjointness.
Suppose that f : X — Hom,(S!,Y) is a pointed map, and denote the com-
posite

*

T fAL h
XAA; —— Hom, (AL Y)AA! — Hom,(ALY)

by f«. Then there is a commutative diagram of pointed simplicial set maps

X d! XAA AT x g
(3.1) f f*[ ‘f

Hom, (S',Y) ——— Hom, (AL,Y) g Y,
T 1
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where the indicated map f is the adjoint of f, or rather the composite

1 SNt 1 1
XANS — Hom, (S, Y)ANS — Y.
Note as well that X A Al is a model for the pointed cone on X (a different model
for the cone is given in Section IIL.5 below).

Suppose that
F-ELB

is a fibre sequence of pointed Kan complexes, and that B is simply connected.
The edge maps

.

and the calculation of the FEs-terms for the Serre spectral sequences for the
corresponding fibrations together imply that E™° in the Serre spectral sequence
for H,E is the subgroup of H, B consisting of elements x which can be “lifted
along the staircase”

H, F

!

Ho(FuE/Fy 1 E) —%= H, 1F, 1E

P+|

H, (sk, B) — H,(sk,, B/sk,_1 B)

!

H,B

to an element z € H,,_1F, in the sense that there are elements x; € H,,(sk,, B)
and zo € H,(F,E/F,_1F) such that 1 — x, 1 — p«(x2), and z +— O(x3).
Furthermore, the image of such an x under the differential d,, : EY 0, Eg nt
is represented by the element z. But then comparing long exact sequences shows
that the element x5 is in the image of the map H,,(F,,E/F) — H,(F,E/F, 1 E).
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As a consequence, the elements z of E™° can be identified with elements of
H, (B/x) which are in the image of the map p. : H,(E/F) — H,(B/*), and
for such z, if there is an element z; € H,(E/F) such that p.(r1) = x, then
d,(z) is represented by O(z1) € H,_1F. This is a classical description of the
transgression.

Suppose that Y is an n-connected pointed Kan complex, where n > 1, and
consider the Serre spectral sequence for the path loop fibre sequence

d
QY — PY VY.

Then H;Y = 0 for i < n, while ﬁjQY =0 for j <n — 1. The point is that the
assumption on the connectivity of Kan complex Y, for example, that there is a
strong deformation retract Z of ¥ such that the n-skeleton sk, Z is a point!. Tt
follows that Ey" = E° and Ey*~' = EY*"! for i < 2n, and the only possible
non-trivial differential into or out of either group is the transgression, so that
there is an exact sequence

. . d; . .
%,0 2,0 K 0,2—1 0,0—1
0—-FEy —E~ — L — B — 0.

The space PY is acyclic, so all E-terms vanish in non-zero total degree, so we
have shown that the transgression

d;
HZY e Hi_lﬂY

is an isomorphism for ¢ < 2n under the assumption that Y is n-connected.
The transgression d; : H;Y — H; 1Y is, at the same time, related to the
boundary map

8 : H1<X VAN Sl) i> I:Ii_lX,
in the sense of the following result:

LEMMA 3.2. Suppose that f : X — QY is a map of pointed simplicial sets,
where Y is an n-connected Kan complex with n > 1. Then, for ¢« < 2n, there is

1 This is an old idea. People sometimes say that complexes of the form Z are n-reduced.
The construction of the deformation retraction (via an iterated homotopy extension property
argument) is one of the early applications of the Kan complex concept, and should be done as
an exercise.
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a commutative diagram of the form

I:IZ(X A Sl) L ~i—1X

f*l [f*

ﬁiy ﬁi_lﬁY,

12

I

S

(3

where f: X A S* — Y is the adjoint of the map f.

PRrROOF: Write ¥X = X A S! and CX = X A Al, as usual. Then the diagram
(3.1) induces a commutative diagram

HEX = Hi(SX /%) = H,(CX/X) —9 7, 1 X

7. | |7

HY ﬁi(Y/*)<d—ﬁi(PY/QY) —5 1,1 QY
1x*

112

The top composite in the diagram is the boundary map 0 : HYX — H; 1X.
The bottom “composite” is the transgression, according to the discussion pre-
ceding the statement of the lemma. |

COROLLARY 3.3. Suppose that Y is an n-connected pointed Kan complex, with
n > 1. Then, for i < 2n, the transgression d; : H;Y — H; 1Y can be identified
with the composite

Hi(Y) < Q) A SY) — ;1 (QY).

PROOF: The adjunction map € : (2Y) A S — Y is the adjoint of the identity
map on the loop space Y. |

The link between the Hurewicz homomorphism and the transgression is the
following;:
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PROPOSITION 3.4. Suppose that Y is an n-connected pointed Kan complex,
with n > 1. Then, for i < 2n, there is a commutative diagram

Q

7TZ'Y T> 7Ti_1<QY)

PROOF: The instance of the diagram (3.1) corresponding to the identity map on

QY and the naturality of the Hurewicz map together give rise to a commutative
diagram

70V 7y <oy
7007 — 7Py < py
| al
Z(QY)AS") —— LY —Y

The homomorphism d;, : ZPY — ZY has a factorization

~ 7 q ~

ZPY — B — ZY
in the category of simplicial abelian groups (or of simplicial sets — your choice),
where j is a trivial cofibration and ¢ is a fibration. Then, by comparing boundary
maps for the resulting fibrations of simplicial sets, one finds a commutative
diagram

TT. 1Y

3 Jn.

HY «— Hi(QY) A SY)

[
3
L
2
=

10

QJlIIZ
T,m

Now use Corollary 3.3. ]
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Write 2 ~ y for n-simplices z and y of a simplicial set Z if z|g. an = Ylsk, A,
or equivalently if the composite simplicial set maps

sk, A" c A" 2, 7

and
sk, A" c A" 5 Z

coincide. The relation ~ is clearly an equivalence relation on the simplices of Z,
and we may form the quotient simplicial set Z(r) = Z/ ~ and write p, : Z —
Z(r). The simplicial set Z(r) is called either the " Moore-Postnikov section of
Z, or the r" Postnikov section of Z. This construction is natural in Z: one can
show quickly that if Z is a Kan complex, then so is Z(r), and furthermore p,
induces isomorphisms 7;(Z,z) = m;(Z(r),z) for j < r and all vertices x of Z,
and 7;(Z(r),z) =0 for j > r.

Postnikov sections will be discussed more thoroughly in Chapter VI.

If X is a pointed connected Kan complex, then the object X (1) is a pointed
connected Kan complex of type K(m X, 1), meaning that its homotopy groups
consist of w1 X in dimension one and 0 elsewhere. There is, however, a more
geometrically satisfying way to construct a space naturally having the homotopy
type of X (1) which uses the fundamental groupoid construction: we have seen
in Section III.1 that there is a map

X — B(mX)

of Kan complexes which induces an isomorphism on fundamental groups. It
follows, for example, that a connected Kan complex of type K(m,1) is weakly
equivalent to the space Bmr.

The Hurewicz homomorphism h, : 7 (Br) — H;(Bn) is isomorphic to the
canonical group homomorphism 7 — 7/[r, 7| from 7 to its abelianization —
this may be seen directly, or by invoking the following result:

LEMMA 3.5. Suppose that Z is a Kan complex, such that the set Z; of vertices
of Z consists of a single point. The the Hurewicz map

hy :mZ — H\(Z)
can be identified up to isomorphism with the canonical homomorphism

7T12 — 7'('12/[71’12,7’(’12].
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PROOF: Since Z is reduced, the integral homology group H;(Z) is the quotient

Hy(Z) = @ Z/(doo — dyo + daolo € Zs).

wEZl

Up to this identification, the Hurewicz map

h:mZ — @ Z/{dyo — dyo + dyo|o € Zs)
wEeZ1

is defined by [w] — [w], for 1-simplices w of Z. One then shows, by chasing
elements, that the map h is initial among all group homomorphisms f : 727 — A
which take values in abelian groups A. |

COROLLARY 3.6. Suppose that X is a connected pointed Kan complex. Then
the Hurewicz homomorphism h, : m X — H;X is isomorphic to the canonical

homomorphism
mX — mX/[mX,mX]

from the fundamental group of X to its abelianization.

ProOF: The space X has a strong deformation retract Z which is reduced. Now
apply Lemma 3.5. |

THEOREM 3.7 (HUREWICZ). Suppose that X is an n-connected Kan complex,
where n > 1. Then the Hurewicz homomorphism h, : mX — H;X is an
isomorphism if : = n + 1 and an epimorphism if 1 = n + 2.

PROOF: Suppose that F' is the homotopy fibre of the map p,+1 : X — X(n+1).
Then there are commutative diagrams

7Tn+1X ;)Wn+1X(TL + 1) 7Tn+2F ;)71'”_|_QX

3 [ |

ﬁn—f—lX —)[:In—l—lX(n+ 1) ﬁn+2F—>FIn+2X

A Serre spectral sequence argument for the fibration p,11 shows that the map
H,1X — H,11X(n+ 1) is an isomorphism, since the space F is (n + 1)-
connected, and that it suffices to show

(1) that the Hurewicz homomorphism hy : 71 X(n +1) — H, 1 X (n + 1)
is an isomorphism, and

(2) HppoX(n+1)=0.
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If these two statements are demonstrated (for all n), then the general statement
that hy : mhe1 X — H,41X is an isomorphism would be true, so that the map
he @ Tpiol' — f{n+2F would be an isomorphism as well. Furthermore, the
assertion that ﬁnJrgX (n 4+ 1) = 0 implies, via the Serre spectral sequence for
Pn+1, that the map ﬁn+2F — ﬁ[n+2X is an epimorphism.

But the claim that hy : m 1 X(n + 1) — Hpy1 X (n + 1) is an isomorphism
reduces, by an inductive transgression argument involving Proposition 3.4, to
Corollary 3.6, so statement (1) is proved. Similarly, statement (2) is reduced to
showing that H3Y = 0 for any connected Kan complex Y of type K (A,2).

Let Y be such a Kan complex, and pick a strong deformation retraction map
r:Y — W onto a 2-reduced subcomplex. Then there is a commutative diagram

h

y — 7YV

WTZW

The map r, is a weak equivalence of simplicial abelian groups, hence of simplicial
sets, and the complex ZW is 0 in degrees less than 2, as is its associated normal-
ized chain complex N ZW . There is a map of chain complexes N W — H 2Y[2]
which induces an isomorphism in Hs. It follows that the induced composite

h ~ Te ~ ~ ~
Y S ZY -5 ZW — THY (2] = K(H,Y,2)

is a weak equivalence.

We are therefore required only to show that H3K(A,2) = 0 for any abelian
group A. The functor A — H3K(A,2) preserves filtered colimits, so it suffices to
presume that A is finitely generated. The functor A — K (A, 2) takes finite direct
sums to products of simplicial sets, and a Kiinneth exact sequence argument
shows that H3K(A & B,2) = 0 if H3K(A,2) = H3K(B,2) = 0. Finally, a few
more Serre spectral sequence arguments, combined with knowing that the circle
has type K(Z, 1) imply (successively) that H3K(Z,2) = 0 and HsK(Z/n,2) =0
for any n. |

There is a very easy way to form what one might call the n** Postnikov section
C(n) of a chain complex C: define C'(n) to be the chain complex

= 0—-C,/Im9d— Cph_qg— - — (.
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Here, I'm O is the image of the boundary map 0 : C),11 — C),,. There is an
obvious chain map p, : C' — C(n); this map induces an isomorphism in H; for
i <n, and H;C(n) is plainly trivial for ¢ > n. There is also a natural chain map
in : H,C[n] — C(n), and this map is a homology isomorphism. We could have
used this construction in place of the retraction onto the 2-reduced complex W
in the proof of the Hurewicz Theorem. This construction is also used to prove
the following;:

COROLLARY 3.8. LetY be a connected Kan complex with m,Y =2 A, and ;Y =

0 for j # n, where n > 2. Then Y is naturally weakly equivalent to the space
K(A,n) =TA[n].

The naturality in the statement of this result is with respect to maps Y — Z of
connected Kan complexes having only one non-trivial homotopy group, in degree
n.

PROOF: Let ppy : ZY — D(NZY (n)) be the simplicial abelian group map in-
duced by the n'" Postnikov section map p, : NZY — NZ(n) of the associated
normalized chain complex. Then the composite

h ~ n* ~
Y 52y 2 D(NZY (n))

is a natural weak equivalence, by the Hurewicz Theorem and the construction
of the chain map p,,. But then the following maps are both natural weak equiv-
alences

'n*h ~ 'Ln*
Y 2 D(NZY (n)) <2 TAln] = K (A,n),
and the result is proved. |

REMARK 3.9. The construction in this last proof is the only known way of show-
ing that a diagram of spaces having only one non-trivial presheaf of homotopy
groups is weakly equivalent to a diagram of spaces K(A,n) = I'A[n], for some
presheaf (aka. diagram) of abelian groups A.

THEOREM 3.10 (FREUDENTHAL). Suppose that X is an n-connected pointed
space, where n. > 0. Then the canonical map n: X — Q(X A S') induces a map
X — mQ(X A SY) which is an isomorphism if i < 2n and an epimorphism if
1 =2n+ 1.

ProoF: We shall suppose that n > 1, and leave the case n = 0 for the reader.
From the characterization of the transgression for the path-loop fibre sequence
of Corollary 3.3, the map

€ H;(QX A SY) — H; X
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is an isomorphism for ¢ < 2n. One then uses the triangle identity

1
X A8t NS 0(x A SY A St

T

X ASt

to infer that 7, : H,X — ﬁZQ(X A S1) is an isomorphism if i < 2n + 1. The
space Q(X A S1) is simply connected by assumption, so a Serre spectral sequence
argument says that the homotopy fibre F' of the map n : X — Q(X A S!) has
homology groups H,; F' which vanish for ¢ < 2n. But F is a simply connected
space, by the Hurewicz theorem together with the fact that n is a homology
isomorphism in degree 2, so that F' is 2n-connected (by Hurewicz again), giving
the result. ]

Theorem 3.10 is the classical Freudenthal suspension theorem, since the ho-
momorphism 7, : 1 X — mQ(X A S!) is isomorphic to the suspension homo-
morphism 7, X — m;41(X A S'). We shall finish this section with the relative
Hurewicz theorem:

THEOREM 3.11. Suppose that f: X — Y is a map with homotopy fibre F' and
homotopy cofibre Y/X. Suppose that F' is n-connected for some n > 0 and that
the total space X is simply connected. Then the homotopy fibre of the induced
map f.: FANS! — Y/X is (n + 2)-connected.

Proor: The diagram

induces the map f, : ' A S — Y/X of associated homotopy cofibres.
The spaces X and Y are both simply connected, by the assumptions on the
map f, and so the Serre exact sequence for the map f

dn
HypioX — HysoV ——s Hy o1 F — Hyy X — ..
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extends to a sequence of the form

dn+3

H,ysY —— B3

i3 — HpoX — Hp oY — oL

The classical description of the transgression says that there is a comparison of
exact sequences

Hops X/F -9 Hy oF —— Hypo X —— Hypo X/F -2

! : |= !

0,n+2
HyssY —— Byl —— HyoX —— HopoV —— ..
n-+3 n—+2

Chasing elements shows that the map H;(X/F) — H,;Y is an isomorphism for
1 < n+2; it is an epimorphism for ¢ = n + 3 because every element of H, 3Y is
transgressive. Comparing Puppe sequences gives a diagram

Hy3X — Hyp3(X/F) — n+3<F/\Sl> — Hypg(X A Sl) e

=| | - |=

Hy3X —— Hy3Y ——— H, 3(Y/X) —— Hpy3(X ASH — ...

Then one chases some more elements to show that f, : H;(F A S') — H;(Y/X)
is an epimorphism if ¢ = n + 3 and is an isomorphism in all lower degrees. The
space Y/X is simply connected, so the homotopy fibre of f, : F A S — Y/X
must be (n + 2)-connected. [ |

One has a right to ask why Theorem 3.11 should be called a relative Hurewicz
theorem. Here’s the usual statement:

COROLLARY 3.12. Suppose that A is a simply connected subcomplex of X, and
that the pair (X, A) is n-connected for some n > 1. Then the Hurewicz map

(X, A) 2 Hy(X, A)

is an isomorphism if i = n + 1 and is surjective if i = n + 2.
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PROOF: The relative homotopy group m;(X, A) is the homotopy group m;_1 F
of the homotopy fibre F' of the inclusion j : A — X, and the relative Hurewicz
map h is the composite

Ti(X, A) = 15 1 F = m(F A SY) 2 mi(X/A) 2 Hi(X/A) = Hy(X, A)

It is standard to say that (X, A) is n-connected and mean that the homotopy
fibre F' is (n — 1)-connected. The Freudenthal suspension theorem says that
the suspension map ¥ : w1 F — m;(F A Sl) is an isomorphism if i = n + 1
and an epimorphism if ¢ = n + 2 (for all n > 2). Theorem 3.11 implies that
Je : m(F A SY) — m;(X/A) is an isomorphism if 4 = n + 1 and an epi if i =
n+ 2. Finally, the space X/A is n-connected so that the ordinary Hurewicz map
h:mi(X/A) — H;(X/A) is an isomorphism if i = n + 1 and an epimorphism if
1 =mn+2. ]

Rather a lot of standard homotopy theory is amenable to proof by simplicial
techniques. The reader may find it of particular interest to recast the Haussman-
Husemoller treatment of acylic spaces and the Quillen plus construction [41] in
this setting. In order to achieve this, it’s helpful to know at the outset that
the universal cover X of a connected pointed Kan complex X is, generally, the
homotopy fibre of the map X — B(m; X) — see as well the definition of covering
system in Section VI.3. This means, in particular, that the homotopy type of X
can be recovered from the pullback diagram

X— E(mX)

|

X — B(mX),

so that the map 7 : X — X is a principal m; X-fibration.
4. The Ex* functor.

Kan’s Ex® functor is a combinatorial construction which associates a Kan
complex Ex® X to an arbitrary simplicial set X, up to natural weak equivalence.
It is constructed as an inductive limit of spaces Ex" X, in such a way that the m-
simplices of Ex" ™! X are a finite inverse limit of sets of simplices of Ex™ X. This
means in particular that this construction has very useful analogues in categories
other than simplicial sets. It remains interesting in its own right in the simplicial
set context, since it involves subdivision in a fundamental way.
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We give the details of this construction and establish its basic properties in
this section. It is one of the few remaining areas of simplicial homotopy the-
ory in which the original combinatorial flavour of the subject (see the proof of
Lemma 4.7) has not been engulfed by the calculus of anodyne extensions.

Recall that the non-degenerate simplices of the standard n-simplex
A" = homa( ,n)

are the monic ordinal number maps m — n. There is exactly one such monomor-
phism for each subset of n of cardinality m+1. It follows that the non-degenerate
simplices of A™ form a poset PA™, ordered by the face relation, and this poset
is isomorphic to the non-empty subsets of the ordinal number n, ordered by
inclusion.

The poset has a nerve BPA"™. We shall write

sd A" = BPA",

and call it the subdivision of A™.

LEMMA 4.1. There is a homeomorphism

IR

h:|sd A" — |A",
where h is the affine map which takes a vertex o = {vg,...,v;} of sd A™ to the
barycentre k%_l(vo + -+ 4 vg) of the corresponding vertices.
In other words, |sd A™| is the barycentric subdivision of |A™|.
PRrROOF: To see the co-ordinate transformation, take
Qoo + a1y + -+ apv, € [A"
and rewrite it as
01Xy + X0+ .. 1. X,

where 0 <ty <ty <--- <t, and X; = vj, R TR P M
Write

Nj=> (ng+1).
k=j
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Then
thl + - +t7‘X7“
=t(Xai+- -+ X))+ (e —t)(Xo+ -+ X)) + -+ (tr — tr—1) X,

1 1
= t1N1<F1)(X1 + -+ Xr) + (tQ - tl)NQ(E)(XQ + - —|—X7~) + ...
1

+ (t, — tr—l)Nr(m)Xw
Note that
tiN1 + (to —t1)No + -+ - + (t, — t,—1)N, =1,

so that we’ve rewritten agvg+- - -+, v, as an affine sum of uniquely determined
barycentres. [ |

Any function f : n — m determines a map of posets f, : PA" — PA™
via f.(X) = f(X) = image of X under f. It follows that any poset morphism
f : n — m determines a poset map #, : PA" — PA™, and hence induces a
simplicial set map #, : sd A™ — sd A™. This assignment is functorial, so we
obtain a cosimplicial object n — sd A™ in the category of simplicial sets.

The subdivision sd X of a simplicial set X is defined by

sdX = lim sdA",
=
g: A" —X
where the colimit is indexed over the simplex category A | X for X.

The functor X — sd X is left adjoint to a functor Y — ExY, where the
simplicial set ExY is defined to have n-simplices given by the set of all simplicial
set maps sd A" — Y.

There is a natural map h : sd A" — A™, called the last vertexr map. It is
specified as a map of posets PA™ — n by the assignment

[U07U17 .. '7Uk:] = Vg,

where [vp, ..., v;] : k — n is a non-degenerate simplex of A™ specified by i — v;.
There is also a map of posets g : n — PA™ defined by ¢(i) = [0,1,...,i]. Clearly
hg = 1 and there is a relation

[vo, 1,y vE] < [0,1,. .. vg]

in PA"™. It follows that the last vertex map h : sd A™ — A™ is a simplicial
homotopy equivalence.
The natural maps A : sd A — A™ induce a natural simplicial map

n=~h":Y — ExY,

which is given on n-simplices by precomposition by the indicated map h.
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LEMMA 4.2. The mapn:Y — ExY is a mg isomorphism, and induces a surjec-
tion on fundamental groupoids.

PrOOF: The map 7 is an isomorphism on the vertex level. A 1-simplex of ExY
is a diagram
! B
T — Yz

of 1-simplices of Y, and n(«a) is the diagram

a S0y
rT—Yy——Yy

for any 1-simplex x Bt y of Y (incidentally, the notation means that dp(a) =y
and dy (o) = x). Thus, two vertices of ExY are related by a string of 1-simplices
of ExY if and only if the corresponding vertices are related by a string on 1-
simplices of Y, so that n is a mg-isomorphism as claimed.

For each 1-simplex
! B

T— Yz

of ExY, there is a 2-simplex o of ExY

/1N
VAN AN
L=

Here, x is the 0" vertex vy of o, v1 = z and vs is the top copy of . The two lower
left 2-simplices of y are copies of sja, the two lower right 2-simplices are copies
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of s1/3, and the two upper 2-simplices are constant simplices of Y associated to
the vertex y. It follows that there is a relation

()] = [z =y < Ad)

in the path category associated to ExY. But then

« 16 _

[ — y — z] = [n(a)]n(B)] "
in the fundamental groupoid 7(ExY’). Every generator of 7(ExY') is therefore
in the image of the induced functor 7, : 7(Y) — w(ExY). [

LEMMA 4.3. The map n:Y — ExY induces an isomorphism

n.: H(Y,Z) — H,(ExY,Z)
in integral homology.

PROOF: The natural maps 7 : A¥ — Ex A can be used to show that the Ex
functor preserves homotopies. It follows that Exsd A™ is contractible; in effect,
the poset PA"™ contracts onto the top non-degenerate simplex of A”. It follows
that Exsd A™ has the homology of a point.

The natural map n : ¥ — ExY induces an isomorphism nyY = w9 ExY, by
Lemma 4.2. It follows that 7 induces a natural isomorphism

M HO(Y7 Z’) i) HO(EXY7 Z)

in the 0" integral homology group. The simplices ¢ : A™ — ExY factor through
maps Exo, : Exsd A™ — ExY. A standard acyclic models argument therefore
implies that there is a natural chain map v : ZExY — ZY between the associ-
ated Moore complexes which induces the map 7,1 : Hy(ZExY) — Hy(ZY), and
any two natural chain maps which induce n, ! are naturally chain homotopic.
Similarly, the composite natural chain map

ZExY -5 7V - ZExY

is naturally chain homotopic to the identity map, and the models ZA™ are used
to show that the composite

7y S 7ExY L 7Y

is naturally chain homotopic to the identity. The map n, : ZY — ZExY is
therefore a natural chain homotopy equivalence, and so the map n: Y — ExY
is a homology isomorphism. [ |



196 III. CLASSICAL RESULTS AND CONSTRUCTIONS

COROLLARY 4.4. If the canonical map Y — * is a weak equivalence, then so is
the map ExY — x.

ProOOF: The fundamental groupoid 7Y for Y is trivial, and 7 induces a surjec-
tion n, : 7Y — mExY by Lemma 4.2, so that ExY has a trivial fundamental
groupoid as well. But ExY is acyclic by Lemma 4.3, so that ExY is weakly
equivalent to a point, by the Hurewicz Theorem (Theorem 3.7). [ |

LEMMA 4.5. The functor Ex preserves Kan fibrations.

Proor: We show that the induced map sd A} — sd A™ is a weak equivalence.
The simplicial set sd A} can be identified with the nerve of the poset of non-
degenerate simplices of A}, and the homeomorphism

h:|sd A" — |A"

restricts to a homeomorphism

o7

[sd Ag| — [AE]

It follows that sd A} — sd A" is a weak equivalence. [ |
THEOREM 4.6. The natural map n:Y — ExY is a weak equivalence.

Proor: Let Y; be a fibrant model for Y in the sense that there is a weak
equivalence o : Y — Y. Pick a base point y for Y, and let PY; be path space
for Y; corresponding to the base point a(y). Form the pullback diagram

a~'PY; — . PY;

a3 I

Y ——F——YF,

where p : PY; — Y} is the canonical fibration. Then «, is a weak equivalence
(Corollary 11.9.6), so that a~'PY7 is weakly equivalent to a point, and the fibre
sequence

QOV; — a"'PY; —5 Y.
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gives rise to a comparison of fibre sequences

P

O;—— o lPy, —

d ! i

ExQY; ——— Exa ' PY; ——— ExY,
Exp,

by Lemma 4.5. Computing in homotopy groups of realizations (and thereby
implicitly using the fact that the realization of a Kan fibration is a Serre fibration
— Theorem 1.10.10), we find a commutative diagram

m(Y,y) ———— m0(QY)

77*[ %ln*

T (ExY,y) —=— 7o (ExQY%).

One uses Corollary 4.4 to see that the indicated boundary maps are isomor-
phisms. It follows that 7 induces an isomorphism

ne 7 (Y,y) — m(ExY,y)
for all choices of base point y of Y. Inductively then, one shows that all maps
. mi(Y,y) — mi(ExY,y)

are isomorphisms for all choices of base point y. |

LEMMA 4.7. For any map A : A} — ExY, the dotted arrow exists in the diagram

A

AT — A L ExYy

]

A" e »Ex? Y.
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ProOF: The adjoint of the composite map
n A "7 2
Ay — ExY — Ex® Y

is the composite
h A
sd Ay — A} — ExY.

It therefore suffices to show that the dotted arrow h, exists in the diagram

h

sdA7 — P pm

1 X

sd A" -———--- > Exsd AL,

making it commute, where 1 : K — Exsd K is the counit of the adjunction
(sd, Ex), and is defined by sending a simplex o : A™ — K to the simplex of
Exsd K given by the induced map sdo : sd A” — sd K.

Let 0 = (09, ...,04) be a g-simplex of sd A", where the maps o; : n; < n are
simplices of A™. Define a function f, : @ — n by the assignment

oi(n;) if o; # dgt, or y, and

foli) = {

k if o0; = dgty, Or 05 = Ly,

The assignment o — f, is natural with respect to morphisms of ordinal numbers
0 : 9 — q in the sense that f,0 = f,9,. There is a unique pair (X,,7,)
consisting of a poset monic X, : r — n and a surjective function 7, : q - r
such that the diagram of functions

q—>1’l

W

commutes. Then a simplicial map h, : sd A" — ExsdA} is defined by the
assignment o — 75 (77(X,)). Note that, whereas 7, : @ — r is only a function,
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it induces a poset map mw,, : PA? — PA" and hence a simplicial map 7, :
sd A? — sd A", so that the definition of the map h, makes sense. |

For any simplicial set X, define Ex® X to be the colimit in the simplicial set
category of the string of maps

nx NEx X 2 NEx2 x 3
X —ExX —Ex"X —Ex" X — ...

