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Preface

This monograph, which is aimed at the graduate level and beyond, consists of
two parts.

In part II we develop the beginnings of a kind of “relative” category theory of
what we will call homotopical categories. These are categories with a single distin-
guished class of maps (called weak equivalences) containing all the isomorphisms
and satisfying one simple two out of six axiom which states that

(*) for every three maps r, s and t for which the two compositions sr and ts
are defined and are weak equivalences, the four maps r, s, t and tsr are
also weak equivalences,

which enables one to define “homotopical” versions of such basic categorical no-
tions as initial and terminal objects, colimit and limit functors, adjunctions, Kan
extensions and universal properties.

In part I we then use the results of part II to get a better understanding of
Quillen’s so useful model categories, which are categories with three distinguished
classes of maps (called cofibrations, fibrations and weak equivalences) satisfying a
few simple axioms which enable one to “do homotopy theory”, and in particular to
show that such model categories are homotopically cocomplete and homotopically
complete in a sense which is much stronger than the existence of all small homotopy
colimit and limit functors.

Both parts are essentially self-contained. A reader of part II is assumed to have
some familiarity with the categorical notions mentioned above, while those who read
part I (and especially the introductory chapter) should also know something about
model categories. In the hope of increasing the local as well as the global readability
of this monograph, we not only start each section with some introductory remarks
and each chapter with an introductory section, but also each of the two parts with
an introductory chapter, with the first chapter of part I as motivation for and
introduction to the whole monograph and the first chapter of part II summarizing
the main results of its other three chapters.
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CHAPTER I

An overview

1. Introduction

1.1. Summary. This monograph is essentially the result of an unsuccess-
ful attempt to give an updated account of Quillen’s closed model categories, i.e.
categories with three distinguished classes of maps (called weak equivalences, cofi-
brations and fibrations) satisfying a few simple axioms which enable one to “do
homotopy theory”. That attempt however failed because, the deeper we got into
the subject, and especially when we tried to deal with homotopy colimit and limit
functors on arbitrary model categories, the more we realized that we did not really
understand the role of the weak equivalences.

In this introductory chapter we will therefore try to explain the problems we
ran into and the solutions we came up with, and how all this determined the content
and the layout of this monograph.

1.2. Organization of the chapter. After fixing some slightly unconven-
tional terminology (in §2), we discuss the problems we encountered in dealing with
the homotopy category of a model category (in §3) and with the homotopy colimit
functors on a model category (in §4) and explain (in §5) how all this led to the
current two-part monograph, where in the first part we review some mostly known
results on model categories, but do so whenever possible from the “homotopical”
point of view which we develop in the second part, and in the second part we inves-
tigate what we call homotopical categories which are categories with only a single
distinguished class of maps (called weak equivalences). The last section (§6) then
contains some more details on this second part.

2. Slightly unconventional terminology

In order to be able to give a reasonably clear formulation of the above men-
tioned problems and their solutions, we slightly modify the customary meaning
of the terms “model category” and “category” and introduce, just for use in this
introductory chapter, the notion of a “category with weak equivalences” or “we-
category”.

2.1. Model categories. In [Qui67] Quillen introduced the notion of a model
category, but then almost right away only concerned himself with the slightly more
restricted but also more useful closed model categories which in [Qui69] he char-
acterized by five simple axioms. However since then it has become clear that it is
more convenient to restrict the definition even further by

(i) strengthening his limit axiom, which requires the existence of all finite
colimits and limits, by requiring the existence of all small colimits and
limits, and
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4 I. AN OVERVIEW

(ii) strengthening his factorization axiom by requiring the therein mentioned
factorizations to be functorial,

and we will therefore use the term model category for a closed model category
which satisfies these stronger versions of Quillen’s limit and factorization axioms.

2.2. Categories. We will use the term locally small category for what one
usually calls a category, i.e. a category with small hom-sets, and reserve the term
category for a more general notion which ensures that

(i) for every two categories C and D, the functors C →D and the natural
transformations between them also form a category (which is usually
denoted by DC), and

(ii) for every category C and subcategory W ⊂ C, there exists a localiza-
tion of C with respect to W , i.e. a category C[W−1] together with a
localization functor γ : C → C[W−1] which is 1-1 and onto on objects
and sends the maps of W to isomorphisms in C[W−1], with the univer-
sal property that, for every category B and functor b : C → B which
sends the maps of W to isomorphisms in B, there is a unique functor
bγ : C[W−1]→ B such that bγγ = b.