Then the assignment X — Ex® X defines a functor from the simplicial set
category to itself, which is commonly called the Ex™ functor . Write v : X —
Ex®® X for the canonical natural map which arises from definition of Ex> X.
The results of this section imply the following:

THEOREM 4.8.

(1) The canonical map v : X — Ex™ X is a weak equivalence, for any sim-
plicial set X.

(2) For any X, the simplicial set Ex*> X is a Kan complex.

(3) The Ex functor preserves Kan fibrations.

PRrooOF: The first statement is a consequence of Theorem 4.6. The second state-
ment follows from Lemma 4.5. Statement (3) is implied by Lemma 4.7. |

5. The Kan suspension.

The ordinal number map d° : n — n + 1 induces an inclusion d° : A — A1,
Let the vertex 0 be a base point for A”*! and observe that any simplicial map
6 : A — A™ uniquely extends to a simplicial map 6, : A"t! — A™+L which
is pointed in the sense that 6,(0) = 0, and such that 6,d° = d°0. Observe that
di = di*! and s] = st for all i and j.

The cone CY of a simplicial set Y is the pointed simplicial set

CY = lim A",
H
A" =Y

where the colimit is indexed in the simplex category of all simplices A" — Y,
and is formed in the pointed simplicial set category. The maps d° : A” — A"+1
induce a natural map j:Y — CY.

The cone CY on a simplicial set Y is contractible: the contracting homotopies
h: A"T1x Al — A™*! given by the transformations 0 — 7 in the ordinal numbers
n + 1 glue together along the simplices of Y to give a contracting homotopy
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h : CY x A — CY onto the base point of Y, since there are commutative
diagrams

An—|—1 % Al h An—H

0. x 1‘ 19*

Am—l—l % Al h Am—l—l

for any ordinal number map # : n — m.
It’s now obvious that a simplicial set map f : Y — X can be extended to a
map g : C'Y — X in the sense that there is a commutative diagram

| N

Y ——X

f

if and only if for each n-simplex = of Y there is an (n + 1)-simplex g(z) of X
such that

(1) do(g(z)) = f(x),
(2) dida---dpy1(g(z)) is some fixed vertex v of X for all simplices x of Y,
and

(3) for all 4,5 > 0 and all simplices x of Y, we have
di+1(9(z)) = g(diz) and  s;11(g9(z)) = g(s;).

For the moment, given a simplicial set X, let X_1 = mp X and write dy : X9 —
X _1 for the canonical map Xg — m9X.

A simplicial set X is said to have an extra degeneracy if there are functions
s—1: X, — Xp,q1 for all n > —1, such that, in all degrees,

(1) dps—1 is the identity on X,

(2) for all 4, j > 0, we have the identities

dit15-1(z) = s_1d;(x) and sjp15-1(x) = s_155(z).
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LEMMA 5.1. Suppose that a simplicial set X has an extra degeneracy. Then the
canonical map X — K(mX,0) is a homotopy equivalence.

PRrRooOF: It suffices to assume that X is connected. Then the association z —
s_1(z) determines an extension

X—X

of the identity map on X, according to the criteria given above. Also, CX
contracts onto its base point, which point maps to s_j(*) in X, where * denotes
the unique element of myX. [ |

EXAMPLE 5.2. Suppose that G is a group. The translation category EG asso-
ciated to the G-action G x G — G has the elements of G for objects, and has
morphisms of the form A : g — hg. The nerve of this category is commonly also
denoted by EG. Note in particular that an n-simplex of the resulting simplicial
set EG has the form

g1 g2 dn
go — 49190 — .- —> Gn " --- " 90,

and may therefore be identified with a string (go, g1, .., gn) of elements of the
group G. The simplicial set EG is plainly connected. It is also easily seen (by
thinking in terms of strings of arrows) that the assignment

(907917-"79n) = (67907917"'7971,)

defines an extra degeneracy s_; : £G,, — EG,41 for EG, so that EG is con-
tractible.

If K is a pointed simplicial set, then the pointed cone C,K is defined by the
pushout

oA —C* ok

.

* — O K.
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Here, the map Cx is induced by the inclusion of the base point * : A — K in
K.

The maps d° : A™ — A" induce a natural pointed map i : K — C,K. The
Kan suspension XK of K is defined to be the quotient

YK = C,.K/K.

The Kan suspension XK is a reduced simplicial set, and is a concrete model
for the suspension of the associated pointed space |K|, in the sense that the re-
alization |X K| is naturally homeomorphic to the topological suspension of |K]|.
The existence of this homeomorphism is one of the reasons that the Kan suspen-
sion functor ¥ : S, — S, preserves weak equivalences — one could also argue
directly from the definitions by using the cofibre sequence

K c(C.K - YK

and the contracting homotopy on the cone C, K.
A pointed simplicial set map ¢ : XK — Y consists of pointed functions

(5.3) On Ky — Yo

such that
(1) dy...dpy10n(z) = *, and doo,(x) = * for each x € K,,, and

(2) for each ordinal number map 6 : n — m, the diagram of pointed functions

commutes.

Pointed simplicial set maps of the form ¢ : C,K — Y have a very similar
characterization; one simply deletes the requirement that doi, () = *. It follows
that the pointed cone and Kan suspension functors preserve colimits of pointed
simplicial sets.
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An equivalent description of C, K starts from the observation that the pointed
simplicial set K is a member of a coequalizer diagram of the form

\/ EnnAh=\/ K, AT - K

f:n—m n>0

where, for example, K,,, A A} is the wedge of the pointed set of m-simplices K,,,
thought of as a discrete pointed simplicial set, with A’t, and A’ is notation
for the simplicial set A™ U {x}, pointed by the disjoint vertex x. Then C,K is
defined by the coequalizer diagram

\/ K,, NA"T = \/ K, NA"! - O.K.

f:n—m n>0

The set of m-simplices of A™*! is the set of ordinal number maps of the form
v:m — n+ 1. Each such 7 fits into a pullback diagram

in the ordinal number category, for some uniquely determined map -, : j — n if
v~ 1(n) # 0. It follows that, as a pointed set, A™! has the form

AP = AT AT U U A U}
= (AD)m V(AL )m—1 V-V (Al o,

where the base point corresponds to the case v(m) = 0. Now take another map
¢ : k — m; there is a pullback diagram of ordinal number maps

i) ———
(5.4) | [(dO)m—j

k—m

¢
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in the case where r = (~1(j) # (. It follows that the restriction of (* : A% —
A} to the summand (A7), is the map

~

¢ (AL); — (AL),

if (71(j) # 0, and is the map to the base point otherwise.
_ Suppose that K is a pointed simplicial set. There is a a pointed simplicial set
C.(K) whose set of n-simplices is given by

Co(K)p =K,V K,_1V---V K.

The map ¢* : C\(K)y — C.(K), associated to ¢ : k — m is given on the
summand K; by the composite

¢ -
K; = K, — C.(K)

in the case where (71(j) # 0, r = ¢71(j), and the map ¢ is defined by the
diagram (5.4). If (71(j) = 0, then the restriction of (* to K; maps to the base
point.

One checks that C,(K) is indeed a pointed simplicial set, and that the con-
struction is functorial in K. Furthermore, the functor preserves colimits, so that
the diagram

\ CuEnmnAh)=\/ Cu(E, AAT) — C.K.

f:n—m n>0

is a coequalizer. On the other hand, the definitions imply that there are isomor-
phisms
C.(Y AAT) =Y ACL(AT)
>~y AA"TE
which are natural in the pointed sets Y and simplices A™. This is enough to
prove

LEMMA 5.5. There is a pointed simplicial set isomorphism

C.(K) = O (K),

which is natural in K.
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The composite .
K — O.(K) = C,(K),

in degree n is the inclusion of the wedge summand K,. The canonical map
i: K — C.(K) is therefore an inclusion. Collapsing by K in each degree also
gives a nice description of the Kan suspension X K: the set of (n + 1)-simplices
of ¥ K is given by the wedge sum

YKpi1=K,VK,_1V---V K.
It’s also a worthy exercise to show that the maps n,, : K,, — X K,,+1 correspond-

ing to the identity map XK — 3K under the association (5.3) are inclusions
K, —K,VK, 1V---V K;of wedge summands.



Chapter IV Bisimplicial sets

This chapter is a basic exposition of the homotopy theory of bisimplicial sets
and bisimplicial abelian groups.

A bisimplicial set can be viewed either as a simplicial object in the category of
simplicial sets or a contravariant functor on the product A x A of two copies of
ordinal number category A: both points of view are constantly exploited. Similar
considerations apply to bisimplicial objects in any category, and to bisimplicial
abelian groups in particular.

Categories of bisimplicial objects are ubiquitous sources of spectral sequence
constructions. In many contexts, bisimplicial sets and bisimplicial abelian groups
function as analogs of projective resolutions for homotopy theoretic objects. The
Serre spectral sequence is one of the original examples: pullbacks over simplices
of the base of a map p: E — B form a bisimplicial resolution of the total space.
Then every bisimplicial set has canonically associated bisimplicial abelian groups
and hence bicomplexes, and so a spectral sequence (5.3) drops out. If the map
p happens to be a fibration, the resulting spectral sequence is the Serre spectral
sequence (5.5). It is not much of a conceptual leap from this construction to the
notion of a homology fibre sequence, which is the basis for the group completion
theorem (Theorem 5.15), but then these ideas are essentially non-abelian, so
that the theory can be pushed to give the basic detection principle for homotopy
cartesian diagrams (Lemma 5.7) that is the basis of proof for Quillen’s Theorem
B (Theorem 5.6). Group completion and Theorem B are fundamental tools for
algebraic K-theory. This collection of results appears in Section 5.

We begin in Section 1 with some definitions and examples of bisimplicial sets
and abelian groups, which examples include all homotopy colimits. Section 2
contains a discussion of the basic features of bisimplicial abelian groups, in-
cluding homotopy colimit objects and the generalized Eilenberg-Zilber theorem
(Theorem 2.5). This theorem asserts that the two standard ways of extracting
a chain complex from a bisimplicial abelian group, namely the chain complex
associated to the diagonal simplicial abelian group and the total complex, are
naturally chain homotopy equivalent.

A description of the formal homotopy theory of bisimplicial sets is given in
Section 3. This homotopy theory is a little complicated, because there are closed
model structures associated to multiple definitions of weak equivalence for these
objects. The diagonal functor creates an external notion — one says that a
map of bisimplicial sets is a diagonal weak equivalence if it induces a weak
equivalence of associated diagonal simplicial sets. There are also two internal
descriptions of weak equivalence, corresponding to viewing a bisimplicial set as
a diagram in its vertical or horizontal simplicial sets. In particular, we say that

206
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a bisimplicial set map is a pointwise (or vertical) weak equivalence if each ofbisimplicial set
the induced maps of vertical simplicial sets is a weak equivalence. We discussexponential law
closed model structures associated to all of these definitions. Diagonal weakPisimplex
equivalences are the objects of study in the Moerdijk structure, whereas pointwise
weak equivalences figure into two different structures, namely the Bousfield-
Kan structure in which the fibrations are also defined pointwise, and the Reedy
structure where the cofibrations are defined pointwise. All of these theories are
useful, and they are used jointly in the applications that follow, but this is by no
means the end of the story: there is a further notion of Fs-weak equivalence due
to Dwyer, Kan and Stover [28], [29] and a corresponding closed model structure
that is not discussed here.

We confine ourselves here to applications of the homotopy theory of bisimpli-
cial sets that involve detection of cartesian squares of bisimplicial set morphisms
that become homotopy cartesian after applying the diagonal functor. There are
two extant non-trivial techniques. One of these is the circle of ideas related
to the Serre spectral sequence in Section 5, which has already been discussed.
The other is dealt with in Section 4, and arises from the Reedy closed model
structure, in the presence of the 7,.-Kan condition (Theorem 4.9 of Bousfield and
Friedlander). The 7,.-Kan condition is satisfied widely in nature, in particular
for all pointwise connected bisimplicial sets; it is best expressed by saying that
the canonical maps from the homotopy group objects fibred over the simplicial
set of vertical vertices of a bisimplicial set to the vertices are Kan fibrations. The
Bousfield-Friedlander theorem leads to a spectral sequence (see (4.14)) for the
homotopy groups of the diagonal of a pointwise connected bisimplicial set. This
spectral sequence is the origin of the definition of Ey-weak equivalence that is
referred to above.

1. Bisimplicial sets: first properties.

A bisimplicial set X is a simplicial object in the category of simplicial sets, or
equivalently a functor X : A°? — § where A is the ordinal number category and
S denotes the category of simplicial sets as before. Write S? for the category of
bisimplicial sets.

A bisimplicial set X can also be viewed as a functor

X: AP x A? - S,

(or as a contravariant functor on the category A x A), by the categorical ex-
ponential law. From this point of view, the data for X consists of sets X (m,n)
with appropriately defined functions between them. The set X (m,n) will often
be called the set of bisimplices of X of bidegree (m,n), or the (m,n)-bisimplices
of X. We shall also say that a bisimplex = € X (m,n) has horizontal degree m
and vertical degree n.
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ExamMpPLE 1.1. Any simplicial set-valued functor Z : I — S gives rise to ahomotopy colimit
bisimplicial set with (m,n)-bisimplices category, translatio

classifying bisimple
(1.2) | | Z(i0)n.

G911l

Note that the indexing is over simplices of degree m in the nerve BI of the
category I, or equivalently over strings of arrows of length m in I.

This bisimplicial set is often called the homotopy colimit of the functor Z, and
is denoted by holim Z.

e

The easiest way to see that M{ Z is in fact a bisimplicial set is to observe
that each of the n-simplex functors Z,, gives rise to a translation category EZ,
having objects (i,z) with i an object of I and = € Z,,(i), and with morphisms
a: (i,z) — (j,y) where a : i — j is a morphism of I such that Z,(a)(z) = y.
Then the set of m-simplices of the nerve BEZ, is the set displayed in (1.2).
Furthermore, the data is simplicial in n, so the simplicial object BEZ = IMI A

is a bisimplicial set.

ExAMPLE 1.3. The bisimplicial set A¥! is the simplicial object in S which is
composed of the simplicial sets
L] A%

6
n—%k
where Al is the standard [-simplex in S and the disjoint union is indexed over
morphisms 6 : n — k in the ordinal number category A. The bisimplicial set
APl classifies bisimplices of bidegree (k,[) in the sense that there is a simplex

Lkl € |_| Al,
k—k

which is a classifying (k,l)-simplex in the sense that the bisimplices x € X (k,1)
in a bisimplicial set X are in one to one correspondence with maps ¢, : A — X
such that ¢(tx,;) = =. Specifically, the classifying bisimplex 11, ; is the copy of the
classifying [-simplex ¢; € Aé in the summand corresponding to the identity map
1:k— k.

It follows that A¥! is the contravariant functor on A x A which is represented
by the object (k,1).

EXAMPLE 1.4. Suppose that K and L are simplicial sets. Then there is a
bisimplicial set K x L with (m,n)-bisimplices specified by

KxL(m,n) = K, X L.
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The bisimplicial set K x L will be called the external product of K with L. Noteexternal product
that the bisimplicial set A*! may be alternatively described as the externaldiagonal simplicial
product AFXAL vertical, simplicial -

The diagonal simplicial set d(X) of a bisimplicial set X has n-simplices given
by
d(X)n = X(n,n).

It can also be viewed as the composite functor
A X
AP — AP x AP — S,

where A is the diagonal functor.

Think of the bisimplicial set X as a simplicial object in the simplicial set
category by defining the vertical simplicial sets X,, = X(n,*). Any morphism
f : m — n gives rise to a diagram

X, x A LX 0 An

(1.5) 0* x 1[

X, x A™.

The collection of all such maps 6 therefore determines a pair of maps
|| Xoxam =] ]| X, xAn,
min "

by letting the restriction of the displayed maps to the summand corresponding
to 8 be 1 x 0, and 0* x 1, respectively. There are also simplicial set maps

Yt Xp X A" — d(X)
defined on r-simplices by
Yn(x, T = n) = 7"(z).

Here, = is an r-simplex of X,,, and 7* : X,, — X, is a simplicial structure map
of X, so that 7%(z) is an r-simplex of X (r,*) and is therefore an r-simplex of
d(X). The collection of the maps =, together determine a simplicial set map

vi| | Xnx A" = d(X).
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EXERCISE 1.6. Show that the resulting diagram
|| XoxAam=| ] X, x A" 5 d(x)
min "

is a coequalizer in the category of simplicial sets.

The exercise implies that the diagonal simplicial set d(X) is a coend in the
category of simplicial sets for the data given by all diagrams of the form (1.5).

The diagonal simplicial set d(X) has a natural filtration by subobjects d(X)®),
p > 0, where

d(X)®) = image of ( |_| X, x A") in d(X).

0<n<p

The degenerate part (with respect to the horizontal simplicial structure) of X, 4
is filtered by subobjects

S[r Xp = U si(Xp) C Xpia.

0<i<r

It follows from the simplicial identities that there are pushout diagrams

]

and

(511 Xp X AP U (X1 x DAPH) - d(X))

| |

Xpp1 x APH! d(X)(p+1)_

Diagrams (1.7) and (1.8) and the glueing lemma (Lemma I1.9.8) are the basis
of an inductive argument leading to the proof of
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PROPOSITION 1.9. Suppose that f: X — Y is a map of bisimplicial sets which
is a pointwise weak equivalence in the sense that all of the maps f : X,, — Y, are
weak equivalences of simplicial sets. Then the induced map f, : d(X) — d(Y)
of associated diagonal simplicial sets is a weak equivalence.

2. Bisimplicial abelian groups.

We collect here the basic facts about bisimplicial abelian groups, in two sub-
sections.

The first of these is effectively about homotopy colimit constructions in the
category of simplicial abelian groups. Any functor A : I — sAb taking values in
simplicial abelian groups has an associated bisimplicial abelian group which we
call translation object, and is formed by analogy with the homotopy colimit of a
diagram of simplicial sets. We derive the basic technical result that translation
object for the diagram A is weakly equivalent to the simplicial abelian group
A(t) if the index category I has a terminal object t.

When we say that a bisimplicial abelian group B is weakly equivalent to a
simplicial abelian group C, we mean that the diagonal simplicial abelian group
d(B) is weakly equivalent to C' within the simplicial abelian group category. One
could alternatively interpret B as a bicomplex and C as a chain complex, and
then ask for a weak equivalence between the chain complexes Tot(B) and C. The
generalized Eilenberg-Zilber theorem says that Tot(B) and the chain complex
d(B) are naturally chain homotopy equivalent, so in fact there is no distinction
between the two approaches to defining such weak equivalences. This is the
subject of the second subsection. We further show that the standard spectral
sequence

Eg’q = Hp(HqA*) = Hp+q(d(A))

for a bisimplicial abelian group A can be derived by methods which are com-
pletely internal to the simplicial abelian group category.

2.1. The translation object.

This section contains technical results concerning a simplicial abelian group-
valued analogue of the homotopy colimit construction for diagrams of abelian
groups, called the translation object. This construction is of fundamental im-
portance for the description of the Serre spectral sequence that appears in a
subsequent section of this chapter. More generally, it appears canonically in any
homology spectral sequence arising from a homotopy colimit of a diagram of
simplicial sets.

Supppose that A : I — Ab is an abelian group valued functor, where I is a



212 IV. BISIMPLICIAL SETS

small category. There is a simplicial abelian group F A, with translation object
EAn= D 40
yn—I

where the direct sum is indexed by the n-simplices of the nerve BI of the index
category I. The abelian group homomorphism 6* : EFA,, — FA,, induced by an
ordinal number map 6 : m — n is specified by requiring that all diagrams

Arp(0)

znwl Imw

D 40— D 4o

yn—I ¢m—1

commute, where the homomorphism A ) — A,g(0) is induced by the relation
0 < 6(0) in the ordinal number n. The simplicial abelian group E'A is called the
translation object associated to the functor A.
Note that E'A is not the nerve of a category, even though its definition is
analogous to that of the nerve of a translation category for a set-valued functor.
Suppose given functors

F A
J — 1= Ab,

where J and I are small categories. The functor F' induces a simplicial abelian
group homomorphism F, : E(AF) — EA, which is defined on n-simplices in
such a way that the diagram

AFp o) — 1 AFro(o)

Z'ngl [inp.g

D 4B —5— D 40

On—J yn—I

commutes.
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Any natural transformation w : A — B of functors I — Ab determines a
morphism w, : FA — EB of simplicial abelian groups. This morphism w, is
defined on n-simplices by the requirement that the following diagram commutes:

Ap(0) = B (o)

Z'ngl ling

@ Ag(o) w—*> @ Bg(o).

O:n—1 O:n—1

Now consider a functor B : I x 1 — Ab, and let d' : ] — I x 1 and d° :
I — I x 1 be defined, respectively, by d'(i) = (i,0) and d°(i) = (i,1). The
maps (i,0) — (4,1) in I x 1 induce a natural transformation n : Bd* — Bd" of
functors I — Ab, and hence induce a simplicial abelian group homomorphism
Ny : EBd' — EBdC. In general, the group of n-simplices of the simplicial abelian
group FA ® Al can be identifed with the direct sum

@ Ap(0)-

(0,y)n—Ix1

In the case at hand, one finds a canonical map h : EBd' ® A! — EB, which is
defined on n-simplices by the requirement that the diagram

Bs(0),0 B6(0),4(0))
mwm[ [mwm
D Boowo—5— B 6(0).(0))
(0,y)mn—Ix1 (0,7)n—Ix1

commutes, where the top horizontal map is induced by the morphism (6(0),0) —
(0(0),7(0)) in I x 1. One can now check that there is a commutative diagram
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of simplicial abelian group homomorphisms

EBd"
dl
dl .
(2.1) EBd* @ At r EB.
do dO

EBd' —5—— EBd"’

LEMMA 2.2. Let A : I — Ab be an abelian group valued functor on a small
category I, and suppose that I has a terminal object t. Then there is a canon-
ical weak equivalence EA — K (A¢,0), which is specified on n-simplices by the
homomorphism

P A0 — A

O:n—1

given on the summand corresponding to 6 : m — I by the map Ag)y — Ay
induced by the unique morphism 6(0) — t of the index category I.

PROOF: Let t also denote the composite functor
I—{t} ClI.

Then the discrete category {t} is a strong deformation retract of the category I
in the sense that there is a commutative diagram of functors

I

dl\

I x1———1.

0
o

1




2. BISIMPLICIAL ABELIAN GROUPS 215

Now, EAHd! = EA, so that (2.1) can be used to show there is a commutativebisimplicial abelian
diagram of simplicial abelian group homomorphisms

EA

! \\\\\4\\\\N
0

d /

Note that n,.t, is the identity map on the simplicial abelian group E At, so that
the Moore complex of E'A is chain homotopy equivalent to the Moore complex of
EAt. The map EA — K(A;,0) factors as the weak equivalence 7, : FA — EAq,
followed by the map EFAt — K(A;,0), which map is defined on n-simplices by

the codiagonal map
v
@ At — At-

On—1

This last homomorphism is a weak equivalence, because the space BI is con-
tractible. ]

REMARK 2.3. The argument for Lemma 2.2 fails in the case where the index
category has an initial object.

2.2. The generalized Eilenberg-Zilber theorem.

A bisimplicial abelian group A is a simplicial object in the category of simplicial
abelian groups, or equivalently a functor of the form

A: A x A s Ab,

where Ab denotes the category of abelian groups, as before. Subject to the
latter description, the simplicial abelian group A(n,x) will be referred as the
vertical simplicial abelian group in horizontal degree n associated to A, while
the object A(x,m) is the horizontal simplicial abelian group in vertical degree
m. The category of bisimplicial abelian groups and natural transformations
between them will be denoted by s2Ab.

It is often convenient to write A,, = A(n,*) for the vertical simplicial abelian
group in horizontal degree n. The simplicial abelian group morphism A,, — A,,
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associated to an ordinal number map 6 : m — n will sometimes be denoted byMoore bicomplex
6*": this morphism is given on k-simplices by the abelian group homomorphismweak equivalence, 1
(0,1)* : A(n,k) — A(m,k). We shall also occasionally write 7*¥ = (1,7)* :generalized Eilenbe
A(n, k) — A(n,p) for the vertical structure maps associated to 7 : p — k.
The diagonal simplicial abelian group d(A) associated to the bisimplicial abel-
ian group A has m-simplices given by d(A),, = A(n,n). The association A +—
d(A) defines a functor d : s2Ab — sAb. The diagonal functor is plainly exact.
Furthermore, if B is a simplicial abelian group and K(B,0) is the associated
horizontally (or vertically) constant bisimplicial abelian group, then there is a
natural isomorphism d(K(B,0)) = B.
The Moore bicomplex for a bisimplicial abelian group A is the bicomplex having
(p, q)-chains A(p, q), horizontal boundary

On =) (~1)'di: A(p,q) — A(p — 1,q),
1=0

and vertical boundary

Oy = Z(—npﬂ'dj . Alp,q) — A(p,q — 1).

J

We shall also write A for the Moore bicomplex of a bisimplicial abelian group
A, and Tot A will denote the associated total complex. Write also A,, = A(n, *)
for the Moore complex in horizontal degree n. Then filtering the bicomplex A
in the horizontal direction gives a spectral sequence

(2.4) EDY = H,(H,A,) = H,(Tot A).

It follows that, if the bisimplicial abelian group map f : A — B is a pointwise
weak equivalence in the sense that all of the maps f : A, — B,,, n > 0, of vertical
simplicial abelian group are weak equivalences, then f induces an homology
isomorphism f, : Tot A — Tot B of the associated total complexes. Of course,
the meaning of “vertical” and “horizontal” are in the eyes of the beholder, so it
follows immediately that any map of bisimplicial abelian groups which consists
of weak equivalences on the horizontal simplicial abelian group level must again
induce a homology isomorphism of total complexes. One can, alternatively,
make an argument with the second spectral sequence for the homology of Tot A
(constructed by filtering in the Moore bicomplex in the vertical direction).

The generalized Eilenberg-Zilber theorem of Dold and Puppe [20] asserts the
following;:
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THEOREM 2.5. The chain complexes d(A) and Tot A are chain homotopy equiv-
alent. This equivalence is natural with respect to morphisms of bisimplicial
abelian groups A.

PROOF: Suppose that K and L are simplicial sets. The usual Eilenberg-Zilber
theorem asserts that there are natural chain maps

f:Z(K x L) — Tot(ZK ® ZL),
and
g:Tot(ZK @ ZL) — Z(K x L),
and that there are natural chain homotopies fg ~ 1 and gf ~ 1. Specializing K
and L to the standard simplices gives bicosimplicial chain maps
f:Z(A? x A?) — Tot(ZAP @ ZAY),
and
g : Tot(ZAP @ ZAY) — Z(AP x A7),
as well as bicosimplicial chain homotopies fg ~ 1 and gf ~ 1.

Observe that AP x A? = d(AP'?), where AP is the bisimplicial set represented
by the pair of ordinal numbers (p,q). It follows that the chain complex Z(AP x
A?) can be identified up to natural isomorphism with d(ZAP-?). Note as well
that, up to natural isomorphism, Tot(ZAP ® ZA?) is the total complex of the
bisimplicial abelian group ZAP4. Every bisimplicial abelian group A sits in a
functorial exact sequence

@ ZA"® — @ ZAPT — A — 0.
(r,s)—(p,a) (p,a)

The functors Tot and d are both right exact and preserve direct sums, so the
chain maps

f d(ZAP?) — Tot ZAP1
uniquely extend to a natural chain map
f:d(A) — Tot A.
which is natural in bisimplicial abelian groups A. Similarly, the chain maps
g : Tot ZAP? — d(ZAP?)
induce a natural chain map
g:Tot A — d(A).

The same argument implies that the bicosimplicial chain homotopies fg ~ 1 and
gf ~ 1 extend uniquely to chain homotopies which are natural in bisimplicial
abelian groups. [ ]
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REMARK 2.6. The maps f and g in the proof of Theorem 2.5 can be precisely Alexander-Whitney
specified as the unique extensions of the classical Alexander-Whitneys and shuffleshuffle map

maps, respectively. The definitions will not be written down here (see [20], [64,

pp.241-243]).

The underlying acyclic models argument for the Eilenberg-Zilber theorem is
somewhat less than conceptual, so that the usual approach of using the spectral
sequence (2.4) and the generalized Eilenberg-Zilber theorem to construct the
standard spectral sequence

Eg’q = 71'p(WqA*) = 7Tp+qd(A)

is rather indirect. We can now give an alternative construction. The basic trick
is to arrange for some independent means of showing the following:

LEMMA 2.7. A pointwise weak equivalence f : A — B of bisimplicial abelian
groups induces a weak equivalence f, : d(A) — d(B) of the associated diagonal
complexes.

PrOOF: There is a bisimplicial abelian group given in vertical degree m by the
simplicial abelian group

m—ng—---—ng

This simplicial abelian group is the translation object associated to the functor
A(x,m): (m | A)°? — Ab which is defined by associating to the object m — n
the abelian group A(n,m). The category (m | A)° has a terminal object,
namely the identity map 1 : m — m, so Lemma 2.2 implies that the canonical
simplicial abelian group map EA(x,m) — K(A(m,m),0) is a weak equivalence.
It follows that the Moore complex for EA(x,m) is canonically weakly equivalent
to the chain complex A(m,m)[0] consisting of the group A(m,m) concentrated
in degree 0. The morphism of bicomplexes which is achieved by letting m vary
therefore induces a natural weak equivalence of chain complexes Tot EA(x,*) —
d(A). On the other hand, the vertical simplicial abelian group of FA(x,x*) in
horizontal degree k has the form

@ A" @ A(ng, *).

ng—---—ng

It follows that any pointwise equivalence f : A — B induces a homology iso-
morphism f, : Tot FA(*,%) — Tot EB(x,%), and hence a weak equivalence
f« 2 d(A) — d(B). [ |
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Define the horizontal normalization Np A of a bisimplicial abelian group Ahorizontal normaliz
to be the simplicial chain complex whose “n-simplices” are given by the chain
complex NpA,, = NA(x,n). The bisimplicial abelian group A can be recovered
from the simplicial chain complex N, A by applying the functor I' in all verti-
cal degrees. The simplicial chain complex N, A can be filtered: one defines a
simplicial chain complex F}, N, A as a chain complex object by specifying
Fy Ny A; = { NpA; 1fz < p, and
0 if 1 > p.

Now, F,_1N,A C F,NjA, with quotient NjA,[p|, which can be thought of
as the simplicial chain complex which is the simplicial abelian group Nj A4, in
chain degree p and is 0 in other chain degrees. Applying the functor I' to the
corresponding short exact sequence gives a short exact sequence of bisimplicial
abelian groups

0 —F,_1NyA — TE,N,A — I'N,A,[p] — 0.

It follows that the bisimplicial abelian groups I'F},, Nj, A filter A. In vertical degree
n, we have an identification

FNhAp[p](*7 n) = K(NA(*7 n)Pﬂp)a

since, in general, the Eilenberg-Mac Lane space K(B,n) can be identified with
the simplicial abelian group I'B[n| which arises by applying the functor I" to the
chain complex B[n| which consists of B concentrated in degree n.

LEMMA 2.8. There is an isomorphism
T NRAp = N(mpAL)p.

Proor: Write . .
N A, =n]_yker(d!) C A,

for 0 < j < p—1. We show that the canonical map
(2.9) TN Ay — NI (m,AL),

is an isomorphism for all j.
The degree 0 case is shown by observing that there is a short exact sequence

h

d
0—>N,?Ap—>Ap—0>Ap,1—>0
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which is split by sk : A,_; — A,, so that the map 7, NY A, — N%(m,A,), is an
isomorphism. Furthermore, the induced map m,N) A, — m,A, is a monomor-
phism.

Assume that the map (2.9) is an isomorphism, and that the induced map

h
TV} A, — Ay

is monic. Consider the pullback diagram of simplicial abelian groups

N A, —— ker(dl,,)

] |

N/A, ———— A,

and form the pushout

NIt A, ——ker(dl,)

1 |

Nj A, ———— N{ A, +ker(d", ).

The inclusion map NZHAP C N,{Ap is split by the map x — x — S?+1d;-l+1(l'),
and so a comparison of long exact sequences shows that the induced diagram of
abelian group homomorphisms

7Tn]\]}J;rlAp - 7, ker(d;lH)

] |

WnN,zAp _— ﬂ-n(N}zAp + ker(d?—i—l))

is a pushout. But the inclusion ker(d)!, ;) C A, is a split monomorphism, so that
the induced map m,, ker(d? 1) — T Ap is monic, and the map ,, N, ,{Ap — TrAp
is monic by the inductive assumption. It follows that the induced map

Wn(Nf;Ap + ker(dgﬂrl)) — A,
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is a monomorphism, and that the canonical sequence
0— WnN}Z+1Ap — WnNZAp D, ker(d?H) — TR Ap

is exact. [

The alternative method for constructing a spectral sequence
(2.10) Ep? = mp(mgAs) = Tpiqd(A)

for a bisimplicial abelian group A is now clear. The filtration F, N, A for the
bisimplicial abelian group A gives rise to short exact sequences

0—TF,_1NyA—-TF,NyA—TN,A,[p| =0
Let N, A,(p) be simplicial chain complex

p—1

p 1
= 0= NuAylpl = Nadylp] =0 — -

which is non-trivial in horizontal degrees p and p — 1 only. Then NjA,(p)
is horizontally acyclic, and there is a short exact sequence of simplicial chain
complexes

0 — NpA,[p| = NLbA,(p) — NpAplp—1] — 0.

It therefore follows from Lemma 2.8 that there are natural isomorphisms
(2.11) Tp+ql N Aplp] = mgNpAp =2 N(mgAy)p.
Furthermore, if we define a spectral sequence by letting

BV = mpi g TN Ap p),

then the differential d, : BP9 — EP~1? is identified by the isomorphisms (2.11)
with the standard differential

0: N(mgAy)p — N(mgAs)p-1

in the normalized complex for the simplicial abelian group 7,A.. It follows that
there are canonical isomorphisms

Eg’q = Wp(WqA*)»

and the construction of the spectral sequence (2.10) is complete.
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3. Closed model structures for bisimplicial sets. closed model struct

There are three closed model structures on the category S2 of bisimplicial setsVeak equivalence, |

. . o ) fibration, pointwi
that will be discussed in this section, namely raion, pomtwise

(1) the Bousfield-Kan structure, in which a fibration is a pointwise fibration
and a weak equivalence is a pointwise weak equivalence,

(2) the Reedy structure, in which a cofibration is a pointwise cofibration (aka.
inclusion) of bisimplicial sets, and a weak equivalence is a pointwise weak
equivalence, and

(3) the Moerdijk structure, in which a fibration (respectively weak equiva-
lence) is a map f which induces a fibration (respectively weak equivalence)
d(f) of associated diagonal simplicial sets.

In all of the above, a map f: X — Y is said to be a pointwise weak equivalence
(respectively fibration, cofibration) if each of the simplicial set maps f : X,, — Y,
is a weak equivalence (respectively fibration, cofibration). This idea was partially
introduced at the end of Section 1.

3.1. The Bousfield-Kan structure.

The Bousfield-Kan closed model structure on the category S? is a special case
of a closed model structure introduced by Bousfield and Kan for the category
S! of I-diagrams of simplicial sets arising from a small category I and natural
transformations between such. The special case in question corresponds to letting
I be the opposite category A°P of the ordinal number category.

A map f: X — Y is defined to be a weak equivalence (respectively fibration) in
the Bousfield-Kan structure on S’ if each induced simplicial set map f : X (i) —
Y (i) (“in sections”) is a weak equivalence (respectively fibration). One says that
such maps are pointwise weak equivalences (respectively pointwise fibrations).
Cofibrations are defined by the left lifting property with respect to pointwise
trivial fibrations, suitably defined.

The closed model axioms for the Bousfield-Kan structure on S’ are verified in
Example I1.7.11. They can also be seen directly by using a small object argument
based on the observation that a map f: X — Y of S is a pointwise fibration if
it has the right lifting property with respect to all maps

FzAZ — A", el

and f is a pointwise trivial fibration if it has the right lifting property with
respect to all induced maps

F,0A™ — F;A", iel.
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Here, we need to know that K — F; K is the left adjoint of the i-sections functorclosed model struct
X — X(Z), and explicitly n-truncated simplic
FK(G) = | | K
i—j
defines the functor F; K at j € I.
3.2. The Reedy structure.

First, a word or two about skeleta and coskeleta of simplicial sets — the
skeleton construction for more general simplicial objects will be discussed in
Section V.1.

Write A,, for the full subcategory of the ordinal numbers on the objects
0,...,n. An n-truncated simplicial set Y is a functor ¥ : A% — Sets. Let
S,, denote the category of n-truncated simplicial sets.

Every simplicial set X : A°? — Sets gives rise to an n-truncated simplicial set
inxX by composition with the inclusion functor ¢,, : A,, C A. The n-truncation
functor X + 4,,X has a left adjoint Y + 4*Y and a right adjoint Z ~ i}, Z, and
these adjoints are defined by left and right Kan extension respectively. Explicitly,
the set 7Y, of m-simplices of ¢;Y is defined by

m—k<n
while
inZm = lm  Z,
n>k—m

where the indicated morphisms in both cases are in the ordinal number category
A.

EXERCISE 3.1. Show that the canonical maps
N:Y — i)Y
and
€ inyinZ — Z
are isomorphisms.

There is a canonical map of simplicial sets ¢ : i¥ Z — i}, Z and a commutative
diagram

Zy;
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for each composite matching object
y 0 fibration, Reedy
k—n+1—m n-coskeleton *a{c}

n-skeleton *a{s}
in the ordinal number category with k£, m < n. It follows that an extension of

the n-truncated simplicial set Z to an (n + 1)-truncated simplicial set consists
precisely of a factorization

inZnt1 > Znt1

(3.2) b ‘

|
ZnZn+1

of the function ¢ : 7)) Z,,4+1 — iilZn_H. The indicated map is a monomorphism,
because ) Z,,+1 must be the degenerate part of Z,, ;1 on account of the universal
property implicit in diagram (1.7).

All of the foregoing is completely natural, and gives corresponding results
for diagrams of simplicial sets. In particular, an extension of an n-truncated
bisimplicial set Z : A% — S to an (n + 1)-truncated bisimplicial set consists
of a factorization of the canonical simplicial set map ¢ : i) Z,,4+1 — iilZnH of
the form (3.2). Of course, the extended object consists of the simplicial sets
20y Loy Ly 1-

In the literature, the simplicial set in*i!n_li(n_l)*X arising from a bisimplicial
set X is denoted by M, X, and is called the n'* matching object for X [28], [29].

A map p: X — Y of bisimplicial sets is said to be Reedy fibration if

(1) the map p: Xg — Yj is a Kan fibration of simplicial sets, and

(2) each of the induced maps p. : X,, — Y, Xar, vy M, X is a Kan fibration
for n > 0.

It is common to write

o
cosky, X =1, 9, X.

and
sk, X =)0, X.

From this point of view, the canonical maps in the second condition in the
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definition are induced by the commutative diagram of simplicial set maps

X, /N cosk, 1 X,

p‘ 2

Y, — cosk,,_1Y,
which arises from the naturality of the adjunction maps. In particular, a bisim-
plicial set X is Reedy fibrant if the simplicial set X is a Kan complex and each
of the maps X,, — cosk,,_1 X,,, n > 0, is a Kan fibration.

LEMMA 3.3.

(1) Suppose that a map p : X — Y is a Reedy fibration. Then p has the
right lifting property with respect to all maps of bisimplicial sets which
are pointwise cofibrations and pointwise weak equivalences.

(2) Suppose that p : X — Y is a Reedy fibration such that each of the
fibrations

Xn - Yn ><coskn,l Y, COSkn—l Xn

is also a weak equivalence. Then p has the right lifting property with
respect to all maps which are pointwise cofibrations.

ProoF: We’ 1l prove the first assertion. The second is similar.
Suppose given a commutative diagram

U———X
| I
V——Y
of bisimplicial set maps in which the map i is a pointwise cofibration and a

pointwise weak equivalence. Suppose inductively that there is a commutative
diagram of n-truncated bisimplicial set maps of the form

iU ——— i X

[ 7
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Then there is an induced solid arrow diagram of simplicial set maps

Skn Vn—|—1 Uskn Vi1 Un—|—1 Xn—|—1
-y
/l:*l/ /’/////// ‘p*
Vn—i—l Yn+1 Xcoskn Yrt1 COSkn Xn—l—l

The map 7, is a trivial cofibration, since the functor U + sk, U, +1 takes maps
which are pointwise weak equivalences to weak equivalences of simplicial sets via
diagram (1.7), and the diagram of simplicial set maps

Skn Un+1 R Un+1

Skn Vn+1 > Vn+1

is a pullback. The map p, is a Kan fibration by assumption, so the indicated
dotted arrow exists. |

COROLLARY 3.4. Suppose that p: X — Y is a Reedy fibration such that each
of the fibrations

Xn - Yn ><coskn,l Y, COSkn—l Xn
is also a weak equivalence. Then p is a pointwise weak equivalence.

PrOOF: The map p has the right lifting property with respect to the cofibrations
FLOA™ — F,A™, so that p is a pointwise trivial fibration. |

LEMMA 3.5. Suppose that f : X — Y is a map of bisimplicial sets. Then f has
factorizations

Z
R
X ——Y

N

W,
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where
(1) the map i is a pointwise cofibration and a pointwise weak equivalence and
p is a Reedy fibration, and

(2) the map j is a pointwise cofibration and q is a Reedy fibration and a
pointwise weak equivalence.

Proor: We'll prove the second claim. The first has a similar argument.

It suffices to find a factorization f = ¢ - j, where j is a pointwise cofibration
and ¢ meets the conditions of Corollary 3.4.

Suppose, inductively, that we’ve found a factorization

J

I X ——— W

N

InsY

in the category of n-truncated bisimplicial sets, such that j is a pointwise cofi-
bration, and such that the maps ¢q : Wy — Y, and
Qs : Wi, — Y X Y iin_le, O<m<n

are trivial fibrations of simplicial sets. The commutative diagram

i X1 Xpy1 ———ih Xoga
i j*[
i Wit Ji f+ i Wit S+
N N
i Ypg1 —— Yogo it Yot

induces a diagram

ok ok
1y Wit i W1 Uix x

.

-l
Yn+1 X’i!,LYn+1 Zan+1 Zan+1.

Xn+1

n+1
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Choose a factorization

Xn+1 J Wn—l—l

RN

Yn+1 ><Z-!nynle Zan—l-l

-5k
(7% Wn+1 UZ';XnJrl

such that j’ is a cofibration and ¢’ is a trivial fibration of simplicial sets. Then
the desired factorization of f at level n 4 1 is given by the maps

. ’
J Jx qx-q
Xoor 25 Wy 25 v,

Note that the map

. ok
Jxt Xng1 = 4, Whp1 Uixx, X

is a cofibration. [ |

The matching space M, X = cosk, _1 X,, is a special case of a construction
which associates a simplicial set Mk X to each pair consisting of a simplicial set
K and a bisimplicial set X. Explicitly, the p-simplices of Mk X are defined to
be a set of simplicial set morphisms by setting

Mg X, = homg (K, X (*,p)).

The simplicial set Mg X is a matching space for K in the bisimplicial set X.
Subject to the tacit indentification

X, = X(n, %),
the bisimplicial set cosk,_1 X has (m, p)-bisimplices specified by
cosk,,_1 X (m,p) = (cosk,_1 X (*,0))m-
It follows that the p-simplices of the simplicial set cosk,,_1 X,, have the form

coskn—1 X (n,p) = (coskn—1 X (*,p))n
= homg(sk,—1 A", X (x,p))
= homg (A", X (%, p))
= Moan Xp,
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so that Myan X is naturally isomorphic to M, X = cosk,_1 X,,. The functor
K +— Mg X is right adjoint to the functor S — S? which is defined by L +— K x L.

Suppose given integers sg,...,s, such that 0 < sg < 81 < -+ < s, < n,
and let A™(sq,...,s,) be the subcomplex of JA™ which is generated by the
simplices ds;tn, j = 0,...,7. Then the simplicial identities d;d; = d;_1d; for
i < j imply that the complex A™(sg,...,s,) can be inductively constructed by
pushout diagrams or the form

An—l dasr—! A"
<So,...,87~_1>—> <80,...,87=_1>

| |

A"t e A" (S0, .0y Sp)-

If k # s; for j=0,...,r, so that A"(so,...,s,) is a subcomplex of A}, then k is
a vertex of all of the generating simplices of the object A" !(sg,...,s,_1) in the
diagram (3.6). It follows that this copy of A" 1(sg,...,s,_1) is a subcomplex
of A7~' € A"!, where ¢ =k if k < s, and g =k —1if k > s,.

Following Bousfield and Friedlander, we shall write

M7(7/307"-:ST)X == MA”(SOP.A,ST»X.

Then, in particular, Mflo’l”"’n)X is yet another notation for cosk,,_1 X,,.

LEMMA 3.7. Suppose that the map p : X — Y is a Reedy fibration and a
pointwise weak equivalence. Then p has the right lifting property with respect
to all pointwise cofibrations.

PRrooOF: We show that each of the fibrations
Xm - Ym ><coskm_l Yo COSkm—l Xm

is a weak equivalence, and then apply Lemma 3.3.
There are canoncial simplicial set morphisms

(0,...,k)
Xn—|—1 — Yn—|—1 XMY(LO ,,,,, k) y Mn+1 X

+1

which generalize the map

Xn+1 - Yn+1 Xcoskn Yn41 COSkn XnJrl-
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The idea of proof is to show that each of the maps

0,....k
MM x

Xnt1 — Yo X sy My

is a trivial fibration of simplicial sets, by induction on n.
There is a pullback diagram

(0,...,k+1)
Yn_|_1 XMflii..,k+1)Y Mn+1 X Xn

0,....k
Yor1 X000y MM X Y, x

is a trivial fibration by the inductive hypothesis. The map p is a weak equiva-
lence, so that all of the intermediate maps

(0,...,k)
Xn_|_1 — Yn_|_1 XM(o ,,,,, )y Mn+1 X

+1

are weak equivalences as well. |

We’ve now done all the work that goes into the proof of
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THEOREM 3.8. The category S? of bisimplicial sets, together with the classes ofsimplicial presheav
pointwise weak equivalences, pointwise cofibrations and Reedy fibrations, satis-closed model struct

fies the axioms for a closed model category. fibration, diagonal
weak equivalence, ¢

ProoOF: The factorization axiom CMS5 is Lemma 3.5, and the lifting axiomcofibration, Moerdi
CM4 is Lemma 3.3 together with Lemma 3.7. |

REMARK 3.9. There is a completely different approach to proving Theorem 3.8,
which involves a closed model structure for a certain category of presheaves of
simplicial sets [46], [51] (ie. for the “chaotic topology” on the ordinal number
category A). The global fibrations for that theory coincide with the Reedy
fibrations: seeing this requires having both the Reedy structure and the closed
model structure for the simplicial presheaf category in hand. The applications
of the Reedy structure given in the next section depend on the matching space
description of Reedy fibrations, so there’s nothing to be gained by introducing
simplicial presheaf homotopy theory here.

3.3. The Moerdijk structure.

A map f: X — Y is said to be a diagonal fibration (respectively diagonal
weak equivalence) if the induced map f, : d(X) — d(Y) of associated diagonal
simplicial sets is a Kan fibration (respectively weak equivalence). A Moerdijk
cofibration is a map which has the left lifting property with respect to all maps
which are diagonal fibrations and diagonal weak equivalences.

The diagonal functor d : S? — S has a left adjoint d* : S — S2, which is
completely determined by the requirements

(1) d*(A™) = A™", and
(2) d* preserves colimits.

This follows from the fact that every simplicial set is a colimit of its simplices.
It implies that the bisimplicial set d*(A}) is the subcomplex of A™™ which is
generated by the bisimplices (d;in,dit,) for i # k, whereas, d*(0A™) is the
subcomplex of A™™ which is generated by all (d;ty,, d;ty,).

Alternatively, the set of bisimplices d*(A}})(r, s) can be characterized as the set
of all pairs of ordinal number maps (a: r — n, 3 : s — n) such that the images
of the functions o and [ miss some common element i, where ¢ # k. Put a
different way, the simplicial set of bisimplices d*(A})(*, 3) can be identified with
the subcomplex Cg of A} which is generated by the faces d;t,, which contain the
s-simplex (. This observation is the heart of the proof of

LEMMA 3.10. The inclusion map d*(A}) C d*(A™) = A™" is a diagonal weak
equivalence of bisimplicial sets.
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ProoOF: The projection map
(a:r—mn,f:s—n)—f
defines a map of bisimplicial sets
I_l Cg — |_| *,
BEAL BEAL
which in turn induces a map of simplicial sets
pr:d(d*(AR)) — AR

after applying the diagonal functor. The complex Cg of A™ is covered by sub-
complexes isomorphic to A"~ !, each of which contains the vertex k. It follows
that the contracting homotopy

(x,t) — tx + (1 — t)vg

of the affine simplex |A™| onto the vertex vy corresponding to the element k € n
restricts to a contracting homotopy

[Cpl x I — [Cpl.
The map pr is therefore a weak equivalence of simplicial sets, by Proposition 1.9,

so d(d*(A})) is contractible. [ |

REMARK 3.11. In the proof of Lemma 3.10, the complex Cj3 is a subcomplex of
A} of the form
Cs=A"(s0,...,5).

One can alternatively give a combinatorial argument for the “contractibility” of
this complex by making an inductive argument based on the existence of the
pushout diagram (3.6).

The diagonal functor d also has a right adjoint d, : S — S2: the bisimplicial
set d, K which is associated to the simplicial set K by this functor is defined by

d.K, , = homg(A? x AY, K).

LEMMA 3.12. The functor d, : S — S? takes fibrations to diagonal fibrations.
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PROOF: Suppose that p: X — Y is a Kan fibration, and suppose that there is
a commutative diagram of simplicial set maps

AP d(dX)
j‘/ //// ld(d*p)
A" L d(d.Y)

Then the indicated lifting exists if and only if the lifting exists in the diagram

d(d*A}) — X
e

d(d*])[ pd p

d(d*A") ——Y,

and Lemma 3.10 says that the inclusion d(d*j) is a trivial cofibration. [ |

Now suppose that the map ¢ : U — V of bisimplicial sets has the left lifting
property with respect to all diagonal fibrations. Then the lifting exists in all
diagrams

U——d. X

//7
) d ld*p

V——-dY

where p : X — Y is a Kan fibration, so that the induced simplicial set map . :
d(U) — d(V') has the left lifting property with respect to all Kan fibrations. In
particular, the map 7 is a diagonal weak equivalence. In view of Theorem I1.5.1,
this implies the following:

THEOREM 3.13. The category S? of bisimplicial sets, together with the classes
of Moerdijk cofibrations, diagonal fibrations and diagonal weak equivalences,
satisfies the axioms for a closed model category.
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An alternative proof of this result can be given by using a small object argumentgroup object
(as was done originally in [73]), based on the observation that a map p : X —
Y of bisimplicial sets is a diagonal fibration (respectively a diagonal fibration
and a diagonal weak equivalence) if and only if f has the right lifting property
with respect to all maps d*(A}) C A™™ (respectively with respect to all maps
d*(0A™) C A™™). One of the outcomes of the small object argument is the
assertion that every Moerdijk cofibration is a monomorphism of bisimplicial sets.

4. The Bousfield-Friedlander theorem.

Suppose that X is a pointwise fibrant bisimplicial set. The simplicial set

|_| T (Xom, T)

z€X (m,0)

and the obvious simplicial map

TmX |_| T (Xm, ) — I_l * = X(m,0)
z€X (m,0) z€X (m,0)

together form a group object in the category S | X(x,0) of simplicial sets over
the vertex simplicial set X (x,0). This group object is abelian if m > 1.

Recall that a vertex v € Mg X is a simplicial set morphism v : K — X(x,0).
The set of morphisms

Mg (1, X, v) = homg | x(«,0) (v, T X))

therefore has a group structure for m > 1, which is abelian for m > 2.
Suppose that i — K(i) defines an I-diagram K : I — S in the category of
simplicial sets, and let
v:lim K (i) — X(,0)
iel
be a map of simplicial sets. Let v(7) : K (i) — X (%,0) be the composite
iel

of v with the canonical map in; of the colimiting cone. Then

v =limwv;
—
i€l
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in the category S | X(x,0) of simplicial sets over X (%,0), and so there is anr,-Kan condition *
isomorphism vertical, path comp

homSlX(*,O) (U, WmX) = lin homSLX(*,O) (Uz‘, WmX)-
iel

It follows that there is an isomorphism

My, K(i)(ﬂ'mX, v) & lim Mg (i) (7 X, ;).

— i iel

In particular, the group Man (7, X, v) is canonically isomorphic to the group
Tm (Xn,v), where the map v : A" — X (x,0) is identified with a vertex v €
X (n,0). Any such vertex v : A™ — X (x,0) restricts to a composite map

AT € A" 5 X (%,0),

which will also be denoted by dv. It follows in particular that the corresponding
group Mz (1, X, dv) fits into an equalizer diagram

(4.1) Myp (mm X, dv) — me(Xn,l,div) = H T (Xn—2, did;v),
itk i<jii Ak

where the parallel pair of arrows is defined by the simplicial identities d;d; =
dj—ldi~
A pointwise fibrant bisimplicial set X is said to satisfy the m,-Kan condition
if the map
d : T (X, v) = Mpn(mm X, dv)

induced by restriction along the inclusion A} C A" is a surjective group homo-
morphism for all m > 1 and all n, k that make sense. The 7,-Kan condition for
X is equivalent to the requirement that all of the structure maps

TmX — X (%,0)

for the homotopy group objects 7, X, m > 1, are Kan fibrations, on account of
the description of M (7, X, dv) given in (4.1).

Suppose that Y is an arbitrary bisimplicial set, and write moY for the simplicial
set having n-simplices mY,, = oY (n,*). This is the simplicial set of vertical
path components of the bisimplicial set Y. There is a canonical simplicial set
map Y (x,0) — mY.
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LEMMA 4.2.

(1) A pointwise fibrant bisimplicial set X satisfies the m.-Kan condition if all
of the vertical simplicial sets X,, = X (n, *) are path connected.

(2) Suppose that f : X — Y is a pointwise weak equivalence of pointwise
fibrant bisimplicial sets. Then X satisfies the m,-Kan condition if and
only if Y satisfies the m,-Kan condition.

PROOF: In the case of statement (1), there is a path w from a given vertex
x € X(n,*) to a horizontally degenerate vertex s(y), where y € X (0, %) and so
the action the corresponding morphism [w] of the fundamental groupoid for X,
induces an isomorphism of maps

d

T (X, ¥) ———— Mpn (7 X, )

[w]*‘% 2|M*

T (X, $(y)) —g Mz (mm X, 5(y)),

and the simplicial group n — 7, (X,, s(y)) is a Kan complex.
To prove statement (2), note first of all that the map f : X — Y is a pointwise
weak equivalence of pointwise fibrant bisimplicial sets if and only if

(a) the induced map fi : 10X — mY is an isomorphism of simplicial sets,
and

(b) the induced simplicial set diagrams

g v

TmX —————— Ty,

T

X(%,0) f—>Y(>r<,0)
are pullbacks for m > 1.

Kan fibrations are stable under pullback, so if f is a pointwise weak equivalence
and Y satisfies the m,-Kan condition, then X satisfies the m,-Kan condition.



4. THE BOUSFIELD-FRIEDLANDER THEOREM 237
Suppose that X satisfies the 7m,-Kan condition, and that there is a diagram

Ap Oy

.

A" ——Y(%,0)

The simplicial set map fi : 19X — moY is an isomorphism, so that the vertex
v € Y(n,*) is homotopic to a vertex f(w) for some vertex w € X(n,*). The
argument for statement (1) implies that the 7,.-Kan condition for the vertex v is
equivalent to the m,-Kan condition for the vertex f(w), so we can replace v by
f(w). But now the diagram (4.3) is a pullback, by assumption, and so there is
a commutative diagram

Oy

AL T X I+ T Y

]

A" —— X (%,0) T) Y (x,0)

where f, o a, = a. Then X satisfies the m,-Kan condition, by assumption, so
that the indicated lifting exists, and the m,-Kan condition for the vertex f(w) is
verified. |

A pointwise fibrant model of a bisimplicial set X consists of a pointwise weak
equivalence j : X — Z, where Z is a pointwise fibrant bisimplicial set.