It is also convenient to consider, for use in this chapter only, the notion of

2.3. Categories with weak equivalences. By a category with weak
equivalences or we-category we will mean a category C with a single distin-
guished class W of maps (called weak equivalences) such that

(i) W contains all the isomorphisms, and
(ii) W has Quillen’s two out of three property that, for every pair of

maps f, g ∈ C such that gf exists, if two of f , g and gf are in W , then
so is the third

which readily implies that
(iii) W is a subcategory of C.

For such a we-category C one then can
(iv) define the homotopy category Ho C of C as the category obtained

from C by “formally inverting” the weak equivalences, i.e. the category
with the same objects as C in which, for every pair of objects X,Y ∈ C,
the hom-set Ho C(X,Y ) consists of the equivalence classes of zigzags in
C from X to Y in which the backward maps are weak equivalences, by
the weakest equivalence relation which puts two zigzags in the same class
when one can be obtained from the other by
(iv)′ omitting an identity map,
(iv)′′ replacing two adjacent maps which go in the same direction by their

composition, or
(iv)′′′ omitting two adjacent maps when they are the same but go in op-

posite directions,
note that this homotopy category Ho C, together with the functor γ : C →
Ho C which is the identity on the objects and which sends a map c : X →
Y ∈ C to the class containing the zigzag which consists of the map c only,
is a localization of C with respect to its subcategory of weak equivalences
(2.2(ii)) and call C saturated whenever a map in C is a weak equivalence
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3. PROBLEMS INVOLVING THE HOMOTOPY CATEGORY 5

iff its image under the localization functor C → Ho C is an isomorphism
in HoC, and

(v) given two we-categories C and D with localization functors γ : C → Ho C
and γ′ : D → Ho D, and a functor g : C → D (which is not required to
preserve weak equivalences), define a total left (resp. right) derived
functor of g as a pair (n, c) consisting of a functor n : HoC → Ho D
and a natural transformation

c : nγ −→ γ′g (resp. c : γ′g −→ nγ)

which is a terminal (resp. an initial) object in the category of all such
pairs.

3. Problems involving the homotopy category

We now discuss four problems that came up when we started to review some
of the classical results involving the homotopy categories of model categories. The
first of these involved the notion of

3.1. Saturation. Our problem with saturation was that, while this notion
was defined in terms of only the weak equivalences (2.3(iv)), the classical proof of
the fact that

(i) every model category is a saturated we-category (2.3)

was very ad-hoc. We felt that it should have been possible to describe “reasonable”
conditions on an arbitrary we-category C such that

(ii) these conditions implies the saturation of C

and then show that

(iii) these conditions held for every model category.

However at that time we did not have the faintest idea what such conditions might
look like.

A similar problem concerned

3.2. The hom-sets. The usual description, for a cofibrant object Xc and a
fibrant object Yf in a model category M , of the hom-set Ho M(Xc, Yf) (2.3(iv)) as
a quotient of the hom-set M(Xc, Yf) by a homotopy relation, readily implied that

(i) for every pair of objects X,Y ∈M , the elements of HoM(X,Y ) are in
a natural 1-1 correspondence with the equivalence classes of the zigzags
in M of the form

X · //oo · Yoo

in which the two backward maps are weak equivalences, where two such
zigzags are in the same class iff they are the top row and the bottom row
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6 I. AN OVERVIEW

in a commutative diagram in M of the form

X ·oo // · Yoo

X

1

OO

1

��

·oo

OO

//

��

·

OO

��

Yoo

1

OO

1

��

X ·oo // · Yoo

X

1

OO

·oo

OO

// ·

OO

Yoo

1

OO

in which the backward maps (and hence all the vertical maps) are weak
equivalences.