We shall say that an arbitrary bisimplicial set X satisfies the m,-Kan condi-
tion if for any pointwise fibrant model j : X — Z of X, the pointwise fibrant
object Z satisfies the m,-Kan condition in the sense described above. Lemma 4.2
says that the m.-Kan condition for pointwise fibrant bisimplicial sets is an in-
variant of pointwise weak equivalence, so (by appropriate manipulation of the
Bousfield-Kan closed model structure for bisimplicial sets) it suffices to find only
one pointwise fibrant model 57 : X — Z which satisfies the m,-Kan condition.
The 7.-Kan condition for arbitrary bisimplicial sets is also an invariant of weak
equivalence.

Suppose that f : X — Y is a Reedy fibration. Let ¢ : K C L be an inclusion
of simplicial sets, and observe that all induced bisimplicial set maps

fibrant model, poin
m«-Kan condition *
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are pointwise trivial cofibrations of bisimplicial sets. The functor X — Mg X is
right adjoint to the functor Y +— KXY, so it follows that the simplicial set map

(fei™)
(4.4) MLX—>MLYXML)(MKX

which is jointly induced by the Reedy fibration f and the inclusion ¢ is a Kan
fibration.

LEMMA 4.5. Suppose X is a Reedy fibrant bisimplicial set X that satisfies the
m«-Kan condition. Take a vertex x € X (n,=). Then there is a canonical isomor-
phism

Fm(MAzX, dl‘) = MAZ (7TmX, dl‘)

There is also an isomorphism
Wo(MAzX) = MA?I;L(W()X).
ProOF: Choose integers 0 < sg < 51 < -+ < s, < n with s; # k, and recall

that
M,’,(LSOP“’ST)X g MAH<30’...,ST>X

is a subcomplex of My» X. Write
M50 (1, X, dx) = Man (s oy (T X, d2),
and let ]\47(LSO """ ST)ﬂ'oX denote the set
Man(sg,....s,) (M0 X) = homg (A" (s0, ..., s), T X).

The pushout diagram (3.6) induces a pullback diagram

M,',(LS()’“.’ST)X - @ Xn_l

w

Then the map d is an instance of the fibration (4.4), and inductively the canonical
map
T (M0r5r=1) X ) — M orsr=1) (7 X da)



4. THE BOUSFIELD-FRIEDLANDER THEOREM 239
is an isomorphism. The map
d:mm(Xn_1,ds, x) — Mf_oi'“’sr_l)(ﬂmX, dzx)

is surjective for all m > 1, since X satisfies the m,-Kan condition. It follows that
the induced map

dy T (Xno1,) — T (M09 X )

is surjective for all m > 1, and so the commutative square

T (ML5057) X | d) T (Xn_1,ds, )

| [

T (M50 X, ) ———— 7 (ML) V X, dd, @)

of abelian group homomorphisms is a pullback. The group ﬂm(M,(LSO"“’S’")X ,dx)
therefore has the required form.
The map

de :m(Xpo1,2) — Wl(MT(LS_Oi'"’ST’l)X, dx)

is surjective for all choices of base point x € X,,_1, and so all inclusions F, —
X, 1 of fibres over dx induce injections o F, — mX,,_1. It follows that applying
the path component functor 7y to all diagrams of the from (4.6) gives pullback
diagrams of sets. This is what is required to show inductively that the canonical
maps

WO(M’r(LSO,...ST)X) N M,,SSO’“"ST)’]TOX
are bijections. |

LEMMA 4.7. Suppose that X and Y are Reedy fibrant bisimplicial sets which
satisfy the mw.-Kan condition, and that the bisimplicial set map f : X — Y is
a Reedy fibration. Suppose further that the induced simplicial set map f, :
moX — moY of vertical path components is a Kan fibration. Then the map f is
a horizontal pointwise Kan fibration.
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To understand the meaning of the word “horizontal” in the statement of
Lemma 4.7, note that every Reedy fibration is a pointwise Kan fibration, since
the maps FA}' — F,A™ are trivial cofibrations. The assumptions of the lemma
therefore imply that the simplicial sets X (n, ) and Y (n, %) are Kan complexes,
and that the simplicial set maps f : X(n,*) — Y (n,*) are Kan fibrations.
The lemma asserts that under the stated conditions the simplicial set maps
f: X(x,m) — Y(x,m) are Kan fibrations as well.

Proor: We shall prove the lemma by showing that each canonical map

d: Xm — Ym XMymY MAL”X
k

is a surjective simplicial set map. The map d is an instance of (4.4), hence a
Kan fibration, so it suffices to show that d induces a surjective function

dy : 7TOXm — To(Ym XMAZLY MA?X)

in path components.
From the previous result, the induced map

7T0Xm — 7T0(Ym XMAZY MAZX>
can be identified up to isomorphism with the map
ToXp — ToYn X My oY Mpnmo X,

and the latter is surjective on account of the assumption that the induced map
moX — moY in vertical path components is a Kan fibration. |

Recall that the bisimplicial set F,, K is canonically isomorphic to the object
A" K, and that the classifying bisimplex A™" is a copy of A™x A",

LEMMA 4.8. Suppose that f : X — Y is a Reedy fibration and a horizontal
pointwise Kan fibration in the sense that each of the maps f : X (x,n) — Y (x,n)
is a Kan fibration. Then f is a diagonal fibration.

ProOOF: The cofibration
d*Ap — d"A" = A™"
factors as a composite of two maps

d*A7 C APKA™ € AMXA™
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The first map is a pointwise trivial cofibration, by the proof of Lemma 3.10. Thehomotopy cartesiar
second has the left lifting property with respect to all horizontal pointwise Kan
fibrations. n

A commutative square

X ——Y

.

4L ——W

of bisimplicial set maps is said to be pointwise homotopy cartesian if each of the
induced squares of simplicial set maps

is homotopy cartesian, for n > 0.

THEOREM 4.9 (BOUSFIELD-FRIEDLANDER). Suppose given a pointwise homo-
topy cartesian square

X ——Y
| b
Z—— W
in the category of bisimplicial sets such that Y and W satisfy the m.-Kan con-

dition. Suppose further that the induced map p : moY — mgW of vertical path
components is a Kan fibration. Then the associated commutative square

d(X) ———d(Y)

| e

d(Z) —— d(W)

of diagonal simplicial sets is homotopy cartesian.
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PrOOF: Construct a diagram

Y jY Y/

o

W.—>Wl
Jw

in which jy and jy are pointwise trivial cofibrations, W’ is Reedy fibrant, and
p’ is a Reedy fibration. Then the composite square

X Y jY Y/

[ I lp I1 [p’

VA W — w’
Jw

is pointwise homotopy cartesian by Lemma I11.9.20, and the bisimplicial sets Y’
and W' satisfy the m,-Kan condition by Lemma 4.2. The Reedy fibrant objects
Y’ and W' are both pointwise fibrant.

Applying the diagonal functor gives a composite diagram in the simplicial set
category

d(X) ———d(Y) v d(Y")
(4.10) [ I [p* II lp;
d(Z) ——— d(W) ———d(W'),

JW «

in which the induced maps jy . and jy . are weak equivalences by Proposition 1.9.
Thus, in order to demonstrate that the square

d(X) ———d(Y)

o

d(Z) ——— d(W)
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is homotopy cartesian, it suffices, by Lemma I1.9.20, to show that the compositepointwise k-connec:
square (4.10) is homotopy cartesian.

The map p’ is a diagonal fibration, by Lemma 4.7 and Lemma 4.8, and the
induced bisimplicial set map

X — Zxy Y’

is a pointwise weak equivalence, since the Reedy fibration p’ is a pointwise fibra-
tion. It follows that the induced map

of diagonal simplicial sets is a weak equivalence. |

COROLLARY 4.11. Suppose that a pointed bisimplicial set X is pointwise fibrant
and pointwise connected. Then there is a weak equivalence

d(QX) ~ Qd(X).

ProOOF: We have tacitly chosen a base point x € X (0,0) for all of the vertical
simplicial sets X (n,*) in our assumption that X is pointed. The loop object
QX can then be characterized as the pointed bisimplicial set having vertical
simplicial sets QX (n,*). There is a corresponding path space PX, which is the
pointed bisimplicial set with vertical simplicial sets PX(n, ), and a pointwise
fibre sequence

OX — PX & X.

The map p induces an isomorphism 7wy PX = 7w X of vertical path component
simplicial sets. The bisimplicial sets PX and X both satisfy the 7,-Kan condi-
tion, and so applying the diagonal functor gives a homotopy fibre sequence

d(p)
d(QX) — d(PX) — d(X)

in the category of pointed simplicial sets, by Theorem 4.9. The simplicial set
d(PX) is contractible, by Proposition 1.9. [

A bisimplicial set X is said to be pointwise k-connected if each of the associated
simplicial sets X,, is k-connected, for n > 0. A pointwise connected (or 0-
connected) bisimplicial set can also be characterized as a bisimplicial set X such
that the associated vertical path component simplicial set o X is a copy of the
terminal object .
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LEMMA 4.12. Suppose that X is a bisimplicial set which is pointwise connected.
Then the diagonal simplicial set d(X) is connected.

PrROOF: There is a coequalizer diagram

dos
moX (1, %) ﬁ moX (1, %) — med(X),
1%

where dg. and dj, are induced by the horizontal face maps do,d; : X(1,%) —
X(0, ). n

PROPOSITION 4.13. Suppose that X is a pointed bisimplicial set which is point-
wise k-connected. The the diagonal d(X) is a k-connected simplicial set.

PROOF: Choose a pointwise weak equivalence i : X — X, where X is pointwise
fibrant. Then d(i) : d(X) — d(X) is a weak equivalence. We may therefore
presume that X is pointwise fibrant.

The space d(X) is connected, by Lemma 4.12. Also, the bisimplical set QX is

pointwise (k — 1)-connected, and there are isomorphisms
W]d(X) = Wj_ld(QX),

for 7 > 1, by Corollary 4.11. This does it, by induction on k. |

Proposition 4.13 admits a vast generalization, in the sense that it is a con-
sequence of a very general spectral sequence calculation. The existence of the
spectral sequence in question is an easy consequence of Theorem 4.9, modulo a
few technical observations.

First of all, if G is a simplicial group, then there is a bisimplicial set BG
whose vertical simplicial in horizontal degree n is the classifying space BG),, of
the group G, of n-simplices of G. Similarly, the translation categories of the
various groups G, can be collected together to form a bisimplicial set EG and a
canonical map 7 : EG — BG. These bisimplicial sets are pointwise fibrant and
connected in each horizontal degree, and the map m is a pointwise fibration. It
therefore follows from Theorem 4.9 that there is an induced fibre sequence

G — d(EG) - d(BG).

Furthermore, the bisimplicial set EG consists of contractible simplicial sets EG,,,
so that the associated diagonal d(EG) is contractible, by Proposition 1.9. It
follows that there are natural isomorphisms

Fnd(BG) = 7Tn,1G
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for n > 1. The space d(BG) is connected, by Lemma 4.12. Bousfield-Kan spec
Suppose that X is a pointwise fibrant and pointed bisimplicial set such that

each of the vertical simplicial sets X,, is an Eilenberg-Mac Lane space of the

form K (m,,, m), for some fixed number m > 2. Then Corollary II1.3.8 implies

that there is a pointwise weak equivalence of bisimplicial sets of the form

X — (7, X [m]),

where 7, X [m] denotes the chain complex of simplicial groups, concentrated in
chain degree m. Then, by Theorem 4.9 or via chain complex arguments, one
sees that there are natural isomorphisms

mid(X) = 7 (T X)

for 7 > 0.

Suppose finally that X is a pointwise fibrant bisimplicial set which is pointed
and pointwise connected. Then the Postnikov tower construction applied to each
of the vertical simplicial sets X,, induces a tower of pointwise fibrations

= Xn)—-Xn-1) —--- — X(1) — X(0),

such that the the fibre F}, of the map X (n) — X (n—1) is a diagram of Eilenberg-
Mac Lane spaces of the form K (m,X,n). Each of the pointwise fibre sequences

F, — X(n) — X(n—-1)
induces a fibre sequence of associated diagonal simplicial sets, by Theorem 4.9.
The resulting long exact sequences
)
= mipd(X(n—1)) — md(F,) — md(X(n) - mdX(n—-1)) — ...

determine an exact couple which gives rise to a convergent spectral sequence
with

(414) E;’t = 7TS—|—tFt = 7TS(7TtX) = 7Ts+td(X), t+ s Z 0.

This spectral sequence is due to Bousfield and Friedlander [12, p.122]. It is a
reindexed example of the Bousfield-Kan spectral sequence for a tower of fibra-
tions, which will be discussed at more length in Section VII.3. Convergence
for such spectral sequences is usually an issue, but it follows in this case from
Proposition 4.13, which implies that the map X — X (n) induces isomorphisms

mid(X) = m;d(X (n))

for j < n.
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5. Theorem B and group completion. translation categor;

The stream of ideas leading to Quillen’s Theorem B begins with the most
general formulation of the Serre spectral sequence.

5.1. The Serre spectral sequence.

Suppose that p : F — B is an arbitrary map of simplicial sets, and recall that
A | B denotes the simplex category for B. There is a functor p~' : A | B — S
taking values in the simplicial set category which is defined by associating to the
simplex o : A" — B the simplicial set p~!(o), where p~!(o) is defined by the
pullback diagram

_—

An T)B

1

The homotopy colimit holimp~! arising from the functor p=' : A | B — S

has vertical simplicial set in horizontal degree n given by

L] »7'(00).

oQg——0p

Note that this disjoint union is indexed by strings of arrows of length n in the
simplex category A | B, and that these strings form the set of n-simplices of
the nerve B(A | B).

The simplicial set B is a colimit of its simplices in the simplicial set category,
and pulling back along p : E — B is right exact, so that the maps o, : p~ (o) —
FE induce an isomorphism of simplicial sets

: —1 ~
lim p~ (o) = E.
occeA|B

In particular, the set E,, of m-simplices of ¥ may be identified with the set of
path components of the translation category Ep, ! arising from the functor

o ().

The objects of this category are pairs (o, x), where o : A™ — B is a simplex of
B and z € p~!(0)m, and a morphism 6 : (o,z) — (7,y) consists of a morphism
7:0 — 7in A | B such that 7,.(x) = . The nerve BEp, ! for this translation
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1

category coincides with the horizontal simplicial set in holim p™" appearing in

vertical degree m.

Write Ep;&w for the path component of the translation category Ep,! corre-
sponding to a simplex x of F,,. This component Ep;l}x is the full subcategory
of Ep,1 on objects of the form (o,y), where o.(y) = z. In particular, y must
have the form y = (0, x) in

p (o) = A" xp E.

One sees, now, that the object (p(z), (tm,x)) is initial in the category Epfn}m, SO
that BEp,_n}x is contractible, and the simplicial set map

(5.1) BEp.' — E,,

is a weak equivalence. We have taken the liberty of identifying the set F,, with
the corresponding constant simplicial set K (E,,,0); by further abuse, the maps
(5.1) are the horizontal components of a bisimplicial set map

holimp™t — E,
—_—

which is a weak equivalence in each vertical degree. Proposition 1.9 therefore
implies the following:
LEMMA 5.2. Suppose that p : E — B is a map of simplicial sets. Then the
canonical bisimplicial set map

holimp™! — E

—
induces a weak equivalence

. —1y
d(holimp™) ~ E

of simplicial sets.

Now let A be an abelian group, and consider the bisimplicial abelian group
Z(holimp~™1) ® A. The diagonal of this object is the simplicial abelian group

Z(d(holim p~1)) ® A, and the weak equivalence d(holimp~!) — E of Lemma 5.2
— —
induces a weak equivalence of simplicial groups

|
Z(holmp™ ) ® A — Z(E) ® A,
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by universal coefficients and the fact that the free abelian group functor pre-Grothendieck spect
serves weak equivalences (see Lemma II1.2.14). Note as well that the bisim-Serre spectral sequ
plicial abelian group Z(M p~ 1) ® A can be identified with the translation

object associated to the functor defined on the simplex category A | B by

o — Z(p~1(0)) ® A (Section I1.4). Tt follows, by the results of Section 2, that

there is a spectral sequence

(5.3) Ept = 7, EH,(Z(p™")  A) = Hyyy(E, A).

In other words, E}*? is the p!* homotopy group of the translation object for the
abelian group valued functor H,(Z(p™') ® A) : A | B — Ab defined by

(5.4) o= Hy(Z(p~"(0)) ® A) = Hy(p™ ' (0), A).

The spectral sequence (5.3) is sometimes called the Grothendieck spectral se-
quence, and is defined for any simplicial set map p : F — B. This spectral
sequence specializes to the Serre spectral sequence in the case where the map
p: EF — B is a fibration. When p is a fibration, any map 6 : ¢ — 7 in the
simplex category A | B induces a weak equivalence 6, : p~1(c) — p~1(7), and
hence induces isomorphisms

Hy(p™ (o), A) > Hy(p™(7), 4)

for all ¢ > 0. It follows (Theorem III.1.1) that the functors (5.4) factor through
functors

H,(Z(p~')® A) : 7(B) = G(A | B) — Ab,

which are defined on the fundamental groupoid 7(B) of the space B (see Theo-
rem I11.1.1).

If in addition B is simply connected, and F' is the fibre over a choice of base
point for B, then the functor H,(Z(p~') ® A) is naturally isomorphic to the
constant functor o — H,(F, A) on the simplex category for B, and so there is a
natural isomorphism

Ep? = mpyEHy(Z(p~") ® A) = Hy(B(A | B), Hy(F, A)).

The assertion that there is a natural weak equivalence d(}%n p~!) — E can be
specialized to the case of the identity map B — B, implying that the bisimplicial
set map

|_| A" — B

og——0n
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(where o, : A™ — B are simplices of B) induces a weak equivalence of diagonalTheorem B
simplicial sets. One also knows that the canonical bisimplicial set map

|_| A0 — |_| *

og— ' —0p og— ' —0n

is a pointwise weak equivalence, and hence induces a weak equivalence

d. || A™)—B@A]B).

GOy
It follows that there are isomorphisms

Hy(B(A | B), Hy(F, A)) = Hy(B, Hy(F, A)),
p > 0, and we obtain the standard form of the Serre spectral sequence
(5.5) EY? = H,(B,H,(F,A)) = H,,(E, A).

5.2. Theorem B.
Quillen’s Theorem B is the following:

THEOREM 5.6. Suppose that F': C — D is a functor between small categories
such that for every morphism « : y — 3y’ of D the induced simplicial set map
o* By | F) — B(y | F) is a weak equivalence. Then, for every object y of
D, the commutative diagram

B(y | F) — BC

By | D)—— BD

of simplicial set maps is homotopy cartesian.

Here, one should recall that the objects of the comma category y | F' are pairs
(1,2), where z is an object of C and 7 : y — F(x) is a morphism of D. A
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morphism « : (79,20) — (71,21) of y | F is a morphism « : o — z1 of C such
that the diagram

commutes in the category D.

Theorem B has important applications in algebraic K-theory. In some sense,
however, one of the steps in its proof is even more important, this being the
following result:

LEMMA 5.7. Suppose that X : I — S is a simplicial set valued functor which is
defined on a small category I. Suppose further that the induced simplicial set
map X (a) : X (i) — X(j) is a weak equivalence for each morphism « : i — j
of the index category I. Then, for each object j of I the pullback diagram of
simplicial sets

X(j) —— d(holim X)

(53) ‘ |7r

* . BI

is homotopy cartesian.

PROOF: The diagram (5.8) is obtained by applying the diagonal functor to the
following pullback diagram of bisimplicial sets:

X)) —— || X(o)

fg—e—rin

|

]

io—>—in
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In particular, the canonical map 7 : d(M X) — BI is the map which is
associated to the natural transformation of functors on I which is given by the
simplicial set maps X (i) — x*.

The strategy of proof is to find a factorization

*—>BI

N A

of the inclusion of the vertex j in BI such that j is a trivial cofibration, p is a
fibration, and such that the induced map X (j) — U X pg; d(m X) is a weak
equivalence.

Pulling back along the map = : d(}ﬁn X) — BI preserves colimits in the
category S | BI of simplicial set maps K — BI. The small object argument
therefore implies that it suffices to show that any diagram

d(holim X)
—
(5.9) lﬂ'
Aj < ; A" > BI
induces a weak equivalence
(5.10) ix : A} X pr d(holim X)) — A" x g d(holim X).

The simplex ¢ in the diagram (5.9) is a functor ¢ : n — I, and the space
A™ x gy d(holim X) coincides up to isomorphism with the diagonal of the homo-

topy colimit holim X o associated to the composite functor
—

niI—>S.
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Furthermore, the map i, in (5.10) can be identified with the diagonal of the map
i, in the following pullback diagram of bisimplicial sets:

|| Xo(ke) —=— || Xo(ko)
kg— - —kyp kg—-—ky
eAT N

| |

A — L] =

kg— - —kp kg—s---— kg

EAT eAn

The initial object 0 € n determines a natural transformation 6 : Xo(0) — Xo,
where Xo(0) denotes the constant functor at the object of the same name, and
there is an induced diagram of bisimplicial set maps

|| Xo(0)—— || Xo(0)
kg——kp kg——kp
EAT eAn

H*l 19*

|| Xo(ko) —— || Xo(ko).
ko*’"‘*’kr ko*’""*kr
EAT EAn

The vertical maps 6, induce weak equivalences of associated diagonal simplicial
sets, by Proposition 1.9, and the diagonal of the top horizontal map is the weak
equivalence
ix1:AL x Xo(0) = A" x Xo(0).
It follows that the map i, of (5.10) is a weak equivalence. [
There is a homology version of Lemma 5.7 for every homology theory h, which

satisfies the wedge axiom. Here is a specimen statement:

LEMMA 5.11. Suppose that X : I — S is a simplicial set valued functor which is
defined on a small category I, and that A is an abelian group. Suppose further
that the induced simplicial set map X («) : X (i) — X (j) induces an isomorphism
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H.(X(i),A) 2 H.(X(j),A) for each morphism « : i — j of the index category
I. Then, for each object j of I the pullback diagram of simplicial sets

X(j) —— d(holim X)

L

* . BI
J

is homology cartesian in the sense that the corresponding map X (j) — F; from

X(j) to the homotopy fibre F; over j induces an isomorphism H,(X(j), A) =
H.(F;,A).

The proof of Lemma 5.11 is a spectral sequence argument which follows the basic
outline of the proof of Lemma 5.7.

PROOF OF THEOREM 5.6: The functor y — B(y | F') determines a contravari-
ant simplicial set valued functor D — S, with homotopy colimit having (m,n)-
bisimplices

Yn—"—Yo
This set of bisimplices can also be identified with the set of all strings of arrows
in D of the form
Yn — - = Yo — F(xg) — -+ = F(xp,).

The degenerate simplices
1 1 1
y—y—...—y

determine a commutative diagram of bisimplicial set maps

Byl F)w—— || Bl Fln—2—BC,

Yn—"—Y0
| -

(5.12) By | D)m —— ] B(yo | D) —5— BDnm

Yn—"—Yo

12
—
12
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The bisimplicial set map

Q.
(5.13) || BwolF)m — BCy,
Yn = —Yo
is an alternate way of representing the forgetful map
| | «— ] =
Yn—-..yo—F(xo)— - —F(xm) To——Tm
corresponding to the functor F', and can also be identified with the map
|_| B(F(xp) | D)? — |_| *.
T —,, To— oz,

The category (F(xo) | D)°? has a terminal object, so the map Q. in (5.13)
induces a weak equivalence of associated diagonals, by Proposition 1.9. The
bisimplicial set map

| B! Dyw—>BD,,
Yn—""—Yo0
is an instance of the map in (5.13), corresponding to the case where F' is the
identity functor on the category D, so it induces a weak equivalence of associated
diagonal simplicial sets as well. The categories y | D and yo | D have initial
objects, so Proposition 1.9 implies that the indicated maps in the diagram (5.12)
induce weak equivalences of associated diagonals.
Thus (see Lemma 11.9.20), to show that the simplicial set diagram

B(y| F)——— BC

By | D)—— BD

is homotopy cartesian, it suffices to see that the bisimplicial set diagram

Byl F)m—— || BylF)m

Yn—"—Yo
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induces a homotopy cartesian diagram of the associated diagonal simplicial sets.group completion
This is a consequence of Lemma 5.7. |

5.3. The group completion theorem.

Suppose that M is a simplicial monoid, and that X is a simplicial set with an
M-action M x X — X. There is a Borel construction for this action, namely a
bisimplicial set EM x; X having vertical simplicial set in horizontal degree n
given by M *" x X. The fastest way to convince yourself that this thing actually
exists is to observe that the action M x X — X is composed of actions M,, x X,, —
X, of monoids of n-simplices on the corresponding sets X,,. These actions admit
Borel constructions EM,, X ;. X, (or nerves of translation categories), and this
construction is natural in n.

The canonical maps © : EM, X, X, — BM, are also natural in n, and
therefore define a map

m: FEM x, X — BM

of bisimplicial sets, which is given in horizontal degree n by the projection
M*" x X — M*".

There is an obvious pullback diagram of bisimplicial set maps

X —FEM xpy X

w1

x ————> BM

The group completion theorem gives a criterion for this diagram to be homology
cartesian.

THEOREM 5.15 (GROUP COMPLETION). Suppose that M x X — X is an action
of a simplicial monoid M on a simplicial set X, and let A be an abelian group.
Suppose further that the action of each vertex v of M induces an isomorphism
ve : Ho(X,A) =2 H.(X,A). Then the diagram (5.14) is homology cartesian in
the sense that the map X — F' to the homotopy fibre of the simplicial set map
d(m) induces an isomorphism in homology with coefficients in A.

Theorem 5.15 is used, in the main, to analyze the output of infinite loop space
machines. It implies, for example, that each connected component of the 0"
space of the {2-spectrum corresponding to the sphere spectrum is a copy of the
space BX1 obtained by applying Quillen’s plus construction to the classifying
space of the infinite symmetric group [6], [83]. Here is another typical calculation:
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EXAMPLE 5.16. Suppose that R is a ring with identity. Then matrix addition
induces a simplicial monoid structure on the simplicial set

M(R) = | | BGl.(R).

In particular, right multiplication by the vertex e = x € BGI;(R)o (and all of
its degeneracies) induces a simplicial set map

T®e: M(R)— M(R),
which restricts, on the n*” summand, to the map BGl,(R) — BGl, 1 (R) which

is induced by the canonical inclusion Gl,,(R) — Gl,,+1(R) defined by A — A& 1,
where I denotes the identity element of Gl; (R). The filtered colimit of the system

M(R) -5 Mm(R) =5

can be identified up to isomorphism with the simplicial set

X(R) =| | BGI(R).
Z

The simplicial set X (R) has an obvious left M(R) action, and Theorem 5.15
implies that the diagram

X(R) ——— EM(R) % y1(r) X(R)

| |

* BM(R)

is homology cartesian. In effect, left multiplication by a vertex n € M(R) just
shifts the vertices of X (R): the summand corresponding to r € Z is taken to
the summand corresponding to n 4+ . The map induced on the 7*"* summand
itself is the simplicial set map BGI(R) — BGI(R) which is induced by the group
homomorphism I,,&? : GI(R) — GI(R) defined by A — I, & A, where I, is
the n x n identity matrix. As such, the group homomorphism I,,®? is a filtered
colimit of group homomorphisms Gl,,,(R) — Gly4n(R). The key point is that
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I, @& A is conjugate, via a suitable choice of permutation matrix, to A ® I,, in
Glyn(R). It follows that (vertical) components of the comparison map

Cany CATly

H.,(BGl(R),Z) H.(BGlyi1(R), Z)

(In@‘m[ (Inea?)*‘

_H* (BGlm+n(R), Z) Tm) H* (BGlm+n+1(R>, Z) Tn*) ‘e
coincide with morphisms induced by canonical inclusions, and so the group ho-
momorphism I,,®7 induces the identity map on H.(BGI(R),Z).

The space arising from the bisimplicial set EM (R) X p7(g) X (R) is contractible,
since it is a filtered colimit of objects of the form EM(R) Xry M(R). It
follows that X (R) has the homology of the loop space Qd(BM(R)), and that
the component Qd(BM(R))o of 0 € Z is an H-space having the homology of
BGI(R). This component Qd(BM(R))o must therefore be a copy of Quillen’s
space BGI(R)™.