This suggested a question similar to the one raised in 3.1, but in this case we
knew the answer, which was provided by the results of [DK80a] which implied that

(ii) a sufficient condition on a we-category C (2.3) in order that (i) holds with
C instead of M , is that C admits a 3-arrow calculus, i.e. that there
exist subcategories U and V of the category W of the weak equivalences
in C such that, in a functorial manner

(iii) for every zigzag A′ u←− A
f−→ B in C with u ∈ U , there exists a zigzag

A′
f ′−→ B′

u′←− B in C with u′ ∈ U such that u′f = f ′u and in which u′

is an isomorphism whenever u is,
(iv) for every zigzag X

g−→ Y
v←− Y ′ in C which v ∈ V , there exists a zigzag

X
v′←− X ′ g

′

−→ Y ′ in C with v′ ∈ V such that gv′ = vg′ and in which v′ is
an isomorphism whenever v is, and

(v) every map w ∈W admits a factorization w = vu with u ∈ U and v ∈ V .
and the fact that, in view of the assumption made in (2.1(ii))

(vi) every model category admits a 3-arrow calculus consisting of the sub-
categories of the trivial cofibrations and the trivial fibrations, i.e. the
cofibrations and the fibrations which are also weak equivalences.

Next we considered

3.3. Certain subcategories of the homotopy category. A simpler prob-
lem arose from the fact that, if for a model category M one denotes its full subcat-
egories spanned by the cofibrant and the fibrant objects respectively by M c and
M f and their intersection by M cf, then

(i) the inclusions of M cf, M c, M f and M in each other induce a commu-
tative diagram

Ho M c

**UUUUUU

Ho M cf

44iiiiii

**UUUUUU Ho M

Ho M f

44iiiiii

in which all the maps are equivalences of categories.
This made us, for an arbitrary we-category C (2.3), define
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3. PROBLEMS INVOLVING THE HOMOTOPY CATEGORY 7

(ii) a left (resp. a right) deformation of C as a pair (r, s) consisting of
a weak equivalence preserving functor r : C → C and a natural weak
equivalence

s : r −→ 1C (resp. s : 1C −→ r)

and
(iii) a left (resp. a right) deformation retract of C as a full subcategory

C0 ⊂ C for which there exists a left (resp. a right) deformation (r, s) of
C into C0, i.e. such that the functor r : C → C0 sends all of C into C0,

and note that
(iv) for every left (resp. right) deformation retract C0 ⊂ C, its inclusion

C0 → C induces an equivalence of categories HoC0 → Ho C,
and that, in view of the assumption made in 2.1(ii)

(v) for every model category M there exist left and right deformations of M
into M c and M f respectively (which are often referred to as functorial
cofibrant and fibrant replacements,) so that M has M c as a left
deformation retract and M f as a right deformation retract, and for similar
reasons M cf is a left deformation retract of M f and a right deformation
retract of M c.

Our fourth and last problem involving the homotopy categories concerned the

3.4. Total derived functors of Quillen functors. Given a Quillen adjunc-
tion, i.e. an adjoint pair of functors f : M ↔ N :f ′ between model categories of
which the left adjoint f preserves cofibrations and trivial cofibrations (3.2(vi)) and
the right adjoint f ′ preserves fibrations and trivial fibrations,

(i) the left adjoint f has total left derived functors (2.3(v)) and the right
adjoint f ′ has total right derived functors, and

(ii) for every pair consisting of a total left derived functor (n, c) of f and a
total right derived functor (n′, c′) of f ′, the given adjunction induces a
derived adjunction n: Ho M ↔ Ho N :n′,

which raised the problem of isolating the “weak equivalence properties” of Quillen
adjunctions which ensured the truth of these two statements.

To deal with this we
(iii) called a functor g : C →D (as in 2.3(v)) left (resp. right) deformable

if g was a weak equivalence preserving functor on a left (resp. a right)
deformation retract of C (3.3(iii)) or equivalently, if there existed a left
(resp. a right) g-deformation, i.e. a left (resp. a right) deformation
(r, s) of C (3.3(ii)) such that g preserved weak equivalences on the full
subcategory of C spanned by the image of r,

and noted that:
(iv) if g : C → D was such a left (resp. right) deformable functor, then g

had total left (resp. right) derived functors (2.3(v)) (as in that case, for
every left (resp. right) g-deformation (r, s), the pair (Ho gr, γ′gs) (2.3(v))
turned out to be such a total derived functor),

and that
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8 I. AN OVERVIEW

(v) for every pair of adjoint functors g : C ↔ D :g′ between we-categories
(2.3) of which the left adjoint g was left deformable and the right adjoint
g′ was right deformable, its adjunction induced, for every pair consisting
of a total left derived functor (n, c) of g and a total right derived functor
(n′, c′) of g′, a derived adjunction n: HoC ↔ Ho D :n′.