Finally (without going into a lot of details), the monoidal structure on M (R)
is abelian up to coherent isomorphism, so effectively one is entitled to form a
collection of connected objects

BM(R), BBM(R), B3M(R),...
such that B"*1M(R) is a delooping of B"M(R) for all n, just like one could
do if M(R) happened to be a simplicial abelian group. The list of spaces corre-
sponding to
QBM(R), BM(R), BBM(R), B?M(R),...
is the algebraic K-theory spectrum for the ring R; we have used the group
completion theorem to identify its 0" term.

There are several proofs of the group completion theorem in the literature:
[48], [49], [73], [70]. The most elementary of these, and the one that will be
given here, involves an analogue of the construction leading to the Serre spectral
sequence, for maps of bisimplicial sets.

Suppose that f: X — Y is a map of bisimplicial sets, and consider all bisim-
plices 0 : A™® — Y of Y. Form the pullback diagram

[T o) ——X

|

A?",S - 3 Y
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in the category of bisimplicial sets. The bisimplices A"™"™ — Y of Y are thecategory, of bisimp:
objects of the category A*? | Y, called the category of bisimplices of Y. A

morphism ¢ — 7 of this category is a commutative diagram of bisimplicial set

maps

ATS \O_)
Y.

-

AN

One sees immediately that the assignment o — f~!(o) defines a functor
f7la?ly — 8%

LEMMA 5.17. Suppose that f : X — Y is a map of bisimplicial sets. Then the
corresponding map

L] o) =X
€B(A*?|Y)
of trisimplicial sets induces a weak equivalence of associated diagonal simplicial
sets.

PROOF: The bisimplicial set Y is a colimit of its bisimplices, and so X is a
colimit of their pullbacks, giving rise to a coequalizer

L] o) = o)~ Y.

00—01

Also, the component of the simplicial set

Ll e0)(m,n)

og——0,

corresponding to each bisimplex x € X (m,n) is contractible, since it’s the nerve
of a category having an initial object. It follows that diagonalizing the trisim-
plicial set map

|_| Y (o0)(m,n) — X (m,n)

ocg——op

EB(AX2]Y)
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first with respect to the variables r and m gives a bisimplicial set map trisimplicial sets
n-fold simplicial sef

|_| fﬁl(ao)(rvn) _>X(Tan)

ocg——0op

eBO(AwlY)

which is a weak equivalence of simplicial sets in each vertical degree n, by Propo-
sition 1.9. This same result then implies that the simplicial set map

Ll eo)(rr) — X(rr)

og—-—op

eBO(AﬂlY)

is a weak equivalence. [ |

REMARK 5.18. There is a paradigm in the proof of Lemma 5.17 for the manipu-
lation of trisimplicial sets. The diagonal of a trisimplicial set X is the simplicial
set whose set of n-simplices is the set X (n,n,n). This simplicial set defines the
homotopy type arising from X, and it can be formed by iterating the diagonal
construction for bisimplicial sets in three different ways. One picks the most con-
venient iteration for the problem at hand. Similar considerations apply, more
generally, to n-fold simplicial sets

Consider the diagram of trisimplicial set maps

Flo)—— || o) ——X

og— —0,

|

AO’O I—l A0:10 = Y

~ Iﬁ

where v : A%? — Y is a vertex of Y. Observe that *+ = A%? is the terminal
object in the bisimplicial set category. The labelled horizontal maps induce
weak equivalences of the corresponding diagonal simplicial sets by Lemma 5.17,
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while the corresponding vertical maps induce weak equivalences of diagonals by
iterated application of Proposition 1.9. It follows from Lemma 5.11 that the
pullback diagram

) —— X

b

$ — Y

of bisimplicial sets induces a homology cartesian diagram of associated diagonals
if each morphism of bisimplices

AT0:50 -
\
Y.

—

Arl »S1

induces an isomorphism

HL(f~Y(00)) — Ho(f " (01)).

By this, it is meant that there should be an induced isomorphism

H.(d(f~(00)), A) — H(d(f~ (1)), A),

relative to some choice of coefficient group A. Let’s agree to suppress mention
of the diagonals and the coefficient groups in the rest of this section.

PrROOF OF THEOREM 5.15: We will show that each morphism

AT,S\T}
(5.19) (¢1,¢2) BM.

—

Ak,é
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induces an isomorphism

(C1y Go)a t Ha(n™ (7)) — Ha(nY(0)),

where m: EM Xy X — BM is the canonical map.
Recall that, in horizontal degree m, AF:* may be identified with the simplicial

set
| | A’

m—k

There is a pullback diagram of simplicial sets

|_| (AP X X) ——— M*™ x X

m—k

| "
|—| AZ Mxm’

m—k

where the map on the left is a disjoint union of projections. Each ordinal number
map # : n — m induces a simplicial map

L] af<x) 5 | ]l x),

m—k n—k

according to the horizontal structure of the bisimplicial set 7~!(c). There is a
commutative diagram

Al x X i Al x X

mvl [mw

| | (NxX)T | | (A" x X),

m—k n—k

where 67 is defined on the simplex level by

(€, ) = (¢ ma(C, ).
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Here, m, is the composite simplicial set map

) vx1 m
A" x X — M x X — X,

where m is the action of M on X and v is some /-simplex of M. The assumptions
on the action m therefore imply that 67 is a homology isomorphism.

One of the spectral sequences for the homology of the diagonal of the bisim-
plicial set

| | (A% x X)

m—k

has Es-term

H*( @ A(W)),

w:m—k

where A is a contravariant functor on the simplices of A*: the group A(w) is a
copy of H, q(Ae x X). We have just seen that every morphism

T
_

0 k

n

induces an isomorphism 6* : A(y) = A(v6). The morphism 1k is terminal in the
simplex category for A, so there is a natural isomorphism which is defined by
diagrams
A(ly) ——— A7)
| r

Lemma 2.2 says that there are isomorphisms

I

Hi( @ Aw)

w:m—k

{A(lk) if i =0,
0 if i > 0.
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In particular, the inclusion

X x A | | (X x A
0—k

corresponding to a vertex v of A* induces an isomorphism
Hy(X x A) 2 H,(x(0)

Finally, observe that every bisimplex map of the form (5.19) induces a commu-
tative diagram of simplicial set maps

X x A® 1 X G X x Al

inw[ Iinclw

| | (x x A% | | (X x A",

O—r (C17C2)* 0—k

where w is a vertex of A”. It follows that the map ((y,{2)« is a homology
isomorphism. |



Chapter V Simplicial groups

This is a somewhat complex chapter on the homotopy theory of simplicial
groups and groupoids, divided into seven sections. Many ideas are involved.
Here is a thumbnail outline:

Section 1, Skeleta: Skeleta for simplicial sets were introduced briefly in Chapter I,
and then discussed more fully in the context of the Reedy closed model structure
for bisimplicial sets in Section IV.3.2. Skeleta are most precisely described as
Kan extensions of truncated simplicial sets. The current section gives a general
description of such Kan extensions in a more general category C, followed by a
particular application to a description of the skeleta of almost free morphisms of
simplicial groups. The presentation of this theory is loosely based on the Artin-
Mazur treatment of hypercovers of simplicial schemes [3]|, but the main result
for applications that appear in later sections is Proposition 1.9. This result is
used to show in Section 5 that the loop group construction outputs cofibrant
simplicial groups.

Section 2, Principal Fibrations I: Simplicial G-spaces: The main result of this
section asserts that the category Sg of simplicial sets admitting an action by a
fixed simplicial group G admits a closed model structure: Theorem 2.3. Prin-
cipal G-fibrations in the classical sense may then be identified with cofibrant
objects of S, by Corollary 2.10, and an equivariant map between two such ob-
jects is an isomorphism if and only if it induces an isomorphism of coinvariants
(Lemma 2.9).

Section 3, Principal Fibrations II: Classifications: This section shows (Theo-
rem 3.9) that isomorphism classes of principal G-fibrations p : E — B can be
classified by homotopy classes of maps B — BG, where BG = EG/G, and EG
is an arbitrary cofibrant object of S¢ admitting a trivial fibration EG — x, all
with respect to the the closed model structure for S of Section 2.

Section 4, Universal cocycles and WG: Tt is shown here that the classical model
WG for the classifying object BG of Section 3 can be constructed as a simplicial
set of cocycles taking values in the simplicial group G. This leads to “global”
descriptions of the simplicial structure maps for WG, as well as for the G-
bundles associated to simplicial set maps X — WG. The total space WG for
the (canonical) bundle associated to the identity map on W@ is contractible

(Lemma 4.6).

Section 5, The loop group construction: The functor G — WG has a left adjoint
X +— GX, defined on reduced simplicial sets X (Lemma 5.3). The simplicial

264
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group GX is the loop group of the reduced simplicial set X, in the sense that
the total space of the bundle associated to the adjunction map X — WGX is
contractible: this is Theorem 5.10. The proof of this theorem is a modernized
version of the Kan’s original geometric proof, in that it involves a reinterpretation
of the loop group GX as an object constructed from equivalence classes of loops.

Section 6, Reduced simplicial sets, Milnor’s F' K -construction: This section gives
a closed model structure for the category Sy of reduced simplicial sets. This
structure is used to show (in conjunction with the results of Section 1) that the
loop group functor preserves cofibrations and weak equivalences, and that W
preserves fibrations and weak equivalences (Proposition 6.3). In particular, the
loop group functor and the functor W together induce an equivalence between
the homotopy categories associated to the categories of reduced simplicial sets
and simplicial groups (Corollary 6.4). Furthermore, any space of the form WG is
a Kan complex (Corollary 6.8); this is the last piece of the proof of the assertion
that W@ is a classifying space for the simplicial group G, as defined in Section 3.
Milnor’s F'K-construction is a simplicial group which gives a fibrant model for
the space QX K: Theorem 6.15 asserts that F'K is a copy of G(XK), by which
is meant the loop group of the Kan suspension of K. The Kan suspension was
introduced in Section III.5.

Section 7, Stmplicial groupoids: The main result of Section 5, which leads to the
equivalence of homotopy theories between reduced simplicial sets and simplicial
groups of Section 6, fails badly for non-reduced simplicial sets. We can neverthe-
less recover an analogous statement for the full category of simplicial sets if we
replace simplicial groups by simplicial groupoids, by a series of results of Dwyer
and Kan. This theory is presented in this section. There is a closed model struc-
ture on the category sGd of simplicial groupoids (Theorem 7.6) whose associated
homotopy category is equivalent to that of the full simplicial set category (Corol-
lary 7.11). The classifying object and loop group functors extend, respectively,
to functors W : sGd — S and G : S — sGd; the object WA associated to a
simplicial groupoid A is a simplicial set of cocycles in a way that engulfs the
corresponding object for simplicial groups, and the extended functor G is its left
adjoint.

1. Skeleta.

Suppose that C is a category having all finite coproducts, and let sC denote
the category of simplicial objects in C. Recall that simplicial objects in C are
contravariant functors of the form A — (C, defined on the ordinal number
category A.

The ordinal number category contains a full subcategory A,,, defined on the
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objects m with 0 < m < n. Any simplicial object X : A°? — C restricts to
a contravariant functor i,.X : A% — C, called the n-truncation of X. More
generally, an n-truncated simplicial object in C is a contravariant functor Y :
A% — C, and the category of such objects (functors and natural transformations
between them) will be denoted by s,,C.

The n-truncation functor sC — s,,C defined by X +— ,.X has a left adjoint
iy s,C — sC, on account of the exactness assumption on the category C.
Explicitly, the theory of left Kan extensions dictates that, for an n-truncated
object Y, 7Y, should be defined by

i Ym = h_n>1 Y.
mi>i, i<n

As the notation indicates, the colimit is defined on the finite category whose ob-
jects are ordinal number morphisms 6 : m — i with ¢ < n, and whose morphisms
v : 0 — 7 are commutative diagrams

T

m v

J

in the ordinal number category. The simplicial structure map w* : 4 Y,, — i Yj
is defined on the index category level in the obvious way, by precomposition with
the morphism w : k — m.

The functor Y — )Y is left adjoint to the n-truncation functor: this can be
seen by invoking the theory of Kan extensions, or directly.

If m < n, then the index category of arrows m — i, ¢ < n, has an initial
object, namely 1,, : m — m, so that the canonical map

1M1,
Y — 5 lm Y

6
m—i, i<n

is an isomorphism by formal nonsense. Furthermore, maps of this form in C are
the components of the adjunction map

n
Y — ini)Y,
so that this map is an isomorphism of s,,C.

The objects i) Y,,, m > n, require further analysis. The general statement
that is of the most use is the following:
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LEMMA 1.1. There is a coequalizer diagram

n
s
|_| Ynfl = |_| Yn — ZZYnJrl?
1<J 1=0

where the maps in the coequalizer are defined by the commutativity of the fol-
lowing diagram:

WLKj[ 'L?’le sJ

|_| Yn—l —: |_| Yn T> Z.:;Yn—l—l-

1<J =0
i’ni<jI an[
Yo 1——Y,
n—1 5;_1 n

Proor: Write D for the category of ordinal number morphisms ¢ : n 4+ 1 — j,
7 < n. Suppose that t : n+ 1 — i is an ordinal number epimorphism, where
i < n, and write D; for the category of ordinal number morphisms # : n + 1 — j,
j < n, which factor through ¢. Then D; has an initial object, namely ¢, so that
the canonical map in; induces an isomorphism

1M

Y, — lim Y;
_>

IR

6

Furthermore, if ¢ has a factorization

n+1—>1

N A
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where r and s are ordinal number epimorphisms, the inclusion D; C D, induces
a morphism s* of colimits which fits into a commutative diagram

Y; 2 Yo,
intlg g[ZnT
— S —

n+1—j €D, n+l1—j €D,

Write D; for the category Dg;, 0 < j <n.
For ¢ < j, the diagram

sJ
n+1——n

(1.2) Sil ‘Si

sJ

is a pushout in the ordinal number category: this is checked by fiddling with
simplicial identities. Now, suppose given a collection of maps

—
6

0 < j < n, such that the diagrams

Si_
lim Y,—— %  lim Y
— —
n+1—i €D, n+1—i GDSi
lim Y, —M X

n+1—>i EDsj
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commute, where t = s's/ = s771s%. Let § : n+ 1 — k be an object of D. Then
0 € D, for some 7, and we define a morphism fy : Y — X to be the composite
ing . fz
Y, — lim Y., — X.
—

It’s easily seen, using the pushout diagram (1.2) and the commutativity condi-
tions (1.3), that the definition of fy is independent of 7. The collection of maps
fo, 0 € D, determine a unique map

Je hi>n Yy
n+1—k €D
which restricts to the maps f;, for 0 < ¢ < n, and the lemma is proved. |

Write sk, Y =147,.Y, and write € : sk, Y — Y for the counit of the adjunc-
tion. sk,Y is the n-skeleton of Y.

LEMMA 1.4. Let Y be a simplicial object in the category C, and suppose that
there is a morphism f : N — Y, 11 such that the canonical map € : sk, Y — Y
and f together induce an isomorphism

(e,f)
Skn Yn—l—l |_| N T) Yn—‘,—l-

Then an extension of a map g : sk, Y — Z to a map ¢’ : sk,11Y — Z corre-
sponds to a map g : N — Z, 1 such that d;g = gd; f for 0 <i<n+ 1.

PrOOF: Given such a map g, define a map
9 Yoi1 Zsky Yoga | [N = Zoga

by ¢ = (g,9). In effect, we are looking to extend a map g : in«Y — i Z to
amap g : imi1)xY — i(ni1)«Z. The truncated map g’ will be the map g’ in
degree n 4+ 1 and will coincide with the map g in degrees below n + 1, once we
show that ¢’ respects simplicial identities in the sense that the following diagram
commutes:

g/
Yn—|—1 E— Zn+1

7*[ ]9* ﬂ 19*

Yoo ——————Znm

9
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for all ordinal number mapsy: m — n+1and 6 : n+ 1 — m, where m < n+1.
The canonical map € : sk, Y — Y consists of isomorphisms

sk, Y; — Y;

in degrees ¢ < n, so that 8* : Y,,, — Y, factors through the map € : sk, ¥,,11 —
Y, +1; the restriction of ¢’ to sk, Y, 11 is a piece of a simplicial map, so that ¢’
respects 0*. The map ~v* factors through some face map d;, so it’s enough to
show that ¢’ respects the face maps, but this is automatic on sk, ¥,,+1 and is an
assumption on g.

The converse is obvious. |

LEMMA 1.5. Supppose that ¢ : A — B is a morphism of s, +1C which is an
isomorphism in degrees j < m. Suppose further that there is a morphism f :
N — B,,+1 such that the maps i and f together determine an isomorphism

(6,f)
An+1 |_| N T) Bn—i—l-

Suppose that g : A — Z is a morphism of s,,11C. Then extensions

of the morphism g to morphisms ¢’ : B — Z are in one to one correspondence
with morphisms g : N — Z, 1 of C such that d;g = gd;f for 0 <1 < n.

PRrROOF: This lemma is an abstraction of the previous result. The proof is the
same. m

A morphism j : G — H of simplicial groups is said to be almost free if there is
a contravariant set-valued functor X defined on the epimorphisms of the ordinal
number category A such that there are isomorphisms

On
G, x F(X,) — H,

which

(1) are compatible with the map j in the sense that 6, oing, = j, for all n,
and
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(2) respect the functorial structure of X in the sense that the diagram

G F(X,) — 0

t* * F(t*)[ lt*

G+ F(Xn) —5— Hyn

commutes for every ordinal number epimorphism ¢ : m — n.

The n-skeleton sk, (j) of the simplicial group homomorphism j : G — H is
defined by the pushout diagram

sk, G _ sk,, H

_—

G — sk, (y)

in the category of groups. There are maps sk, (j) — skp,+1(j) and morphisms
sk, (i) — H such that the diagrams

/ \ G —— sk, (j)

j) ————sk,y1(j) and \[
\ / u

commute, and such that j : G — H is a filtered colimit of the maps G' — sk, (j)
in the category of simplicial groups under G. The maps sk, (j); — H; are
group isomorphisms for ¢ < n, so the map sk, (j) — skn4+1(j) consists of group
isomorphisms in degrees up to n.
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Write DX, for the degenerate part of X, 1. This subset can be described (as
usual) as the union of the images of the functions s; : X;,, — X, 41, 0 < i < n.
For i < j the diagram of group homomorphisms

53
anl ” Hn

(1.6) Sjl[ ‘Sj

Hn S—’L> Hn—|—1

is a pullback, by manipulating the simplicial identities. Pullback diagrams are
closed under retraction, so the diagram of group homomorphisms

is also a pullback. All the homomorphisms in (1.7) are monomorphisms (since
they are retracts of such), so an argument on reduced words shows that (1.7)
restricts on generators to a pullback

Si
Xn—l ? Xn

(1.8) Sj—l[ ‘Sj

Xn 5—¢>X"+1

in the set category. It follows that the degenerate part DX, of the set X,, 1 can
be defined by a coequalizer

|_| Xn—l = Iil Xn7 i DXn

i<j i=0
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such as one would expect if X were part of the data for a simplicial set, in which
case DX, would be a copy of sk, X, 4+1.
It therefore follows from Lemma 1.1 that the diagram of group homomorphisms

Skn Gn+1 _— Skn HnJrl

| |

Gra1 —— skn(D)nt1

can be identified up to canonical isomorphism with the diagram

sk, Gpi1 —— sk, Gpy1 % F(DX,,)

| |

Gn+1 _—> Gn—‘,—l * F(DXn)

The map sky, (4)n+1 — Skn+1(%)n+1 can therefore be identified up to isomorphism
with the monomorphism

Gn+1 * F(DXn) — Gn+1 * F(Xn+1)

which is induced by the inclusion DX,, C X, ;1.

Let NX,,+1 = X,,+1 — DX,, be the non-degenerate part of X,, 1. The trun-
cation at level n 4 1 of the map sk, (j) — sk, 11(j) is an isomorphism in degrees
up to n, and is one of the components of an isomorphism

skn (J)ny1 * F(NXpg1) = sky1(d)ns-
in degree n + 1.

PrOPOSITION 1.9. Suppose that j : G — H is an almost free simplicial group
homomorphism, with H generated over G by the functor X as described above.
Let N X,,+1 be the non-degenerate part of X, 1. Then there is pushout diagram
of simplicial groups of the form

« FOA™) sk, (j)

$€NXn+1 ‘

n+1 .
pen,, AT ———sknn(j)
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for each n > —1.

COROLLARY 1.10. Any almost free simplicial group homomorphism j : G — H
is a cofibration of simplicial groups.

PROOF OF PROPOSITION 1.9: Any commutative diagram

n+1 .
pen,,, TOATT) ———skn(j)

l o

% F(An—H) K
ZL’GNXn+1 ﬁ

of simplicial group homomorphisms uniquely determines an morphism of (n+1)-
truncations 7 : ¢(p41)« Sknt1(j) — %(n+1)«K which makes the following diagram
commute:

. . in+1)+ ()
Ln+1)x Skn (])

%H)*X‘

i(n+1)*H T i(n+1)* Skn+1(j) T i(n—&—l)*K

The homomorphisms a|g : G — K and 7 therefore uniquely determine a mor-
phism v : sk, 41(j) — K. |

2. Principal fibrations I: simplicial G-spaces.

A principal fibration is one in which the fibre is a simplicial group acting in
a particular way on the total space. They will be defined completely below and
we will classify them, but it simplifies the discussion considerably if we discuss
more general actions first.
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DEFINITION 2.1. Let G be a simplicial group and X a simplicial set. Then G
acts on X if there is a morphism of simplicial sets

w:GxX—X

so that the following diagrams commute:

GXGXX&GXX

nx1) v

GXX——FX

o

and

X
T~
GXXT)X

where m is the multiplication in G and i(X) = (e, X).

In other words, at each level, X,, is a GG,,-set and the actions are compatible
with the face and degeneracy operators.

Let Sg be the category of simplicial sets with G-action, hereinafter known as
G-spaces. Note that S is a simplicial category. Indeed, if K € S, then K can
be given the trivial G-action. Then for X € S set

(2.2.1) XK=XxK

with diagonal action,

(2.2.2) homg,, (K, X) = Homg(K, X)
with action in the target, and for X and Y in Sg,

(2.2.3) Homg  (X,Y), = homg (X @ A" Y).

Then the preliminary result is:
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THEOREM 2.3. There is a simplicial model category structure on S such that
f: X —=Yis

1) a weak equivalence if and only if f is a weak equivalence in S;

2) a fibration if and only if f is a fibration in S; and

3) a cofibration if and only if f has the left lifting property with respect to
all trivial fibrations.

PRrROOF: The forgetful functor S¢ — S has a left adjoint given by
X—GxX.

Thus we can apply Theorem II.7.8 once we show that every cofibration having
the left lifting property with respect to all fibrations is a weak equivalence. Every

morphism X — Y can be factored as X - Z-L X where ¢ is a fibration and j
is obtained by setting Z = hi>n Z, with Zy = X and X, defined by a pushout
diagram

|| GxAp— Zus

inl Jin
|_| Gx A" —— 7,

where o runs over all diagrams in Sg

Gx A — Z,
inl l

G x A" —Y.

Since i, is a trivial cofibration in S, we have that j,, a trivial cofibration in S
(and also in Sg). So j: X — Z is a trivial cofibration in S (and S¢). |

A crucial structural fact about Sg is the following:

LEMMA 2.4. Let f: X — Y be a cofibration in Sg. Then f is an inclusion and
at each level Yy, — f(X}) is a free Gy-set.



2. PRINCIPAL FIBRATIONS I: SIMPLICIAL (G-SPACES 277

ProOF: Every cofibration is a retract of a cofibration j : X — Z where Z =
li_r)nZn and Z,, is defined recursively by setting Zy = X and defining Z,, by a
pushout diagram

LJGX@A“—+,%1

! i

|_| Gx A" —— Z,.

So it is sufficient to prove the result for these more specialized cofibrations. Now
each j, is an inclusion, so j : X — Z is an inclusion. Also, at each level, we have
a formula for k simplices

(Zn)k — (Zn=1)r = (LG x A™), — (oG x 0A™),

is free. Hence

(Z)k = (X) = J(Zn)k = (Zn-1)k

n
is free. |

For X € S¢, let X/G be the quotient space by the G-action. Let ¢ : X — X/G
be the quotient map. If X € Sg is cofibrant this map has special properties.

LEMMA 2.5. Let X € Sg have the property that X,, is a free G,, set for all n.
Let z € (X/QG),, be an n-simplex. If f, : A™ — X represents x, define F, by the
pullback diagram

F,— X
l la
A" — X/G.

Then for every z € X so that q(z) = z, there is an isomorphsim in Sg
v, GX A" = F,

so that the following diagram commutes

Gx A" P2, p

2| !

An T A’n'
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PrRoOOF: First note that there is a natural G-action on F}, so that F, — X is a
morphism of G-spaces. Fix z € X, so that ¢(z) = . Now every element of A™
can be written uniquely as 6*c,, where ¢, € A} is the canonical n-simplex and
f : m — n is an ordinal number map. Define ¢, by the formula, for g € G,,,:

¢:(9,0"cn) = (0"cn, 90" 2).

One must check this is a simplicial G-map. Having done so, diagram (1.5.1)
obviously commutes, so we need only check ¢, is a bijection.

To see ¢, is onto, for fixed (a,b) € F, one has fya = ¢(b). We can write
a = 0*c¢, for some 0, so

fra=0"frc, =0%c =qb"2

so b is in the same orbit as 0%z, as required.
To see ¢, is one-to-one, suppose

(0% cn, g0 2) = (V*epn, hp™2).
Then € = v and, hence, g6*z = h6*z. By Lemma 5.4, the action is level-wise

free, so g = h. |

COROLLARY 2.6. Let X € S have the property that each X,, is a free GG, set.
The quotient map q : X — X/G is a fibration in S. It is a minimal fibration if
G is minimal as a Kan complex.

PrOOF: Consider a lifting problem

Ay — X

1 e
A" — X/G.

This is equivalent to a lifting problem

Ay — F,
1.
ATL T>An.
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By Lemma 2.5, this is equivalent to a lifting problem

AT — G x A"
P

Because G is fibrant in S (Lemma 1.3.4), 7; is a fibration, so the problem has
a solution. If G is minimal, the lifting has the requisite uniqueness property to
make ¢ a minimal fibration (see Section 1.10). |

LEMMA 2.7. Let X € Sg have the property that each X,, is a free G,, set. Then
X = li_nr)an where X_1 = () and for each n > 0 there is a pushout diagram

|_| OA" x G — X,,_1

! |

|_| A" x G—— X,

where « runs over the non-degenerate n-simplices of X/G.

ProOF: Define X,, by the pullback diagram

X, ——X

l |

sk, (X/G) — X/G.

Then X_; = ) and liL)an = X. Also, since there is a pushout diagram

| | 9A™ — sk, _1(X/G)

|
| | A" —— sk, (X/G)
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there is a diagram

|_| F(Oé)|aAn — X1

(28) T |
| | Fla)—— X,,,

where F(a) is defined to be the pullback along «. But Lemma 2.5 rewrites
F(a) =2 A™ x G and, hence, F(a)|pan = 0A™ X G.

Thus we need only show that the diagram (2.8) is a pushout diagram. To do
this let Y be the pushout. Then Y is a free G-space (since X,,_1 is) and there
is a map of G-spaces Y — X,,. Since taking orbits is a left adjoint it preserves
pushouts; therefore, Y/G — X,, /G is an isomorphism and the result follows from
the next lemma. [ |

One can alternatively finish the argument for Lemma 2.7 by observing that
pullbacks and pushouts in the category of GG-spaces are formed by the corre-
sponding construction in the underlying simplicial set category, and pullbacks
preserve pushouts.

LEMMA 2.9. Suppose given a morphism in S f:Y — X so that
1) X, is a free G, set for all n
2) the induced map Y/G — X /G is an isomorphism

then f is an isomorphism.

Proor: This is a variation on the proof of the 5-lemma. To show f is onto,
choose z € X. Let gqx : X — X/G and gy : Y — Y/G be the quotient maps.
Then there is a w € Y/G so that (f/G)(w) = gx(z). Let y € Y be so that
gy (y) = w. Then there is a ¢ € G so that gf(y) = f(g9y) = 2. To show f is

one-to-one suppose f(y1) = f(y2). Then gx f(y1) = gx f(y2) s0 qv (y1) = v (y2)
or there is a g € G so that gy; = ys. Then

af(y1) = f(y2) = f(y1)

Since X is free at each level, g = e, so y; = ys. |

COROLLARY 2.10. An object X € S¢ is cofibrant if and only if X,, is a free G,
set for all n.
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PrROOF: One implication is Lemma 2.4. The other is a consequence of Lemma
2.7. [ |
3. Principal fibrations II: classifications.