That (i) and (ii) above then indeed were special cases of (iv) and (v) followed readily
from 3.3(v) and the observation that

(vi) as, for every Quillen adjunction f : M ↔ N :f ′ the functor f preserved
weak equivalences between cofibrant objects and the functor f ′ preserved
weak equivalences between fibrant ones, the functors f and f ′ were re-
spectively left and right deformable.

4. Problem involving the homotopy colimit functors

Very different problems came up when we tried to deal with homotopy colimit
functors on arbitrary model categories. To explain these we first recall the various
definitions of

4.1. Homotopy colimit functors. For most authors, given a model category
M and a small category D,

(i) a homotopy D-colimit functor on M is a pair (k, a) consisting of a functor
k : MD →M which sends objectwise weak equivalences in (M c)D (2.2(i)
and 3.3) to weak equivalences in M and a natural transformation a : k →
colimD (where colimD denotes an arbitrary but fixed D-colimit functor
on M , i.e. an arbitrary but fixed left adjoint of the constant diagram
functor M → MD), which is obtained (as in [Hir03]) by choosing a
so-called framing of M and then applying the formulas of [BK72],

but for other authors
(ii) a homotopy D-colimit functor on M is a pair (k′, a′) obtained from one

of the above mentioned homotopy D-colimit functors by (objectwise)
pre-composition with a functorial cofibrant replacement (3.3(v)), as a
result of which the functor k′ : MD → M sends all objectwise weak
equivalences to weak equivalences in M .

The first of these notions is the more practical one and is often used in calcu-
lations, but the second is more “homotopically correct” and was therefore of more
interest to us, especially as we realized that

(iii) each of these homotopically correct homotopy D-colimit functors on M

was of the form (colimD r, colimD s) for a special kind of left colimD-
deformation (3.4(iii))

and that moreover, if one considered these homotopy colimit functors as objects of
the we-category (2.3) (

Funw(MD,M) ↓ colimD
)

which has as objects the pairs (k, a) consisting of an (objectwise) weak equivalence
preserving functor k : MD →M and a natural transformation a : k → colimD and
as maps and weak equivalences (k1, a1)→ (k2, a2) the natural transformations and
natural weak equivalences t : k1 → k2 such that a2t = a1, then
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4. PROBLEM INVOLVING THE HOMOTOPY COLIMIT FUNCTORS 9

(iv) any two of these homotopically correct homotopy D-colimit functors on
M were weakly equivalent (i.e. could be connected by a zigzag of weak
equivalences) and in fact were so in a “homotopically unique” manner.

Now we can formulate

4.2. The problem. The last two comments (4.1(iii) and (iv)) raised the ques-
tion whether, for every left colimD-deformation (r′, s′) (for instance one that was
special as in 4.1(iii) with respect to some other model structure on M with the
same weak equivalences), the pair (colimD r′, colimD s′) would be weakly equiva-
lent to the pairs considered in 4.1(iii), and as we could not imagine that this was
not the case, make us wonder whether there existed, for every we-category C (2.3)
on which there existed D-colimit functors (4.1(i)) and for which we denoted by
colimD an arbitrary but fixed such functor, we could define a set of objects in the
we-category (4.1(iii)) (

Funw(CD,C) ↓ colimD
)

such that

(i) any two such objects were weakly equivalent in some homotopically unique
manner, and

(ii) if C were the underlying we-category of a model category, then this class
included all the homotopically correct homotopy D-colimit functors on
this model category,

in which case these objects deserved to be called homotopy D-colimit functors on
C.

It seemed that such objects would have to be (objectwise) weak equivalence
preserving functors CD → C over the functor colimD which “approached colimD

as closely as possible from the left”. They could however not be required to be
terminal objects in the category

(
Funw(CD,C) ↓ colimD

)
, as in that case any two

of them would be isomorphic, but could only be expected to be some kind of

4.3. Homotopically terminal objects. Given a we-category Y and an ob-
ject Y ∈ Y , we denoted by 1Y : Y → Y the identity functor of Y and by
cstY : Y → Y the constant functor which sends all maps of Y to the identity
map 1Y of the object Y , and motivated by the fact that (see 38.1) Y would be a
terminal object of Y iff there existed a natural transformation f : 1Y → cstY such
that the map fY : Y → Y was an isomorphism, we decided to call Y a homo-
topically terminal object of Y if there existed functors F0, F1 : Y → Y and a
natural transformation f : F1 → F0 such that

(i) F0 is naturally weakly equivalent (i.e. can be connected by a zigzag of
natural weak equivalences) to cstY ,

(ii) F1 is naturally weakly equivalent to 1Y , and
(iii) the map fY : F1Y → F0Y is a weak equivalence.

Given a we-category C as in 4.2, the homotopically terminal objects of the
we-category

(
Funw(CD,C) ↓ colimD

)
then had the property mentioned in 4.2(ii),

but in order to see whether they also satisfied 4.2(i) we first had to decide what
exactly should be meant by
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10 I. AN OVERVIEW

4.4. Homotopical uniqueness. Homotopical uniqueness had to be a kind
of we-category version of the categorical notion of uniqueness up to a (unique)
isomorphism (which we like to refer to as categorical uniqueness) of certain objects
in a category Y , by which one meant that those objects (for instance because they
had a common universal property) had the property that, for any two of them, Y1

and Y2, there was exactly one map Y1 → Y2 ∈ Y and that moreover this unique
map was an isomorphism. Another way of saying that was that

(i) given a non-empty set of objects in a category Y , these objects were cat-
egorically unique or canonically isomorphic if the full subcategory
G ⊂ Y spanned by these objects and all isomorphic ones was categor-
ically contractible in the sense that G was a non-empty groupoid in
which there was exactly one isomorphism between any two objects, or
equivalently that, for one (and hence every) object G ∈ G, the identity
functor 1G : G → G and the constant functor cstG : G → G (4.3) were
naturally isomorphic.

We therefore similarly said that
(ii) given a non-empty set of objects in a we-category Y , these objects were

homotopically unique or canonically weakly equivalent if the full
subcategory G ⊂ Y spanned by these objects and all weakly equivalent
ones (4.1(iv)) was homotopically contractible in the sense that, for
one (and hence every) object G ∈ G, the functors 1G : G → G and
cstG : G→ G were naturally weakly equivalent (4.3(i)).

At this point we had hoped, in order to settle the question that we raised at
the end of 4.2, that just as

(iii) in every category, the terminal objects, if they existed, would be canoni-
cally isomorphic (i),

it would also be true that
(iv) in every we-category, the homotopically terminal objects (4.3) would be

canonically weakly equivalent (ii).
However it turned out that this was not the case, unless one put some restrictions
on the we-category considered, and after much trial and error we concluded that
the minimal such restriction would be to require a property which was only slightly
stronger than the “two out of three” property (2.3) and which, for want of a better
name, we called

4.5. The two out of six property. We said that a we-category C has the
two out of six property if

(i) for every three maps r, s and t ∈ C for which the two compositions sr
and ts were weak equivalences, the four maps r, s, t and tsr also were
weak equivalences

and as (as we mentioned at the end of 4.4)
(ii) the presence of the two out of six property implied that the homotopically

terminal objects (4.3), if they existed, were canonically weakly equivalent
(4.4)

we could now finally answer the question which we raised at the end of 4.2 by
defining, for every we-category as in 4.2 which had the two out of six property, and
every small category D,
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5. THE EMERGENCE OF THE CURRENT MONOGRAPH 11

(iii) a homotopy D-colimit functor on C as a homotopically terminal
object (4.3) of the we-category(

Funw(CD,C) ↓ colimD
)

(which clearly inherited the two out of six property from C)
and note that in view of (ii)

(iv) such homotopy D-colimit functors on C, if they existed, were homotopi-
cally unique

and that
(v) a sufficient condition for their existence was that the functor colimD : CD →

C be left deformable (3.4(iii)) as in that case, for every left colimD-
deformation (r, s), the pair (colimD r, colimD s) was a homotopy D-
colimit functor on C.