In this section we will define and classify principal fibrations. Let G be a fixed
simplicial group.
DEFINITION 3.1. A principal fibration f : E — B is a fibration in Sg so that

1) B has trivial G-action;
2) E is a cofibrant G-space; and
3) the induced map FE/G — B is an isomorphism.

Put another way, f : E — B is isomorphic to a quotient map
q: X — X/G

where X € S¢ is cofibrant. Such a map ¢ is automatically a fibration by Corol-
lary 2.6. Cofibrant objects can be recognized by Corollary 2.10, and Lemma 2.5
should be regarded as a local triviality condition. Finally, there is a diagram

GxE-E
“x f] 1

*XBT)B

where p is the action; such diagrams figure in the topological definition of prin-
cipal fibration.

In the same vein, it is quite common to say that a principal G-fibration is a
G-bundle .

DEFINITION 3.2. Two principal fibrations f, : F1 — B and fs : E; — B will
be called isomorphic if there is an isomorphism g : £y — Fs of G-spaces making
the diagram commute

B — —E,

o
B

REMARK 3.3. By Lemma 2.9 it is sufficient to construct a G-equivariant map
g : 1 — E5 making the diagram commute. Then ¢ is automatically an isomor-
phism.
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Let PFg(B) be the set of isomorphism class of principal fibrations over B.
The purpose of this section is to classify this set.

To begin with, note that PFg(+) is a contravariant functor. If ¢: E — B is a
principal fibration and f : B’ — B is any map of spaces, and if ¢’ : E(f) — B’
is defined by the pullback diagram

q| la

B/TB7

then f’ is a principal fibration. Indeed

E(g) ={(be) € B'x E'| f(b) = q(e)}

has G action given by g(b,e) = (b,ge). Then parts 1) and 3) of Definition 3.1
are obvious and part 2) follows from Corollary 2.10.

But, in fact, PFg(+) is a homotopy functor. Recall that two maps fo, f1 :
B’ — B are simplicially homotopic if there is a diagram

0 1
B/|_|B/ d |_|d B/XAl

foUJR /
B

LEMMA 3.4. If fo and f, are simplicially homotopic, PFg(fo) = PFg(f1).

Proor: It is sufficient to show that given ¢ : F — B a principal fibration, the
pullbacks E(fo) — B’ and E(f;) — B’ are isomorphic. For this it is sufficient
to consider the universal example: given a principal fibration £ — B x Al, the
pullbacks E(d°) — B and E(d') — B are isomorphic. For this consider the
lifting problem in S¢g

BE(d®) —F
/?
dOl ///

-
-

E(d°) x A’ — B x Al
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Since F(d) is cofibrant in S¢, d is a trivial cofibration, so the lifting exists and
by Lemma 1.8 defines an isomorphism of principal fibrations

I

E(d%) x Al E
AN e

B x Al

Pulling back this diagram along d' gives the desired isomorphism. |
A similar sort of argument proves the following lemma:

LEMMA 3.5. Let B € S be contractible. Then any principal fibration over B is
isomorphic to my : G X B — B.

PROOF: The isomorphism is given by lifting in the diagram (in S¢).

G—— L
il 7]

GXBT‘_—2>B

Here j is induced by any basepoint * — B; since G is cofibrant in S¢g, j is a
trivial cofibration in S¢. |

We can now define the classifying object for principal fibrations.
DEFINITION 3.6. Let EG € Sg be any cofibrant object so that the unique

map EG — x is a fibration and a weak equivalence. Let BG = EG/G and
q : EG — BG the resulting principal fibration.

Note that EG is unique up to equivariant homotopy equivalence, so ¢ : EG —
BG@G is unique up to homotopy equivalence.

In other words we require more than that EG be a free contractible G-space;
EG must also be fibrant. The extra condition is important for the proof of
Theorem 3.9 below. It also makes the following result true.

LEMMA 3.7. The space BG is fibrant as a simplicial set.

PROOF: First note that given any map f : A} — BG, then the pullback E(f) —
A} of EG — B(G fits into a diagram of principal fibrations

Al x G — = L B(f)
NS

k
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Thus there is a lifting of f to a map g : A} — EG. Now suppose given an
extension problem

Then, since EG is fibrant there is a factoring

Ar L pa

|
An

and the composite A™ . EG — BG solves the original extension problem. W

Note that the same argument proves that if £ € S¢ is cofibrant and fibrant,
the resulting principal fibration E — E/G has fibrant base. This claim and
Lemma 3.7 are alternatively consequences of the following:

EXERCISE 3.8. Suppose that p : X — Y is a surjective fibration of simplicial
sets, and that X is fibrant. Show that Y is fibrant.

We now come to the main result.

THEOREM 3.9. For all spaces B € S, the map
0 :[B,BG| — PFg(B)

sending the class [f] € [B,BG]| to the pullback of EG — BG along f is a
bijection.

Here, [B, BG| denotes morphisms in the homotopy category Ho(S) from B to
BG. The space BG is fibrant, so this morphism set cat be identified with the
set of simplicial homotopy classes of maps from B to BG.

PRrROOF: Note that 6 is well-defined by Lemma 3.4. To prove the result we
construct an inverse. If ¢ : £ — B is a principal fibration, there is a lifting in
the diagram in Sg

¢ — EG

(3.10) 17

FE—x
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since F is cofibrant and E'G is fibrant, and this lifting is unique up to equivariant
homotopy. Let f : B — BG be the quotient map. Define ¥ : PFg(B) —
[B, BG], by sending ¢ : E — B to the class of f.

Note that if E(f) is the pullback of f, there is a diagram
E—E(f

so Lemma 2.9 implies ¥ = 1. On the other hand, given a representative g :
B — BG of a homotopy class in [B, BG], the map ¢’ in the diagram

E(g) i/> EG
! |

makes the diagram (3.10) commute, so by the homotopy uniqueness of liftings
g = 1. [ |
4. Universal cocycles and WG.

In the previous sections, we took a simplicial group G and assigned to it a
homotopy type BG; that is, the space BG depended on a choice EG of a fibrant,
cofibrant contractible G-space. In this section we give a natural, canonical choice
for EG and BG called, respectively, WG and WG. The spaces WG and WG
are classically defined by letting WG be the simplicial set with

WG, =G, xGpo1 X x Gy
and

d; (gns Gn—15 - - - 9o)
B { (dign>di—19n—1,- - doGn—iGn—i—1,9n—i—2,---go) & <mn,
| (dugnsdn1gn-1,-.-dig1) i =n.
Si(gnvg(n—l) . 590) = (SiGn» Si—19n—1 - - - 509n—1+€; Yn—i—1, - - - 90)
where e is always the unit. Note that WG becomes a G-space if we define
G x WG — WG by:
(s (gns gn—15--- 5 90) — (hg, gn—1,---go)-

Then WG is the quotient of W@G by the left G-action; write ¢ = q¢ : WG — WG
for the quotient map.
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LEMMA 4.1. The map q : WG — WG is a fibration.

ProoF: This follows from Corollary 1.6 since (WG),, is a free G, set. [

The functor G +— WG takes values in the category Sy of reduced simplicial
sets, where a reduced simplicial set is a simplicial set having only one vertex.
The salient deeper feature of the functor W : sGr — S is that it has a left
adjoint G : Sy — sGr, called the loop group functor, such that the canonical
maps G(WG) — G and X — W(GX) are weak equivalences for all simplicial
groups G and reduced simplicial sets X. A demonstration of these assertions
will occupy this section and the following two. These results are originally due
to Kan, and have been known since the late 1950’s. The original proofs were
calculational — we recast them in modern terms here. Kan’s original geometric
insights survive and are perhaps sharpened, in the presence of the introduction
of a closed model structure for reduced simplicial sets and a theory of simplicial
cocycles.

A segment of an ordinal number n is an ordinal number monomorphism
n —j — n which is defined by ¢ +— ¢ + j. This map can also be variously
characterized as the unique monomorphism n — j < n which takes 0 to 7, or as
the map (d°)?. This map will also be denoted by [j, n], as a means of identifying
its image. There is a commutative diagram of ordinal number maps

n—k [k, n]
\
n_j%]

if and only if j < k. The map 7 is uniquely determined and must be a segment
map if it exists: it’s the map (d°)*~J. Thus, we obtain a poset Seg(n) of segments
of the ordinal number n. This poset is plainly isomorphic to the poset opposite
to the ordinal n.

Suppose that G is a simplicial group. An n-cocycle f : Seg(n) ~» G associates
to each relation 7 : [k,n] < [j,n] in Seg(n) an element f(7) € G,,—, such that
the following conditions hold:

(1) f(1;) = e € Gy—j, where 1; is the identity relation [j,n] <[4, n],
¢ T
(2) for any composeable pair of relations [I,n] — [k,n] — [j,n], there is an

equation

C (M) = f(rC).
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Any ordinal number map = : r — s has a unique factorization

r v S
Wx /[7(0), o = (d°)©
s —7(0)

where 7, is an ordinal number map such that v.(0) = 0. It follows that any
relation 7 : [k, m] < [j,m] in Seg(m) induces a commutative diagram of ordinal
number maps

m — k\ n— Q(k)\
0, ,
4.2)  [k,m) m—J ‘ n —6(j)
[G(k),n]‘
[, m] [0(5), 7]
m 9 n

where the maps 6; and 6, take 0 to 0. Given an n-cocyle f : Seg(n) ~» G, define,
for each relation 7 : [k, m] < [j,m] in Seg(m), an element 6*(f)(7) € G,—i by

0" (F)(1) = O5(f(7))-

It’s not hard to see now that the collection of all such elements 68*(f)(7) defines
an m-cocycle 6*(f) : Seg(m) ~~ G, and that the assignment  — 6* is contravari-
antly functorial in ordinal maps 6. We have therefore constructed a simplicial set
whose n-simplices are the n-cocycles Seg(n) ~» G, and whose simplicial structure
maps are the induced maps 6*.

This simplicial set of G-cocycles is WG . This claim is checked by chasing the
definition through faces and degeneracies, while keeping in mind the observation
that an n-cocycle f : Seg(n) ~~ G is completely determined by the string of
relations

(4.3) ] = 0 —1,n] = ... 5 [1,0] ——5 [0, n),
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and the corresponding element

(f(Tn—l)af(T’rL—Q)a .. ‘7f(7—0)) S Gn—l X Gn—2 X X GO~

Of course, each 7; is an instance of the map d°.

The identification of the simplicial set of G-cocycles with WG leads to a
“global” description of the simplicial structure of WG. Suppose that § : m — n
is an ordinal number map, and let

g - (gn—lagn—Za <. 790)

be an element of G,,_1 X G,,_2 X --- x Gy. Let Fj be the cocycle Seg(n) ~ G
associated to the n-tuple g. Then, subject to the notation appearing in diagram
(4.2), we have the relation

0*(971—17 gn—2,--- 790) = (QTFE(Tm—l*)a ggFE(TM—Q*)u s 70:1F§<TO*)>7

where 7, = (d)?®~0G=1 ig the induced relation [0(i),n] < [#(i — 1),n] of
Seg(n).

A simplicial map f : X — WG, from this point of view, assigns to each n-
simplex x a cocycle f(x) : Seg(n) ~ G, such that for each ordinal number map
6 : m — n and each map 7 : [k, m] — [j, m] in Seg(m) there is a relation

O f (x)(r.) = £(0"(x))(7).

Any element j € n determines a unique diagram

n 0,n|=1
J ]N
ey Gl

and hence unambiguously gives rise to elements

f(@)([;n]) € Gy

Observe further that if j < k and 7 : [k,n] < [j,n] denotes the corresponding
relation in Seg(n), then the cocyle condition for the composite

[k, n] — [j,n] b [0, 7]
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can be rephrased as the relation

T (f(2) (7)) = f(@)([k, n]) f(x)(r) "

Now, given a map (cocycle) f : X — WG, and an ordinal number map
f : m — n, there is an induced function

0*: G, x X, = G, X X,

which is defined by

(4.4) (9, 2) = (0"(9)85 (f (x)([6(0), n])), 0" (2)),

where 6y : m — n — 6(0) is the unique ordinal number map such that [#(0),n] o
0o = 0.

LEMMA 4.5. The maps 6* defined in (4.4) are functorial in ordinal number maps
6.

PROOF: Suppose given ordinal number maps

% 0
k —m — n,

and form the diagram

k
Yo \
T TN
97(0) 00‘\
n =600 Ty ™ O oy "

in the ordinal number category. In order to show that v*0*(g,x) = (6)*(g, )
in G x Xy, we must show that

706 (S (2)([6(0), n]))vo (f (07 (2))([7(0),m])) = 1667 0) (f (2)([0(7(0)), n]))
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in GG,. But

and
[(0), m](f(2)[0(0), n]) = f(2)([07(0),n])(f (2)([+(0),m].)) ™"
by the cocycle condition. Finally,

020y (f (@) ([v(0), m].)) = f(6"())([v(0), m]),

since f is a simplicial map. The desired result follows. |

The simplicial set constructed in Lemma 4.5 from the map f: X — WG will
be denoted by Xf. The projection maps G, x X,, — X, define a simplicial
map 7 : Xy — X, and this map 7 obviously has the structure of a G-bundle.
This is a natural construction: if h : Y — X is a simplicial set map, then the
maps G, X Y,, — G, x X,, defined by (g,y) — (g, h(y)) define a G-equivariant
simplicial set map h. : Yy, — Xy such that the diagram

W[ |7T

Y —X

h

commutes. Furthermore, this diagram is easily seen to be a pullback.
The simplicial set WG associated to the identity map 1: WG — WG is WG,
and the G-bundle 7 : WG — W is called the canonical G-bundle.

LEMMA 4.6. WG is contractible.

PROOF: Suppose given an element (g, (gn-1,---,90)) € WG,. Then the (n +
2)-tuple (e, (gn,Gn-1,---9go)) defines an element of WG, 41, in such a way that
the following diagram of simplicial set maps commutes:

An+1
dOT (eﬂ(g’rmgn—l?"'agO))

A" WG
(gn7 (gn—la oo 790))
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commutes. Furthermore, if # : m — n is an ordinal number map, and 6, :
m + 1 — n + 1 is the unique map such that 6,(0) = 0 and 6,.d° = d°0, then

9:(67 (gnvgn—lv s 790)) = (6, 9* (gn7 (gn—la s 790))7

as is easily checked. It follows that the simplices (e, gy, ..., go) define an extra
degeneracy on WG in the sense of Section III.5, and so Lemma III.5.1 implies
that WG is contractible. |

REMARK 4.7. Every principal G-fibration p : Y — X is isomorphic to a principal
fibration X; — X for some map f : X — WG. In effect, let A, denote the
subcategory of the category A consisting of all ordinal number morphisms = :
m — n such that v(0) = 0. Then the map p restricts to a natural transformation
P« : Y|a, — X]|a,, and this transformation has a section o : X|a, — X|a.,
in the category of contravariant functors on A, essentially since the simplicial
map p is a surjective Kan fibration. Classically, the map o is called a pseudo
cross-section for the bundle p. The pseudo cross-section o defines G,,-equivariant

isomorphisms
¢n : Gn X Xn = Yn

given by (g,x) +— g-o(x). If 7:n—k — n — j is a morphism of Seg(n) then

T (o(dhw)) = fu(T)o(T*dsz)

for some unique element f,(7) € G,,—r. The elements f,(7) define a cocycle
fz : Seg(n) ~ G for each simplex z of X, and the collection of cocycles f,, z € X,
defines a simplicial map f : X — WG such that Y is G-equivariantly isomorphic
to Xy over X via the maps ¢,. The classical approach to the classification of
principal G-bundles is based on this construction, albeit not in these terms.

5. The loop group construction.

Suppose that f : X — WG is a simplicial set map, and let z € X,, be an n-
simplex of X. Recall that the associated cocycle f(x) : Seg(n) ~» G is completely
determined by the group elements

Fla)(d : (@) — (d)F).
On the other hand,
fla)(d: (@) — (d)*) = f(dg(2))(d” : d” = 1n-x).
It follows that the simplicial map f : X — WG is determined by the elements
f@)(d®) = f(2)(d” — 1a) € Gn-1,
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for z € X,,, n > 1. Note in particular that f(soz)(d°) =e € G,_1.
Turning this around, suppose that € X,,11, and the ordinal number map
6 : m — n has the factorization

n — 6(0)

y lT
m-———sn

9 Y

where 6y(0) = 0 and 7 is a segment map, and suppose that d° : d° — 1,41 is
the inclusion in Seg(n + 1). Then

7 f(2)(d°) = f(2)(d°T)(f(do(x)) (7))~ "
by the cocycle condition for f(x), and so

0" f(2)(d") = 057" (f(x)(d"))

= 05 (f(2)(d°1))05 (f (do(x)) (7))~
= F(0%(2))(d*)(f((ch)" (do(2)))(d*)) ",
where  :m + 1 — n + 1 is defined by
- 0 if : =0, and
o) = { 0(i—1)+1 ifi>1,

and c¢f : m+1 — n is the ordinal number map defined by (¢f)(0) = 0 and
(¢0)(i) = 0(i — 1) for i > 1. Observe that cf = s°0.

Define a group GX,, = F(X+41)/s0F (X,,) for n > 0, where F(Y') denotes the
free group on a set Y. Note that GX,, may also be described as the free group
on the set X,, 11 — s0X,.

Given an ordinal number map 6 : m — n, define a group homomorphism
0* : GX,, — GX,, on generators [z|,x € X, 41 by specifying

(5.1) 6% ([]) = [6* (2)][(c8)* (do(2))] "

If v : k — m is an ordinal number map which is composable with 6, then the
relations

(e7)*dof*(x) = (c7)*0"do ()
= (c)"do(ch)*do(x)
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and
7 (¢0)"do(@) = (c(07))"do()

together imply that v*0*([z]) = (6v)*([z]) for all z € X, 1, so that we have a
simplicial group, called the loop group of X, which will be denoted GX. This
construction is plainly functorial in simplicial sets X.

Each n-simplex x € X gives rise to a string of elements

([x], [dox], [d(z):z;], . [dg_lx]) €eGX,_1 xGX,_9 x - x GXy,

which together determine a cocycle F,. : Seg(n) ~» GX. Suppose that 6 : m — n
is an ordinal number map such that #(0) = 0. The game is now to obtain a
recognizable formula for [#*z], in terms of the simplicial structure of GX.

Obviously, if 6(1) = 0(0), then [#*z] = e € GX,,—1. Suppose that §(1) > 0.
Then there is a commutative diagram of ordinal number maps

m-1—" . n_0)

\(di)e(l)_l

d° T n—1

If v = (d°)?M =19, then § = 7, and so

0% ()] = (03 dy " [2]) [£(8)* (dow)]

where f(0) is defined by f(0) = ¢y. We have f(0)(0) = 0 by construction, and

there is a commutative diagram

m-1—"" n_60)

dol I(dO)e(l)—l

m— n-—1

f0) ’
so an inductive argument on the exponent #(1)—1 implies that there is a relation

[£(0)* (dox)] = (5dg" " *[doz]) . .. (651dg ™)~ (2)]).
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It follows that
(5.2) [0%(x)] = (07dp ) [2])(03d5 M P ldoal) . .. (651dg D (2)]) = 65 (Fu(7)).-

LEMMA 5.3.

(a) The assignment
x s ([z], [dox], [d2x], ..., [dy~ a])

defines a natural simplicial map n: X — WGX.

(b) The map n is one of the canonical homomorphisms for an adjunction
homg,(GX, H) = homg (X, WH),
where sGr denotes the category of simplicial groups.

PRrRoOOF:

(a) Suppose that # : m — n is an ordinal number map, and recall the de-
composition of (4.2). It will suit us to observe once again that the map [j, m]
is the composite (d°)?, and that 7, = (d°)?®)~9U) Note in particular that
0 = (d°)?©)0,, and recall that 6y(0) = 0. It is also clear that there is a commu-

tative diagram

X, ———WaX,

dg«n[ ldg(m

Xn—0(0) TWGXn—o(o)

Let F,, be the cocycle Seg(n) ~ GX associated to the element

([2], [do], [d2z], . .., [dy~ta]).
Then, for x € X,,,
05 (1d2 @], [d2 O], . (AR ]) = (0 Fo(Tmets)s - -, 05, Fi(102))
= (950", (07 V], ... 103,10

= ([0 2], [dob*x], ..., [dg 6% x]),
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where 7,,_;« = (do)e(i)_g(i_l) as before, and this by repeated application of the
formula (5.2). In particular, n is a simplicial set map. The naturality is obvious.

(b) Suppose that f: X — WH is a simplicial set map, where H is a simplicial
group. Recall that the cocycle f(x) : Seg(n) ~ H can be identified with the
element

(f(@)(d), f(dox)(d), ..., F(d2 " 2)(d°)) € Hp_y X Hy_s x -+ x Hy.

The simplicial structure for GX given by the formula (5.1) implies that f :
X — WH induces a simplicial group map f, : GX — H which is specified on
generators by f.([z]) = f.(d®). It follows that the function

hom,gr(GX, H) — homg(X, WH)

defined by g — (Wg) o7 is surjective. Furthermore, any map f : X — WH is
uniquely specified by the elements f(x)(d°), and hence by the simplicial group
homomorphism f,. [ |

REMARK 5.4. Any simplicial group homomorphism f : G — H induces a f-
equivariant morphism of associated principal fibrations of the form

f

G——H

| |

WGW—f>WH

! !

WG T>WH,
Wy

as can be seen directly from the definitions. The canonical map n: X — WGX
induces a morphism

| !

X, —— WGX

! J

X TWGX
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of GX-bundles. It follows that, for any simplicial group homomorphism f :
GX — H, the map f and its adjoint f, = W f on fit into a morphism of bundles

GX#H

I !

X, —— WH

l |

Suppose now that the simplicial set X is reduced in the sense that it has only
one vertex. A closed n-loop of length 2k in X is defined to be a string

(332k375(32k:—17 e ,372,371)

of (n + 1)-simplices z; of X such that doxe;—1 = doxe; for 0 < i < k. Define an
equivalence relation on loops by requiring that

(l‘zk, .. 7331) ~ (IE%, vy L2, Ljg—15 - - - ,931)

if Tiy = Li41- Let
<1‘2k, e ,:E1>

denote the equivalence class of the loop (xak, ..., x1). Write G'X,, for the set of
equivalence classes of n-loops under the relation ~. Loops may be concatenated,
giving G’ X, the structure of a group having identity represented by the empty n-
loop. Any ordinal number morphism 6 : m — n induces a group homomorphism

0" . G'X, — G'X,,,
which is defined by the assignment
(Toky vy T, X1) (é*:cgk, .. é*xg, §*x1>
The corresponding simplicial group will be denote by G’ X. This construction is
clearly functorial with respect to morphisms of reduced simplicial sets.

There is a homomorphism

bn: G' X, — GX,,
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which is defined by

G (Toks Tok—1y - -+ T2, 1) = [Tor][w2n—1] " ... [wa)[z1] 1.

Observe that

0" ([w2i] [m2i—1] ") = [0 (w20)][(cO)* do(w2)] () do(w2i—1)][0" (w2i—1] "
= [0* (220)][0" (w2i-1] ",

so that

9*([$2k][$2k_1]_1 ce [.’L‘Q][[El]_l) = [é*l‘gk][é*l‘gk_l]_l . [5*:1;2][5*561]_1.
The homomorphisms ¢,, : G'X,, — GX,, taken together, therefore define a
simplicial group homomorphism ¢ : G'X — GX.

LEMMA 5.5. The homomorphism ¢ : G'X — GX is an isomorphism of simplicial
groups which is natural with respect to morphisms of reduced simplicial sets X.

PRrROOF: The homomorphism ¢,, : G'X,, — GX,, has a section, which is defined
on generators by

[x] — (z, sodoz),
and elements of the form (x, sodpx) generate G’ X,,. [ |

Again, let X be a reduced simplicial set. The set E’'X,, consists of equivalence
classes of strings of (n + 1)-simplices

(kara cee 751:17'1:0)

with doxe; = dox2;—1, © > 1, subject an equivalence relation generated by rela-
tions if the form

(T2ks - - T0) ~ (T2ks - -+ s Tig2, Tim1, -+ -5 To)
if x; = x;y1. We shall write (xog,...,xo) for the equivalence class containing
the element (zak,...,%o). Any ordinal number map 6 : m — n determines a

function 6* : £'X,, — E’'X,,, which is defined by

9*<x2k, e ,.f130> = <0*(x2k)a . ,0*($0)>,

and so we obtain a simplicial set E’X. Concatenation induces a left action
G'X x E'X — E'X of the simplicial group G’X on E'X.
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There is a function
¢, E'X, — GX, x X,

which is defined by
b Tk, - -, T1,T0) = ([wzk][ﬂfzk—ﬂ_l e [902][331]_1[370], doxo).

The function ¢/, is ¢,-equivariant, and so

On(n ' (9)(s02)) = (9, 2)

for any (g,x) € GX,, x X,,, and ¢/, is surjective. There is an equation

<l’2k, . ,IL’o> = <£L’2k, ..., I, 80d0($0)><80d0($0)>

for every element of E’'X,, so that E'X,, consists of G’ X, -orbits of elements
(soz). The function ¢/ preserves orbits and ¢, is a bijection, so that ¢/ is
injective as well.

The set GX,, X X,, is the set of n-simplices of the GX-bundle X, which is
associated to the natural map 7 : X — WGX. If § : m — n is an ordinal
number map, then the associated simplicial structure map 6* in X, has the form

9*([$2k] e [wl]il[Io], d()x()) )

= (0" (@20)] ... [0 (1))~ [0 (w0)][(cB)* (doo)] 65 (n(2)([6(0), 7)), dof" (o))
since doé* (l‘o) = 0" (doxo). But

[(c8)" (dox0))] = 05 (n()([6(0), 7)),

by equation (5.2). The bijections ¢, therefore define a ¢-equivariant simplicial
map, and so we have proved

LEMMA 5.6. There is a ¢p-equivariant isomorphism
¢ E'X — X,.

This isomorphism is natural with respect to maps of reduced simplicial sets.
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There is a simplicial set E” X whose n-simplices consist of the strings of (n+1)-
simplices (zag, ..., xo) of X as above, and with simplicial structure maps defined
by 3 3

9* (zgk, . ,I‘o) = (9*$2k7 . ,9*1'0)

for 6 : m — n. Observe that E'X = E" X/ ~.

Given this description of the simplicial structure maps in E” X, the best way to
think of the members of an n-simplex is as a string (za, - . ., 2¢) of cones on their
0" faces, with the obvious incidence relations. A homotopy A" x Al — E"X
can therefore be identified with a string

(h2k7 s 7h17h0)7

where

(1) h; : C(A™ x Al) — X is a map defined on the cone C(A™ x Al) on the
simplicial set A” x Al, and

(2)

hoilansar = hoi—1]anx Al
for 1 <4 <k.

We shall say that maps of the form C(A™ x Al) — Y are cone homotopies.
Examples of such include the following:

(1) The canonical contracting homotopy

0—0—-——0
L l
0—1l—- —n+1

of A" onto the vertex 0 induces a map C(A™ x Al) — A™! which is
jointly specified by the vertex 0 and the restricted homotopy

0—0—--——0
L l
1—2—.-- —n+1.

This map is a “contracting” cone homotopy.
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(2) The vertex 0 and the constant homotopy

l—2—..- —n+1
L !
l1—2—. - —n+1.

jointly specify a “constant” cone homotopy C'(A™ x Al) — A™+L,

In both of these cases, it’s helpful to know that the cone C BP on the nerve
BP of a poset P can be identified with the nerve of the cone poset C'P which
is obtained from P by adjoining a disjoint initial object. Furthermore, a poset
map v : P — @ can be extended to a map CP — () by mapping the initial
object of C'P to some common lower bound of the objects in the image of ~, if
such a lower bound exists.

LEMMA 5.7. E'X is acyclic in the sense that H,(E'X,Z) = 0.