5. The emergence of the current monograph

Ever since the discovery of simplicial localizations [DK80a, DK80b, DK80c]
we had wondered whether there might not exist some reasonable theory of we-
categories (2.3) which would on the one hand be a relative version of ordinary
category theory and on the other hand provide a framework for homotopical algebra.
These thoughts caused us, some ten years later, to ask the questions which we
discussed in the preceding two sections and the answers we came up with suggested
that there might indeed be such a theory, however not of we-categories, but of what
we decided to call

5.1. Homotopical categories. We defined a homotopical category as a
category C with a single distinguished class of maps (called weak equivalences)
such that

(i) these weak equivalences had the two out of six property that (4.5(i)), for
every three maps r, s and t ∈ C for which the two compositions sr and
ts were weak equivalences, the four maps r, s, t and tsr were also weak
equivalences, and

(ii) for every object C ∈ C its identity map 1C : C → C was also a weak
equivalence

which readily implied, by considering the cases in which sr and ts are both identity
maps or in which at least one of r, s and t is an identity map, that

(iii) all isomorphisms in C were weak equivalences, and C had the two out
of three property, so that

(iv) C was a we-category (2.3)
However we still were not sure that this was the right setting until we realized that

(v) every homotopical category which admits a 3-arrow calculus (3.2) is sat-
urated ( 2.3(iv)),

which, in view of 3.2(vi), finally provided an answer to the rather basic question
which we raised in 3.1.

At this point we decided to give up on our original plan (see §1) and write
instead the current monograph which consists of two essentially self contained parts,
of which the first deals with model categories and the second with homotopical
categories.
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12 I. AN OVERVIEW

Part I which, apart from this introductory chapter, consists of the chapters
II–IV, deals mainly with the model category results which we mentioned before (in
§3 and §4), but does so, whenever possible, from the “homotopical” point of view
which we develop in part II. More precisely, in the chapters II and III we introduce
model categories, their homotopy categories and Quillen functors and discuss the
results we mentioned in §3, while in chapter IV we not only prove the existence, on
every model category, of homotopy colimit and limit functors (see §4), but also the
considerably stronger result that (in an appropriate sense) every model category is
homotopically cocomplete and complete.

Part II is concerned with homotopical categories only and consists of the four
chapters V–VIII, of which the first is just a summary of the other three. These
three chapters, of which we will give a preview in the next (and last) section of
this introductory chapter, parallel the chapters II–IV and deal respectively with
homotopical categories and their homotopy categories, deformable functors (3.4(iii))
and homotopy colimit and limit functors and more generally homotopical colimit
and limit functors and the associated notions of homotopical cocompleteness and
completeness.

6. A preview of part II

We end this chapter with a brief outline of the contents of part II, i.e. of the
chapters VI–VIII.

6.1. Homotopical categories and homotopical functors. In the first part
of chapter VI we

(i) motivate the somewhat unconventional use of the term category men-
tioned in 2.2,

(ii) define homotopical categories (5.1) and homotopical functors (i.e.
weak equivalence preserving functors) between them, and

(iii) discuss a few immediate consequences of these definitions.

6.2. The homotopy category of a homotopical category. The middle
part of chapter VI is concerned with the homotopy category Ho C of a homo-
topical category C (2.3(iv)) and in it we

(i) give an alternate description of HoC as the category which has the same
objects as C in which, for every pair of objects X,Y ∈ C, the hom-set
Ho C(X,Y ) consists of the equivalence classes of zigzags in C from X to
Y in which the backward maps are weak equivalences, with respect to
the weakest equivalence relation which puts two such zigzags in the same
class

(i)′ when one can be obtained from the other by omitting identity maps,
(i)′′ when one can be obtained from the other by replacing adjacent maps

which go in the same direction by their composition, and
(i)′′′ when they are the top and the bottom row in a rectangular diagram in

C of the form

X

1

��

·

��

··· ·

��

Y

1

��

X · · Y
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6. A PREVIEW OF PART II 13

in which in every column the two horizontal maps go in the same direction
and use this description to show that, if C admits a 3-arrow calculus (3.2(ii)),
then

(ii) the hom-sets of HoC admit the 3-arrow description given in 3.2(i),
which in turn implies that

(iii) C has the rather useful property (see 6.5(iii) and 6.7 below) of being
saturated (2.3(iv)).