PRrOOF: Both the contracting and constant cone homotopies defined above are
natural in A™ in the sense that the diagram

C(A™ x Ay —h Am+1
C(6 x 1)| ‘é*
C(A™ x A1) —— A

commutes for each ordinal number map 6 : m — n, where h denotes one of the
two types. It follows that there is a homotopy from the identity map on E”X
to the map E”X — E” X defined by

(l'gk,---,ﬂf]_,.fl?o) = (:C2k7"'axla*)7

and that this homotopy can be defined on the level of simplices by strings of
cone homotopies

(h(il?gk), ceey h(.il?l), h(l’o)),

where h(xg) is contracting on dpzg, and all other h(z;) are constant. This
homotopy, when composed with the canonical map E”X — E’X, determines a
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chain homotopy S from the induced map ZE"” X — ZE’X to the map ZE"X —
ZE'X which is induced by the simplicial set map defined by

(ﬂﬁzk,---,xl,wo) = <$2k,~-;9€1;*>-

For each element (za,. .., 1, o), the chain S(za, ..., 21, 20) is an alternating
sum of the simplices comprising the homotopy (h(zag),...,h(z1),h(z0)). It
follows in particular, that if x; = x;41 for some ¢ > 1, then the corresponding
adjacent simplices of the components of S(xax, ..., z1,xo) are also equal.

It also follows that there is a chain homotopy defined by

(I'Qk, s 7'7;17‘7;()) = S(ZBQk, cee ,fL’]_,fL’O) - S(x2k7 .. 'axlaxl)7

and that this is a chain homotopy from the chain map induced by the canonical
map E”X — E’X to the chain map induced by the simplicial set map

(T2 - -, 21, T0) = (Tak, - - -, T3, T2)
This construction can be iterated, to produce a chain homotopy H defined by

k—
(@2k, - 0) = (O _(S(Taks -+ Taig1, T2i) = S(Wok, -, T2it1, T2i11))) + S (w2k)
0

=

~

from the chain map ZE"” X — ZE'X to the chain map induced by the simplicial
set map E”X — E’X which takes all simplices to the base point *. One can
show that

H(ka, . .,130) = H(.%‘zk, - .xi+2,xi_1, e ,1’0)

if x; = x;41. It follows that H induces a contracting chain homotopy on the
complex ZE'X. [ ]

LEMMA 5.8. E’'X is simply connected.

Proor: Following Lemma 5.6, we shall do a fundamental groupoid calculation
in X, = E'X.
The boundary of the 1-simplex (sog, ) in X, has the form

9(s0g,x) = ((glz], %), (9,%)).

There is an oriented graph 7'(X) (hence a simplicial set) having vertices coincid-
ing with the elements of GX and with edges = : ¢ — gx for x € X; — {*}. There
is plainly a simplicial set map T'(X) — X, which is the identity on vertices and
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sends each edge x : ¢ — gz to the 1-simplex (sog,x). This map induces a map

of fundamental groupoids
T(X) — 71X,

which is surjective on objects. A reduced word argument shows that 7'(X) is
contractible, hence has trivial fundamental groupoid, so we end up showing that
X, is simply connected if we show that the l-simplices (sog, ) generate the
fundamental groupoid 7.X,,.
There are boundary relations
d(s19, sow) = (do(s19, $02), d1(519, s07), d2 (519, o))
= (Sodog; CU), (ga CU), (ga *))

and in the same notation,

d(s09,y) = ((glyl, doy), (9, d1y), (s0d1g, d2y)).

The upshot is that there are commuting diagrams in 7.X,, of the form

(sod1g, day)
yl, doy)
(9,d1y) (s0do(gly]), =
(sodo(gly]), doy)
and
(sodi(g ), d2y)
-1 d1y
97 do?/ Sodo
(sodo(g ), d1y)

It follows that any generator (g[y],a:) (respectlvely (gly]™',z) of 7X, can be

replaced by a generator (g, d;y) (respectively (g, doy)) of 7X, up to multiplica-
tion by elements of 77°(X). In particular, any generator (h,z) of 7X, can be
replaced up to multiplication by elements of #T'(X) by a generator (h', z’) such
that A’ has strictly smaller word length as an element of the free group GX;. An
induction on word length therefore shows that the groupoid 7X, is generated
by the image of T'(X). [
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REMARK 5.9. The object T(X) in the proof of Lemma 5.8 is the Serre tree
associated to the generating set X7 — {*} of the free group GXj. See p.16 and
p.26 of [84].

We have proved

THEOREM 5.10. Suppose that X is a reduced simplicial set. Then the total
space X,, of the principal GX-fibration X, — X is contractible.

COROLLARY 5.11. There are weak equivalences
GX — X, xx PX «— QX,
which are natural with respect to morphisms of reduced Kan complexes X.

6. Reduced simplicial sets, Milnor’s F'K-construction.

The proof of Theorem 5.10 depends on an explicit geometric model for the
space X,), and the construction of this model uses the assumption that the sim-
plicial set X is reduced. There is no such restriction on the loop group functor:
GY is defined for all simplicial sets Y. The geometric model for X, can be
expanded to more general simplicial sets (see Kan’s paper), but Theorem 5.10
fails badly in the non-reduced case: the loop group G(A!) on the simplex A! is
easily seen to be the constant simplicial group on the free group Z on one letter,
which is manifestly not contractible. This sort of example forces us (for the time
being — see Section 8) to restrict our attention to spaces with one vertex.

We now turn to the model category aspects of the loop group and W functors.

LEMMA 6.1. Let f : X — Y be a cofibration of simplicial sets. Then Gf :
GX — GY is a cofibration of simplicial groups. In particular, for all simplicial
sets X, GX is a cofibrant simplicial group.

PrROOF: This result is a consequence of Corollary 1.10.
Note that since soX,, C X, 41 there is an isomorphism of groups

GXn = F(Xn+1 — SOXn)-
Furthermore, for all ¢« > 0, the map s;4+1 : X,, — X, 41 restricts to a map
Siv1: Xp — 50Xn—1 — Xpy1 — 50Xy

since s;1+150X = sps;X. Hence there is a diagram

GXpoy —— F(Xp, — 50Xn)

Si‘ lFSH—l

GX, ——— F(Xni1 — 50Xn)
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and GX is almost free, hence cofibrant. For the general case, if X — Y is a
level-wise inclusion

Yn—l—l - SOYn - (Xn—l—l - SOXn) U Zn+1
where Z,11 = Y41 — (Xp41 U soYy,). Thus
GY, =2 GX,*xFZ, 1

where the * denotes the free product. Now s;41 : Y,, — Y, 41 restricts to a map
Sit1 : Zn — Zpy1 and, hence, the inclusion GX — GY is almost-free and a
cofibration. [ |

As a result of Theorem 5.10 and Lemma 6.1 one sees that GG preserves cofi-
brations and weak equivalences between spaces with one vertex. This suggests
that the proper domain category for G — at least from a model category point
of view — is the category Sy of simplicial sets with one vertex. Our next project
then is to give that category a closed model structure.

PROPOSITION 6.2. The category Sy has a closed model category structure where
a morphism f: X — Y isa

1) a weak equivalence if it is a weak equivalence as simplicial sets;

2) a cofibration if it is a cofibration as simplicial sets; and

3) a fibration if it has the right lifting property with respect to all trivial
cofibrations.

The proof is at the end of the section, after we explore some consequences.
PROPOSITION 6.3.

1) The functor G : Sg — sGr preserves cofibrations and weak equivalences.
2) The functor W : sGr — S preserves fibrations and weak equivalences.
3) Let X € Sy and G € sGr. Then a morphism f : GX — G is a weak equiv-

alence in sGr if only if the adjoint f, : X — WG is a weak equivalence
in So.

ProoF: Part 1) follows from Lemma 6.1 and Theorem 5.10. For part 2) notice
that since W is right adjoint to a functor which preserves trivial cofibrations, it
preserves fibrations. The clause about weak equivalences follows from Lemma 4.6
Finally, part 3), follows from Remark 5.4, Lemma 4.6 and Theorem 5.10.
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COROLLARY 6.4. Let Ho(Sy) and Ho(sGr) denote the homotopy categories.

Then the functors G and W induce an equivalence of categories
Ho(Sy) = Ho(sGr).

PROOF: Proposition 6.3 implies that the natural maps e : GWH — H and
n: X — WGX are weak equivalences for all simplicial groups H and reduced
simplicial sets X. [ |

REMARK 6.5. If Ho(S). € Ho(S) is the full sub-category of the usual homotopy
category with objects the connected spaces, then the inclusion Hy(Sg) — Ho(S).
is an equivalence of categories. To see this, it is sufficient to prove if X is
connected there is a Y weakly equivalent to X with a single vertex. One way is
to choose a weak equivalence X — Z with Z fibrant and then let Y C Z be a
minimal subcomplex weakly equivalent to Z.

We next relate the fibrations in Sy to the fibrations in S.

LEMMA 6.6. Let f : X — Y be a fibration in Sg. Then f is a fibration in S if
and only if f has the right lifting property with respect to

«— S' = Al/oAL.

ProOOF: First suppose f is a fibration in S. Consider a lifting problem

A° * X
/7Y
(67 #| [ S Jf
Al st Y.

Since f is a fibration in S, there is a map g : A — X solving the lifting problem
for the outer rectangle. Since X has one vertex g factors through the quotient
map,

Al = Al/skoAl = 51T X
and g solves the original lifting problem. Here sk, denotes the zero skeleton.

Now suppose f has the stipulated lifting property. Then one must solve all
lifting problems

Ay — X

/
’
/
/
/
’

A" ——Y.
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If n = 0, this is trivial since Xy 2 Y. If n > 1, this diagram can be expanded to

A —— A} /sko A — X

N

A" —— A" /skg A" —— Y.

The map
AL/ sko A — A"/ skg A"

is still a trivial cofibration, now in Sg. So the lift exists. If n = 1, the expanded
diagram is an instance of diagram (6.7), and the lift exists by hypothesis. |

COROLLARY 6.8. Let X € Sg be fibrant in Sp, then X is fibrant in S. In
particular, if G € sGr, then WG is fibrant in S.

PROOF: The first clause follows from the previous lemma. For the second, note
that every object of sGr is fibrant. Since W : sGr — Sy preserves fibrations,
WG is fibrant in Sy. [ |

COROLLARY 6.9. Let f : X — Y be a fibration in Sy between fibrant spaces.
Then f is a fibration in S if and only if

f* : 7T1X —>7T1Y

is onto. In particular, if G — H is a fibration of simplicial groups, WG — W H
is a fibration of simplicial sets if and only if m1oG — mH is onto.

PrOOF: Consider a lifting problem

* —— X

kd
/
/
/
//

Sl T)Y

This can be solved up to homotopy; that is there is a diagram

Sl — X

]

gt gianl By
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where hod’ = a. But d' : S' — ST A A:L is a trivial cofibration in Sy so the

homotopy h can be lifted to h:StA A}r — X and h o d® solves the original

lifting problem. o
For the second part of the corollary, note that Proposition 3.5 implies 1 WG =2

™ OG- |

We now produce the model category structure promised for Sy. The following
lemma sets the stage. If X is a simplicial set, let #X denote the cardinality of
the non-degenerate simplices in X. Let w be the first infinite cardinal.

LEMMA 6.10.

1) Let A — B be a cofibration in S and © € By, a k-simplex. Then there is
a subspace C' C B so that #C' < w and x € C.

2) Let A — B be a trivial cofibration in S and x € By, a k-simplex. Then
there is a subspace D C B so that #D < w,x € D and AND — D is a
trivial cofibration.

PROOF: Part 1) is a reformulation of the statement that every simplicial set
is the filtered colimit of its finite subspaces. For part 2) we will construct an
expanding sequence of subspaces

DyCDyC---CB
so that x € D, #D,, < w and
Tp(|Dnl, |Dn N A|) = 7p(|Dnsals [Dna 0 Al)

is the zero map. Then we can set D = J D,,.

n
To get D1, simply choose a finite subspace D; C B with x € D;. Now suppose
D,,q < n, have been constructed and satisfy the above properties. Let

a € mi(|Dyl, | Dy N A).
Since o maps to zero under
(| Dnl, [ Dn N Al) — . (|B, | A])

there must be a subspace D, C B, such that #D < w and so that a maps to
zero under

7e(|Dnl, | Dy N A]) — 7.(| Dy U Dal, (Dn U Do) N Al).
Set Dyt = Do U (U Da). N
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REMARK 6.11. The relative homotopy groups . (|B|,|A|) for a cofibration i :
A — B of simplicial sets are defined to be the homotopy groups of the homotopy
fibre of the realized map i, : |A| < |B|, up to a dimension shift. The realization
of a Kan fibration is a Serre fibration (Theorem 1.10.10), so it follows that these
groups coincide up to isomorphism with the simplicial homotopy groups m,F;
of any choice of homotopy fibre F; in the simplicial set category. One can use
Kan’s Fx*° functor along with an analog of the classical method of replacing a
continuous map by a fibration to give a rigid construction of the Kan complex
F; which satisfies the property that the assignment ¢ +— F; preserves filtered
colimits in the maps i. The argument for part 2) of Lemma 6.10 can therefore
be made completely combinatorial. This observation becomes quite important
in contexts where preservation of functoriality is vital — see [38].

LEMMA 6.12. A morphism f: X — Y in Sy is a fibration if and only if it has
the right lifting property with respect to all trivial cofibrations C' — D in Sy
with #D < w.

PrOOF: Consider a lifting problem

A2 . X

j[ e [f

B——Y

where j is a trivial cofibration. We solve this by a Zorn’s Lemma argument.
Consider the set A of pairs (Z, g) where A C Z C B, A — Z is a weak equivalence
and g is a solution to the restricted lifting problem

Partially order A by setting (Z,9) < (Z',¢') if Z C Z’ and ¢’ extends g. Since
(A,a) € A, A is not empty and any chain

(Z1,91) < (Z2,92) < -+
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in A has an upper bound, namely (UZ,,,Ug,,). Thus A satisfies the hypotheses of
Zorn’s lemma and has a maximal element (By, go). Suppose By # B. Consider
the diagram

Then i is a trivial cofibration. Choose x € B with « ¢ By. By Lemma 6.10.2
there is a subspace D C B with x € D, #D < w and Bo N D — D a trivial
cofibration. The restricted lifting problem

BoNB—— X

//7'
'
g f
e
7
s
-

D————Y

has a solution, by hypotheses. Thus gy can be extended over By U D. This
contradicts the maximality of (By, go). Hence By = B. [ |

REMARK 6.13. The proofs of Lemma 6.10 and Lemma 6.12 are actually standard
moves. The same circle of ideas appears in the arguments for the closed model
structures underlying both the Bousfield homology localization theories [8], [9]
and the homotopy theory of simplicial presheaves [46], [51], [38]. We shall return
to this topic in Chapter IX.

THE PROOF OF PROPOSITION 6.2: Axioms CM1-CM3 for a closed model
category are easy in this case. Also, the “trivial cofibration-fibration” part of
CMA4 is the definition of fibration. We next prove the factorization axiom CM5
holds, then return to finish CM4.

Let f: X — Y be a morphism in Sy. To factor f as a cofibration followed
by a trivial fibration, use the usual small object argument with pushout along

cofibrations A — B in Sy with #B < w to factor f as X - Z Y where j
is cofibration and ¢ is a map with the right lifting property with respect to all
cofibrations A — B with #B < w. The evident variant on the Zorn’s lemma
argument given in the proof of Lemma 6.12 using 6.10.1 implies ¢ has the right
lifting property with respect to all cofibrations in Sy. Hence ¢ is a fibration. We
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claim it is a weak equivalence and, in fact, a trivial fibration in S. To see this
consider a lifting problem

OAN" —— 7
1 //[q

A" —Y.

If n = 0 this has a solution, since Zy = Y. If n > 0, this extends to a diagram

DA™ — JA" ) sko(IA™) —— Z

-

A" A"/ skg A" —— Y.

Since n > 1, sk(0A™) = sko(A™), so j is a cofibration between finite complexes
in Sp and the lift exists.

Return to f: X — Y in Sy. To factor f as a trivial cofibration followed by a
fibration, we use a transfinite small object argument.

We follow the convention that a cardinal number is the smallest ordinal number
within a given bijection class; we further interpret a cardinal number 3 as a poset
consisting of strictly smaller ordinal numbers, and hence as a category. Choose
a cardinal number § such that § > 2.

Take the map f : X — Y, and define a functor X :  — Sy and a natural
transformation fs: X(s) — Y such that

(1) X(0) = X,
(2) X(t) = lim » X (s) for all limit ordinals ¢ < (3, and
(3) the map X(s) — X(s+ 1) is defined by the pushout diagram

I_lAD %X(S)
D

UZ.D[

| |Bo —— X(s+1)
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where the index D refers to a set of representatives for all diagrams

Ap —2L . X (s)

o

Bp —Y

such that ip : Ap — Bp is a trivial cofibration in Sy with #Bp < w.

Then there is a factorization

X Z—O>Xﬁ
f [fﬁ

for the map f, where X3 = lii>ns X(s), and 7o : X = X(0) — Xz is the canonical
map into the colimit. Lemma 6.12. A pushout along a trivial cofibration in Sg is a
trivial cofibration in Sy because the same is true in S, so 7 is a trivial cofibration.
Also, any map A — Xg must factor through one of the canonical maps i, :
X(s) — Xp if #A < w, for otherwise A would have too many subobjects on
account of the size of 3. It follows that the map fz : Xg — Y is a fibration of
So. This finishes CM5.

To prove CM4 we must show any trivial fibration f : X — Y in Sy has the
right lifting property with respect to all cofibrations. However, we factored f as
a composite

Xz %y

where j is a cofibration and ¢ is a trivial fibration with the right lifting property
with respect to all cofibrations. Now j is a trivial cofibration, since f is a weak
equivalence. Thus there is a lifting in

=
|
Jl . /
//
q

Z Y
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since f is a fibration. This shows f is a retract of ¢ and has the requisite lifting
property, since ¢ does. |

As an artifact of the proof we have:

LEMMA 6.14. A morphism f : X — Y in Sy is a trivial fibration in S if and
only if it is a trivial fibration in S.

The Milnor FK construction associates to a pointed simplicial set K the
simplicial group F'K, which is given in degree n by

FK, = F(K, — {*}),

so that F'K,, is the free group on the set K,, — {*}. This construction obviously
gives a functor from pointed simplicial sets to simplicial groups. The group FK
is also a loop group:

THEOREM 6.15. There is a natural isomorphism
G(XK)=FK,

for pointed simplicial sets K.

PrOOF: Recall that ¥ K denotes the Kan suspension of K. The group of n-
simplices of G(XK) is defined to be the quotient

G(EK), = F(XK,41)/F(s02K,).
The map sg : XK,, — XK, can be identified with the wedge summand inclu-

sion
K, v --VKg— K, VK, 1V---V Ky,

so that the composite group homomorphism

F(K,) 2 F(SKpi1) — F(SKni1)/F(s0SK,)

can be identified via an isomorphism
(6.16) F(XKp+1)/F(soXK,) = FK,
with the quotient map

F(K,) — F(K,)/F(x) 2 FK,.
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Recall that for § : m — n, the map 0* : G(X£K),, - G(XK),, is specified on
generators [x] by

0% ([2]) = 16" (2)][(ct) " (do())] "

But then

since do (1, (z)) = *. It follows that the isomorphisms (6.16) respect the simplicial
structure maps. |

The proof of Theorem 6.15 is easy enough, but this result has important
consequences:

COROLLARY 6.17.

(1) The Milnor F K construction takes weak equivalences of pointed simplicial
sets to weak equivalences of simplicial groups.

(2) The simplicial group FK is a natural fibrant model for QXK in the
category of pointed simplicial sets.

Proor: The first assertion is proved by observing that the Kan suspension
functor preserves weak equivalences; the loop group construction has the same
property by Theorem 5.10 (see also Section I1.8).

Let XK — Y be a fibrant model for XK in the category of reduced simplicial
sets. Then Y is a Kan complex which is weakly equivalent to XK, so that QY
is a model for QXK. The loop group functor preserves weak equivalences, so
that the induced map G(XK) — GY is a weak equivalence of simplicial groups.
Finally, we know that GY is weakly equivalent to Y, so that G(3XK) and hence
FK is a model for QXK. |

7. Simplicial groupoids.

A simplicial groupoid G, for our purposes, is a simplicial object in the category
of groupoids whose simplicial set of objects is discrete. In other words, GG consists
of small groupoids G,, n > 0 with a functor 0* : G,, — G,, for each ordinal
number map 6 : n — m, such that all sets of objects Ob(G,,) coincide with a
fixed set Ob(G), and all functors 6* induce the identity function on Ob(G). Of
course,  — 6* is also contravariantly functorial in ordinal number maps 6. The
set of morphisms from z to y in G,, will be denoted by G, (x,y), and there is
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a simplicial set G(x,y) whose n-simplices are the morphism set G,,(z,y) in the
groupoid G,,. We shall denote the category of simplicial groupoids by sGd.

The free groupoid G(X) on a graph X has the same set of objects as X, and
has morphisms consisting of reduced words in arrows of X and their inverses.
There is a canonical graph morphism 7 : X — G(X) which is the identity on
objects, and takes an arrow « to the reduced word represented by the string
consisting of a alone. Any graph morphism f : X — H taking values in a
groupoid H extends uniquely to a functor f, : G(X) — H, in the sense that the
following diagram commutes:

There is a similar construction of a free groupoid GC on a category C, which
has been used without comment until now. The groupoid GC is obtained by the
free groupoid on the graph underlying the category C by killing the normal sub-
groupoid generated by the composition relations of C and the strings associated
to the identity morphisms of C (see also Sections 1.8 and III.1). The category
of groupoids obviously has all small coproducts, given by disjoint unions. This
category also has pushouts, which are actually pushouts in the category of small
categories, so the category of groupoids is cocomplete. Note that filtered colimits
are formed in the category of groupoids just as filtered colimits on the object and
morphism levels. The initial object in the category of groupoids has an empty
set of morphisms and an empty set of objects and is denoted by 0.

It is also completely straightforward to show that the category of simplicial
groupoids has all inverse limits.

Dwyer and Kan define [25], for every simplicial set X, a groupoid F’X having
object set {0,1}, such that the set of n-simplices X, is identified with a set of
arrows from 0 to 1, and such that F’X,, is the free groupoid on the resulting
graph.

The groupoid F’K is morally the same thing as the Milnor construction, for
pointed simplicial sets K. If x denotes the base point of K, then there is a
homomorphism of simplicial groups

g: FK — F'K(0,0)
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which is defined on generators y € K,, — {x} by y — 2~ !y. Also, regarding FK
as a simplicial groupoid with one object, we see that there is a map of simplicial
groupoids

f:F'K - FK

defined by sending x to e in all degrees and such that y € K,, — {x} maps to the
arrow y. The collection of all products y~'z, y, 2 € K,,, generates F'K(0,0) in
degree n, and so it follows that the composite simplicial group homomorphism

/
F'K(0,0) = FK 2 F'K(0,0)

is the identity. The composite

g _, f
FK — F'K(0,0) — FK

sends y € K,, to 271y =y € FK,,, so the homomorphism ¢ is an isomorphism.

LEMMA 7.1. Suppose that K is a pointed simplicial set. Then the simplicial
sets F'K(a,b), a,b € {0,1}, are all isomorphic to the Milnor F K construction.

ProOOF: The base point x of K determines an isomorphism x : 0 — 1 in the
groupoid F'K, for all n > 0. Composition and precomposition with x therefore
determines a commutative diagram of simplicial set isomorphisms

and of course we’ve seen that F'K(0,0) = FK. [ |

COROLLARY 7.3. A weak equivalence f : X — Y of simplicial sets induces weak
equivalences f, : F' X (a,b) — F'Y (a,b) for all objects a,b € {0, 1}.

ProoF: We can suppose that X is non-empty. Pick a base point x in X, and
observe that the diagram (7.2) is natural in pointed simplicial set maps, as is
the isomorphism F'X(0,0) &2 FX. We've already seen that the Milnor FX
construction preserves weak equivalences. [ |
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For an ordinary groupoid H, it’s standard to write mgH for the set of path
components of H. By this, one means that

7"-0}[ = Ob(H)/ ™~

where there is a relations x ~ y between two objects of H if and only if there
is a morphism © — y in H. This is plainly an equivalence relation since H is a
groupoid, but more generally mgH is the specialization of a notion of the set of
path components mC for a small category C.

If now G is a simplicial groupoid, it’s easily seen that all of the simplicial
structure functors 0* : G,, — G,, induce isomorphisms 7yG,, = 719G,,. We shall
therefore refer to myGy as the set of path components of the simplicial groupoid
G, and denote it by mG.

A map f: G — H of simplicial groupoids is said to be a weak equivalence of
sGd if

(1) the morphism f induces an isomorphism moG = 7o H, and

(2) each induced map f : G(z,z) — H(f(z), f(x)), x € Ob(G) is a weak
equivalence of simplicial groups (or of simplicial sets).

Corollary 7.3 says that the functor F’ : S — sGd takes weak equivalences of
simplicial sets to weak equivalences of simplicial groupoids.
A map g : H — K of simplicial groupoids is said to be a fibration if

(1) the morphism g has the path lifting property in the sense for every object
of H and morphism w : g(x) — y of the groupoid Ky, there is a morphism
@ :x — z of Hy such that g(&) = w, and

(2) each induced map g : H(x,z) — K(g(x),g(x)), x € Ob(H), is a fibration
of simplicial groups (or of simplicial sets).

According to this definiton, every simplicial groupoid G is fibrant, since the map
GG — * which takes values in the terminal simplicial groupoid * is a fibration.
A cofibration of simplicial groupoids is defined to be a map which has the left
lifting property with respect to all morphisms of sGd which are both fibrations
and weak equivalences.

Several comments are in order. First of all, picking a representative z € x|
for each [z] € myG determines a map of simplicial groupoids

i: |_| G(z,z) — G
[z]€mo G

which is plainly a weak equivalence. But more is true, in that the simplicial
groupoid | J,1c,,¢ G(z, ) is a deformation retract of G in the usual groupoid-
theoretic sense. To see this, pick morphisms w,, : y — x in Gy for each y € [z] and
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for each [z] € oG, such that w, = 1, for all the fixed choices of representatives
of the various path components . Then there is a simplicial groupoid morphism

r:G— |_| G(z,x),

[m]GTfoG

which is defined by conjugation by the paths w,, in that r(y) = « if and only
if y € [z] for all objects y of G, and r : G(y,2) — G(x,z) is the map sending
o @y — z to the composite wzawy_l € G(z,z) for all y,z € [z], and for each
[z] € myG. The morphisms w,, also determine a groupoid homotopy

h:GxI—@G

where I denotes the free groupoid on the ordinal number (category) 1. This
homotopy is from the identity on G to the composite ir, and is given by the
obvious conjugation picture.

The choices of the paths which define the retraction map r are non-canonical,
and are certainly not natural with respect to morphisms of simplicial groupoids,
except in certain useful isolated cases (see the proof of Lemma 7.5 below). The
choices of the representatives = for path components [z] are non-canonical as
well, but are more nearly natural, in that for every weak equivalence f : G — H
of simplicial groupoids, choices of representatives can be made (in G) such that
there is a commutative diagram

|| Gao)—— || H(f(),f()

[ZC]E’]TOG [:L']eﬂ'oG
(7.4) l [
1 1
G / H.

of weak equivalences of simplicial groupoids. We can also prove the following:

LEMMA 7.5. Suppose that the morphism j : A — B of simplicial groupoids has
the left lifting property with respect to all fibrations. Then the map j is a weak
equivalence.

Proor: The initial object in the category of simplicial groupoids is the category
() having no objects and no arrows. The path lifting property for the canonical
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map ) — G is vacuously satisfied, and, similarly, all simplicial set maps ) — X
are Kan fibrations, so that each map () — G is a fibration of simplicial groupoids.
If A =0, then the lifting exists in the diagram

_

/7
e
7
e
e
e
e
-
B

_—

D=

Y

forcing B = (), and so j is a weak equivalence in this case.
In general, there is a commutative diagram

A——— A

| A

B—x

since A is fibrant. In particular, j induces an injection i : Ob(A) — Ob(B), as
well as an injection i, : m9pA — mB. Let C' be the subobject of B, given by the
union of path components containing objects of A. If C' # B, then B =C U’
and the map j : A — B is a disjoint union of maps of the form A — C and
() — C’, each of which has the left lifting property with respect to all fibrations.
It follows that C’ = ), and so j induces an isomorphism on 7.

Recall that 7 induces a monomorphism on objects. It follows that, by choosing
paths w : y — x for a fixed list of representatives x for elements [z] € mp A, first
in A and then for the remaining objects in B, we can construct a commutative
diagram of simplicial groupoid maps

|_| Az, x) : A L |_| Az, x)

[z]emo A [z]emp A

?
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such that the top and bottom horizontal composites are the identity. The re-
stricted map

i+ | Az — || Bl@).i)

[z]€mo A [z]€emp A

therefore has the right lifting property with respect to all fibrations, and so each
of the maps j : A(z,x) — B(j(x),j(z)) has the same lifting property, and is
therefore a trivial cofibration of simplicial groups. |

THEOREM 7.6. With these definitions, the category s(Gd of simplicial groupoids
satisfies the axioms for a closed model category.

PRrROOF: Only the factorization axiom has an interesting proof. Write FY9AY to
denote the discrete simplicial groupoid on the object set {0, 1}, and write F’A§ to
denote the terminal groupoid *. Then a map of simplicial groupoids f: G — H
is a fibration if and only if it has the right lifting property with respect to all
morphisms F'A} — F'A™ 0 < k <mn, and f is a trivial fibration (aka. fibration
and weak equivalence) if and only if it has the right lifting property with respect
to all morphisms F'OA™ — F'A™ n > 0, and the morphism () — * (compare
[25]). We can therefore use a small object argument to show that every simplicial
groupoid morphism g : K — L has factorizations

N A

M

where p is a fibration and ¢ has the left lifting property with respect to all
fibrations, and ¢ is a trivial fibration and j is a cofibration. Lemma 7.5 implies
that 7 is a weak equivalence.

The proof of the lifting axiom CM4 is a standard consequence of the proof
of the factorization axiom: any map which is both a cofibration and a weak
equivalence (ie. a trivial cofibration) is a retract of a map which has the left
lifting property with respect to all fibrations, and therefore has that same lifting
property. [ |
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There is a simplicial set WG for a simplicial groupoid G that is defined
by analogy with and extends the corresponding object for a simplicial group.
Explicitly, suppose that G is a simplicial groupoid. An n-cocycle X : Seg(n) ~~
G associates to each object [k, n] an object X}, of G, and assigns to each relation
7 : [4,n] < [k, n] in Seg(n) a morphism X (7) : X; — X}, in G,_;, such that the
following conditions hold:

(1) X(1;) = 1x, € Gn_j, where 1; is the identity relation [j,n] < [j,n],
¢
(2) for any composeable pair of relations [I,n] — [k, n] 5 [7,n], there is a
commutative diagram

X(©)

X ——— X,

X(TRA [<*X(r>

in the groupoid G,,—;.

Suppose that # : m — n is an ordinal number map. As before, 6 induces
a functor 6, : Seg(m) — Seg(n), which is defined by sending the morphism
7 : [k,m] — [j,m] to the morphism 7, : [0(k),n] — [0(j),n]. “Composing” the
n-cocycle X : Seg(n) ~» G with 6, gives a cocycle 8* X : Seg(m) ~~ G, defined
for each relation 7 : [k,m]| < [j,m] in Seg(m), (and in the notation of (4.2)) by
the morphism

0" X (1) = 05(X (7)) : Xo) — Xog)-

of G,,—r The assignment 6 — 6* is contravariantly functorial in ordinal maps 6.

We have therefore constructed a simplicial set whose n-simplices are the n-
cocycles Seg(n) ~» G, and whose simplicial structure maps are the induced
maps *. This simplicial set of G-cocycles is WG. In particular, an n-cocycle
X : Seg(n) ~ G is completely determined by the string of relations

]~ fn—1,n] = ... 2 [1,0] ——5 [0, n),

and the corresponding maps

X(To) X(Tl) X(Tn_l)
Xy — Xp 1 — Xy 20— = X1 — X,
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Each 7; is an instance of the map d°, and X (7;) is a morphism of the groupoid
G;. Note, in particular, that the i** vertex of the cocycle X : Seg(n) ~ G is the
object X; of GG: this means that X; can be identified with the “cocycle” i* X,
where 7 : 0 — n.

Suppose that 6 : m — n is an ordinal number map, and let g denote the string
of morphisms

go g1 In—1
Xy — Xy — Xp2— = X1 —— Xg

in G, with g; a morphism of G;. Let X3 be the cocycle Seg(n) ~» G associated to
the n-tuple g. Then, subject to the notation appearing in diagram (4.2), * X5
is the string

0%, X=(70.) 0%, X(r12) 07 Xo(Tyn 1)
Xom) —— Xom-1) ———— Xg(m—-2) — - — Xgq) ———— Xy(0)-

It’s easily seen that this definition specializes to the cocycle definition of W@ in
the case where G is a simplicial group.

A simplicial map f : X — WG assigns to each n-simplex z a cocycle f(z) :
Seg(n) ~» G, such that for each ordinal number map ¢ : m — n and each map
7 : [k,m] — [j,m] in Seg(m) there is a relation

Or.f (x)(7) = f(07())(7).
Furthermore, f(z) is determined by the string of maps

f(@) (7o) f(@)(m1) f(@)(Tn-1)

f(an) ——— f(wn-1) —— f(Tn—2) = - = f(21) ——— f(20),

in G, where z; is the i'" vertex of =, and 7,,_; is the map Tn—i = d’ : [i,n] —
[i—1,n] of Seg(n). By the simplicial relations, f(2)(Tn_i) = f(d5(z))(Tn_s), 50
that the simplicial map f : X — WG is completely determined by the morphisms

f@)(d® =71t [1,n] - n): f(21) — f(o)

in G,,—1, * € X. In alternate notation then, the cocycle f(z) is completely
determined by the string of morphisms

f(dy~ ) (d) f(dow)(d®) f(@)(d°)

flzn) ——— f(zn-1) = ... ———— f(z1) ——— f(20)

in GG.
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The morphism f(soz)(d’) is the identity on f(xg). We now can define a
groupoid GX,, to be the free groupoid on generators x : x1 — xg, where x €
Xn+1, subject to the relations sox = 1,,, z € X,,. The objects of this groupoid
are just the vertices of X. Following the description of the loop group from
a previous section, we can define a functor 6* : GX,, — GX,, for each ordinal
number morphism 6 : m — n by specifying that 6 is the identity on objects, and
is defined on generators [z], z € X, 11, by requiring that the following diagram
commutes:

or rather that )
0*[z] = (0% (2)][(c)*doz] "

One checks, as before, that this assignment is functorial in ordinal number mor-
phisms 6, so that the groupoids GX,,, n > 0, and the functors #* form a simplicial
groupoid GX, which we call the loop groupoid for X.

Any n-simplex z of the simplicial set X determines a string of morphisms

[dy~ =] [dox] [z]
Ty ——— Tp—1 —> ... ——> T1 —> X

in GX, which together determine a cocycle n(z) : Seg(n) ~ GX in the simplicial
groupoid GX. The calculations leading to Lemma 5.3 also imply the following:

LEMMA 7.7.

(a) The assignment x — n(x) defines a natural simplicial map n : X —
WGX.

(b) The map n is one of the canonical homomorphisms for an adjunction
hom,gq(GX, H) = homg(X, WH),
where sGd denotes the category of simplicial groupoids.

Here’s the homotopy theoretic content of these functors:
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THEOREM 7.8.

(1) The functor G : S — sGd preserves cofibrations and weak equivalences.
(2) The functor W : sGd — S preserves fibrations and weak equivalences.

(3) A map K — WX € S is a weak equivalence if and only if its adjoint
GK — X € sGd is a weak equivalence.

PROOF: The heart of the matter for this proof is statement (2). We begin by
showing that W preserves weak equivalences.

Suppose that A is a simplicial groupoid, and choose a representative x for each
[z] € mpA. Recall that the inclusion

i: |_| A(z,z) — A

[z]emo A

is a homotopy equivalence of simplicial groupoids in the sense that there is a
groupoid map
r:A— |_| Az, x)
[z]emp A

which is determined by paths, such that ri is the identity and such that the
paths defining r determine a groupoid homotopy

h:AxI— A

from the identity on A to the composite morphism ir. The object I is the
constant simplicial groupoid associated to the groupoid having two objects 0, 1
and exactly one morphism a — b for any a,b € {0,1}. One sees that WI = BI
and that W preserves products. It follows that the groupoid homotopy h induces
a homotopy of simplicial sets from the identity on WA to the composite map
WioWr, and so Wi is a weak equivalence. If f : A — B is a weak equivalence
of simplicial groupoids, then f induces an isomorphism myA = my B, and there
is a commutative diagram of simplicial groupoid maps

I_l Az, x) — |_| B(f(z), f(z))

JJETI’QA .Z'EW()A

A B
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in which the vertical maps are homotopy equivalences. To see that W f is a weak
equivalence, it therefore suffices to show that W takes the top horizontal map
to a weak equivalence. But W preserves disjoint unions, and then one uses the
corresponding result for simplicial groups (ie. Proposition 6.3).

To show that W preserves fibrations, we have to show that a lifting exists for
all diagrams

AL — 2 WA
(7.9) ] le

A" ——— WB,
B
given that f : A — B is a fibration of sGd. We can assume that A and B are
connected. The lifting problem is solved by the path lifting property for f if
n=1.

Otherwise, take a fixed x € Ay and choose paths n; : y; — x in Ag, where y;
is the image of the i*" vertex in A?. Note that the vertices of A? coincide with
those of A™, since n > 2. These paths, along with their images in the groupoid
By determine “cocycle homotopies” from the diagram (7.9) to a diagram

/

AP — & S WA(x,z)

(7.10) 1 e [Wf
A”’T’ WB(f(z), f(x)).

More explicitly, if the simplicial set map (3 is determined by the string of
morphisms

gn—1 In—2 go
fyn) —— fyn-1) —— flyn—2) = - = f(y1) — f(yo)
in B, then the cocycle homotopy from (3 to (' is the diagram

Flom) =2 flyna) 22— ) — 2 f(yo)

f(nn)l f(nn_l)l f(m)l [f(no)

I f(z) he (z)
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where h; = f(n;)gif(mir1)~ ", and (' is defined by the string of morphisms h;.
The cocycle 3" is a cocycle conjugate of 3, in an obvious sense.

The indicated lift exists in the diagram (7.10), because the simplicial set map
W : A(z,r) — B(f(x), f(x)) satisfies the lifting property for n > 2 (see the
proof of Lemma 6.6). The required lift for the diagram (7.9) is cocycle conjugate
to v.

We have therefore proved statement (2) of the theorem. An adjointness ar-
gument now implies that the functor G preserves cofibrations and trivial cofi-
brations. Every weak equivalence K — L of simplicial sets can be factored as
a trivial cofibration, followed by a trivial fibration, and every trivial fibration
in S is left inverse to a trivial cofibration. It follows that G preserves weak
equivalences, giving statement (1).

Statement (3) is proved by showing that the unit and counit of the adjunction
are both weak equivalences. Let A be a simplicial groupoid. To show that the
counit € : GWA — A is a weak equivalence, we form the diagram

GW ( |_| Az, r)) —&— |_| Az, x)

TETHA TETA
GWZ" ’:Ii
GW A A

where we note that GWi is a weak equivalence by statements (1) and (2). The
functors G and W both preserve disjoint unions, so it’s enough to show that the
simplicial group map € : GW A(x,z) — A(z,z) is a weak equivalence, but this
is the traditional result for simplicial groups (Proposition 6.3; see also Corol-
lary 6.4).

Let K be a simplicial set. To show that the unit 7 : K — WGK is a weak
equivalence, it suffices to assume that K is a reduced Kan complex, by statements
(1) and (2). Now apply Proposition 6.3. [ |

COROLLARY 7.11. The functors G and W induce an equivalence of homotopy

categories
Ho(sGd) ~ Ho(S).



Chapter VI The homotopy theory of towers

In principle, the Postnikov tower construction gives a method of breaking up
a space X into a collection of spaces X (n), n > 0, such that X (n) carries the
homotopy groups of X up to level n, along with a tower of fibrations X(n) —
X (n — 1) each of which gives a calculus of adding the n** homotopy group of X
to X(n — 1) to create the space X (n). Then, in practice but sometimes with a
little luck, the space X can be recovered as the inverse limit (or more properly
a homotopy inverse limit) of the tower. This gives one of the central methods
for recovering qualitative and calculational properties of X from the Eilenberg-
Mac Lane spaces corresponding to its homotopy groups and the associated k-
invariants.

We’ve already seen an application, namely the proof of the Hurewicz theorem
in Section II1.3. The theory of Postnikov towers and related constructions is
the central object of study of this chapter. We begin in Section 1 by describing
an approach to constructing homotopy inverse limits of towers: a closed model
structure of towers of spaces is introduced, for which the homotopy inverse limit
of a tower is the inverse limit of an associated fibrant model. This is a special
case of a much more general concept which is more fully described in Chapter
IX. Section 2 contains a formal introduction to Postnikov towers, both for spaces
and maps. The construction is the standard one for simplicial sets, which is due
to Moore.

In many applications, say in rational homotopy theory or more generally in
the theory of R-completions and localizations, one is presented with a suite of
results which says

1) Eilenberg-Mac Lane spaces have property P,

2) If X — Y is a principal K(A,n)-fibration and Y has property P, then so
does X, and

3) If -+ — X; — Xy — % is a tower of fibrations such that all X; have
property P, then so does @X%

This gives a method of inferring that a certain class of spaces X has property
P which involves “crawling up a Postnikov tower” or some refinement thereof,
provided that all of the fibrations in the tower are principal fibrations, at least
up to homotopy equivalence. There is a good class of spaces for which this yoga
works, namely the nilpotent spaces, and the method for establishing it involves
a careful analysis of k-invariants.

326



1. A MODEL CATEGORY STRUCTURE FOR TOWERS OF SPACES 327

For us, a k-invariant is a map

kpn : X(n—1) — holim K (m, X, n + 1)
5
r

for a connected space X taking values in a homotopy colimit arising from the
action of the fundamental groupoid I" on the homotopy group m,, X. This map
is implicitly fibred over the classifying space BI' of the fundamental groupoid
I', and can be interpreted as a representative of a class in a suitably defined
equivariant cohomology group Hpt'(X(n — 1),7,X). The main point overall
(Proposition 5.1) is that the fibration X (n) — X (n — 1) in the Postnikov tower
for X sits in a homotopy cartesian diagram

X(n) ——— holim L(7, X, n + 1)
—

r

X(n—1) ——— holim K (7, X,n + 1)
k‘n T)

where the map p, is induced by a natural (hence equivariant) contractible cover-
ing L(m, X,n+1) — K(m,X,n+ 1) of the space K(m,X,n+ 1). From this, it’s
pretty much immediate (Corollary 5.3) that the fibration X(n) — X(n — 1)
is homotopy equivalent to a principal K(m,,n)-fibration if the fundamental
group acts trivially on m,X. Similarly, if X is nilpotent then the covering
L(r,X,n 4+ 1) — K(m,,n + 1) has a finite refinement by fibrations that in-
duce principal fibrations after taking homotopy colimit (Proposition 6.1), giving
the refined Postnikov tower for a nilpotent space.

This stream of results occupies the last four sections of this chapter. The
main techniques involve relating homotopy classes of maps [X, Mr K(A,n)]

fibred over the classifying space BI' of a groupoid I' to equivariant cohomology
in various forms (Theorems 3.10, 3.11) — this and some general nonsense about
equivariant homotopy theory is the subject of Sections 3 and 4. The formal in-
troduction of k-invariants and the proofs of their main properties occupy Section
5, while the application to nilpotent spaces appears in Section 6.

1. A model category structure for towers of spaces.

The purpose of this section is to introduce the structure of a simplicial model
category on tow(S). This will have implications for Postnikov systems as well
as allowing us to define homotopy inverse limits for towers of spaces.
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Let C be a category. Then tow(C) is the category of towers in C. Thus an
object in tow(C) is a diagram in C
=Xy, =Xy — = Xy — X
and a morphism in tow(C) is a morphism of diagrams; that is, a “commutative
ladder”. It will be convenient to write X for a tower {X,,}

First notice that if C is a simplicial category, then tow(C) is a simplicial
category. Indeed if X € tow(C) and K € S, let

X®K={X,®K}

and
hom(K,X) = {hom¢(K, X,,)}.

Then tow(C) is a simplicial category with

Hom(X,Y), = hom(X ® A",Y).
The subscript in the last equation is the simplicial degree.
DEFINITION 1.1. Define a morphism f : X — Y in tow(S) to be

1) a weak equivalence if f, : X,, — Y, is a weak equivalence for all n > 0;
2) a cofibration if f, : X,, — Y, is a cofibration for all n > 0; and

3) a fibration if fy : Xog — Yj is a fibration and for all n > 1, the induced
map
Xn - Yn XYn,l Xn—l

is a fibration.

A useful preliminary lemma is:

LEMMA 1.2. Let ¢ : X — Y be a fibration in tow(C). Then for all n > 0,
qn : X, — Y, is a fibration.

Proor: This is true if n = 0. If it is true for n — 1, contemplate the induced
diagram

Xn & Yn XY, 1 Xn—l _>Xn—1

e e

Yn I Yn—l

The morphism p,, is a fibration by hypothesis; the morphism g,, is a fibration
because the pullback of a fibration is a fibration. So ¢, is a fibration. |
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PROPOSITION 1.3. With these definitions, tow(C) becomes a simplicial model
category.

PRrROOF: Axioms CM1-CM3 are obvious. Suppose given a lifting problem in
tow(C)

A—X
il e

B—Y

with j a cofibration and ¢ a fibration. If j is also a weak equivalence, one can
recursively solve the lifting problem

A, —— X,

(1.4) |

Bn — Yn XYn,l Xn—l

to solve the lifting problem in tow(C). If ¢ is a weak equivalence, the pullback
diagram

Yn XYn_l Xn—l —>Xn—1

a| Jan—

Yn E— Yn—l

shows ¢/, is a trivial fibration, since g, 1 is a fibration and a weak equivalence.
Hence X,, — Y, Xy, _, X,,—1 is a trivial fibration and we can again recursively
solve the lifting problem of (1.4). This proves CM4.

To prove CM5 fix a morphism f : X — Y. To factor f as a cofibration
followed by a trivial fibration, proceed inductively as follows. First, factor f :
Xy — Yy as a cofibration followed by a trivial fibration

Jo qo0
Xo — Z() e )/0

Then, having factored through level n — 1, consider the induced maps

Pn an—l
Xn — Zn—l XYn_l Yn — Yn

! !

dn—1
Zp1 —— Yo 1.
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Since g,,—1 is a trivial fibration so is g,,_;. Factor p,, as

. ’
In qn
Xn E— Zn — Zn—l XYn_l Yn

where j, is a cofibration and ¢/, is a trivial fibration. The other factoring is
similar, but easier.
Finally, SM7 follows from SM7b, which is obvious in this case. |

REMARK 1.5.

1) If every object of C is cofibrant, then every object of tow(C) is cofibrant.
This applies, for example, if C =S or S,.

2) The fibrant objects of tow(C) are the ones where X is fibrant in C and
every ¢, : X, — X,_1 is a fibration.

REMARK 1.6. The model structure of Proposition 1.3 extends easily to bigger
towers. Suppose that ( is a limit ordinal, and identify it with a poset. A (-
tower is a simplicial set-valued functor X : 8°° — S which is contravariant on
(. Say that a map f : X — Y between [-towers is a cofibration (respectively
weak equivalence) if the maps f : Xy — Y; are cofibrations (respectively weak
equivalences) for s < . A map g : Z — W is a fibration if the following
conditions hold:

1) the map g: Zy — W) is a fibration,

2) for all ordinals s < (3 the induced map Zs11 — Wsy1 Xw, Z, is a fibration,
and

3) for all limit ordinals o < (3 the map

Za = Wa X timw.) (g Z,)

s<a

is a fibration.

With these definitions, the category of [-towers satisfies the conditions for a
simplicial model category. This model structure could be arrived at in a differ-
ent way, by using the model structure for 3°P-diagrams of simplicial sets which
appears in Section IX.5 below, but that method does not produce the completely
explicit description of fibration that you see here.

An extremely flexible notion is the following idea of a homotopy inverse limit.
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DEFINITION 1.7. Let X € tow(C). Choose a weak equivalence X — Y where
Y is fibrant in tow(C). Then

holim X =1limY.
— “—

As usual, holim X is well-defined and functorial up to homotopy; indeed,
holim(-) is the total right derived functor of lim(-). Notice that lim(-) : tow(C) —
— — —

C is right adjoint to the constant tower functor, which preserves cofibrations and
weak equivalences, so gn() preserves fibrations and trivial fibrations. Further-

more if X — X' is a weak equivalence, holim X — holim X’ is a weak equiv-
alence. It is this invariance property that justifies the name homotopy inverse
limit.

EXERCISE 1.8 (HOMOTOPY PULLBACKS). Let I be the category with objects 1,
2, and 12 and non-identity morphisms as follows:

1— 12 « 2.
If C is a category, let C! denote the resulting diagram category. An object in C’

is a diagram

Y;
l

Y] — Yo

in C. Suppose C is a simplicial model category. Then C! becomes a simplicial
model category with, for K € S,

Ys Yo @ K
| |eK= |
Yl —>Y12 Y1®K—>Y12®K

The techniques of this section can be adapted to prove the following:

THEOREM 1.9. The category C! is a simplicial model category with a morphism

X1 — X12 < X2
Al hel Lf2

Yl —>Y12 < Y2
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1) a weak equivalence if fi1, fo, and fio are;
2) a cofibration if f1, f2, and fi2 are; and

3) a fibration if fi5 : X192 — Y39 Is a fibration and for i = 1,2 the induced
maps
Xi — X12 Xy, Y5

are fibrations.

A crucial lemma is:

LEMMA 1.10. If a morphism f : X, — Y, in C! is a trivial fibration, then the

induced maps
Xi — X192 Xy, V)

are trivial fibrations.

Note the fibrant objects in C! are those diagrams
Yi—-Yi Y

with Y75 fibrant and Y; — Yj5 a fibration.

If X, € C! is a diagram, define the homotopy pullback by taking the actual
pullback of a fibrant replacement. This has the usual homotopy invariance prop-
erties, much as after Definition 1.7. Prove that if C is a proper model category

and
Y1 = Yo Y

is a diagram with Y75 fibrant and one of Y7 — Yj5 or Y5 — Y35 a fibration, then
Y1 Xy, Yo is weakly equivalent to the homotopy pullback.

Here is another description of the homotopy inverse limit that is often useful
for computations. Fix a simplicial model category C and write, for X € C,

D : hom¢(A', X) — hom¢(0A, X) =2 X x X.

Then define, for a tower X = {X,,} € tow(C), the object T(X) € C by the
pullback diagram

T(X) — [ [ hom(A', X,,)

(1.11) ‘ l]‘[nn
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where (1, q) is the product of the maps

1xgn
HXn — X, — X, X X 1.

LEMMA 1.12. Let X = {X,,} € tow(C) be a tower so that each X,, is fibrant in
C. Then there is a weak equivalence

T(X) ~ holim X.

PROOF: The functor T : tow(C) — C has a left adjoint defined as follows. Note
that specifying a map f : Y — T(X) is equivalent to specifying a sequence of
maps g, : ¥ — X,, and right homotopies

Y — hom(A!, X))

between g,, and ¢, +1-gn+1. Define [0,00) € S to be the simplicial “half-line”; thus
[0,00) has non-degenerate 1-simplices [n,n + 1], 0 < n < oo, and dy[n — 1,n] =
di[n,n + 1]. Let [n,00) C [0,00) be the evident sub-complex. Then the left
adjoint to T is given by the functor F(-):

F(Y) = {Y ® [n,00)}.

Since this left adjoint preserves cofibrations and weak equivalences among cofi-
brant objects, F'(-) has a total left derived functor LF. But the unique maps
[n,00) — * induces a weak equivalence F(Y) — {Y},,>¢ from F(Y) to the con-
stant tower, so LF' : Ho(C) — Ho(tow(C)) is the total left derived functor of the
constant tower functor.

The functor T preserves fibrations, since it is right adjoint to a functor that
preserves trivial cofibrations. T also preserves weak equivalences between objects
of the form X = {X,,} where X, is fibrant for each n. This is because

[[Dn: [[hom(A", X,) — [] X0 x Xa

will be a fibration, so we may apply the definition and homotopy invariance
property of homotopy pullback given in Exercise 1.8. Thus 7" has a total right
derived functor RT : Ho(tow(C)) — Ho(C), right adjoint to LF. However,
LF is the total left derived functor of the constant diagram functor; hence, by
uniqueness of adjoints

RT = holim : Ho(tow(C)) — Ho(C).

Since T preserves weak equivalences among objects X = {X,} with all X,
fibrant one has for such X, holim X ~ RT(X) ~ T'(X). [
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2. Postnikov towers.

This section presents basic facts about Postnikov towers, including Moore’s
construction. The material on k-invariants, which uses cohomology with twisted
coefficients is presented in Section 4.

DEFINITION 2.1. Let X be a space. A Postnikov tower {X,} for X is a tower
of spaces

q1 q0
= X — X1 — X

equipped with maps i, : X — X,, so that q,i, = i,_1 : X — X,,_1 and so that
for all verticesv € X, m; X,, =0 for ¢ > n and

~

(in)s : X — T X0

for i < n.

The purpose of the next few sections is to construct such and to prove a
uniqueness theorem.

REMARK 2.2. If X is not connected we may write X = | | X, as the disjoint
union of its components. If {(X,),} is a Postnikov tower for X,, then, by
setting X,, = ||, (Xa)n we create a Postnikov tower for X. Conversely, if {X,,}
is a Postnikov tower for X and v € X, C X is a vertex of X, then if (X,), C X,
is the component of i,,(v), {(X4)n} is a Postnikov tower for X,. Hence without
loss of generality, we may assume X is connected.

REMARK 2.3. We also may as well assume X is fibrant. For if X — Y is a weak

equivalence with Y fibrant, then a Postnikov tower for Y is a Postnikov tower
for X.

We now give a specific model for the Postnikov tower, due to Moore. For this
reason it is called the Moore-Postnikov tower. It is pleasing to note that it is
functorial in fibrant X.

DEFINITION 2.4. Let X be a fibrant simplicial set. Define, for each integer n > 0,
an equivalence relation ~,, on the simplices of X as follows: two g-simplices

f,g: A7 —> X

are equivalent if
f=g:sk,AT — X;

that is, the classifying maps f and g agree on the n-skeleton. Define X (n) =
X/~
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Then there are evident maps ¢, : X(n) — X(n —1) and i, : X — X(n)
yielding a map of towers ¢ : {X} — {X(n)}. The principal result of this section
is

THEOREM 2.5. The tower {X (n)} is a Postnikov tower for X, and it is a tower
of fibrations. Furthermore, the evident map

X — lim X (n)
“—

is an isomorphism.

Note that it is a simple exercise that {X(n)} is a tower of fibrations. Thus it
suffices to prove

LEMMA 2.6. For any choice of base point in X, m;X(n) = 0 for k > n and
(in)s : T X — X (n) is an isomorphism for k < n.

Before proving this, let us recall a combinatorial definition of 7 X, with X
pointed and fibrant. An element in 7, X can be represented by a pointed map

f:8F=A*oA% - X

Two such maps yield the same element in 7 X if they are related by a pointed
homotopy
H:SkA Ai_ — X.

PROOF OF LEMMA 2.6: First notice that m; X (n) = 0 for £ > n. This is because
any representative of an element in 7 X (n)

f:8% = X(n)

has the property that the composite

f
AF — SF = X(n)

is the constant map, by the definition of ~,,. Next, let E(n) C X be the fiber
of the projection X — X(n) at some vertex v. Then E(n) consists of those
simplices f : A? — X so that

fosk, A7 5 X

is constant. In particular E(n) is fibrant and E(n)y = {v} for k < n, where v
is the chosen base point. Hence 7 E(n) = 0 for k < n. The result now follows
from the long exact sequence of the fibration

E(n) — X — X(n). [ |
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The complex E(n) C X of this proof is called, by Moore, the n-th Eilenberg
subcomplex of X. It depends on the choice of base point. It is worth pointing
out that X (0) has contr