6.3. Homotopically terminal and initial objects. In the last part of chap-
ter VI we

(i) discuss in more detail the notions of homotopically terminal and ini-
tial objects (4.3) and homotopical uniqueness (4.4), and

(ii) note that just as, given two (not necessarily homotopical) functors be-
tween homotopical categories

p : R −→ P and q : R −→ Q

one can define the right (or as we will say terminal) Kan extensions
of q along p as the terminal objects of the homotopical category (−p ↓ q)
which has as objects the pairs (r, e) consisting of a (not necessarily ho-
motopical) functor r : P → Q and a natural transformation e : rp → q,
and as maps and weak equivalences t : (r1, e1) → (r2, e2) the natural
transformations and natural weak equivalences t : r1 → r2 such that
e2(tp) = e1, one can define homotopically terminal Kan extensions
of q along p as the homotopically terminal objects of its full subcate-
gory (−p ↓ q)w ⊂ (−p ↓ q) spanned by the objects (r, e) for which r is a
homotopical (6.1) functor, and

(iii) define initial Kan extension and homotopically initial Kan exten-
sions in a dual manner.

6.4. Deformable functors. In chapter VII we investigate left and right
deformable functors (3.4(iii)). These are not necessarily homotopical functors
between homotopical categories which have homotopical meaning because they have
(homotopically unique (4.4(ii))) left and right approximations respectively, where
we

(i) define, for a (not necessarily homotopical) functor f : X → Y between
homotopical categories, a left approximation of f as a homotopically
terminal Kan extension of f along 1X (6.3(ii)), i.e. a homotopically ter-
minal object (4.3) of the “homotopical category of homotopical functors
X → Y over f” (cf. 4.1(iii))(

Funw(X,Y ) ↓ f
)

.

They have the properties that
(ii) such left approximations of f , if they exist, are homotopically unique

(4.4(ii) and 4.5(ii)),
(iii) a sufficient condition for their existence is that f be left deformable

(3.4(iii)) as in that case for every left f-deformation (r, s) (3.4(iii)), the
pair (fr, fs) is a left approximation of f ,
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14 I. AN OVERVIEW

(iv) for every left approximation (k, a) of f , the pair (Ho k, γ′a) (where γ′ : Y →
Ho Y denotes the localization functor of Y (2.2(ii))) is a total left derived
functor of f (2.3(v)), and

(v) for every composable pair of left deformable functors

f1 : X −→ Y and f2 : Y −→ Z ,

a sufficient condition in order that their composition f2f1 : X → Z is
also left deformable and every (appropriately defined) composition of
their left approximations is a left approximation of their composition, is
that the pair (f1, f2) is left deformable in the sense that

(vi) there exist left deformation retracts X0 ⊂X and Y 0 ⊂ Y (3.3(iii)) such
that f1 and f2f1 are both homotopical (6.1) on X0 and f2 is homotopical
on Y 0, and

(vi)′ f1 sends all of X0 into Y 0

which turns out to be equivalent to requiring that
(vii) there exist left deformations (r1, s1) of X and (r2, s2) of Y (3.3(ii)) such

that (r1, s1) is both a left f1- and a left f2f1-deformation (3.4(iii)) and
(r2, s2) is a left f2-deformation, and

(vii)′ the natural transformation

f2s2f1r1 : f2r2f1r1 −→ f2f1r1

is a natural weak equivalence.
Dual results of course hold for right deformable functors.

6.5. Deformable adjunctions. We also note in chapter VII that deformable
functors often are part of a deformable adjunction, i.e. an adjunction f : X ↔
Y :f ′ between homotopical categories of which the left adjoint is left deformable
(3.4(iii)) and the right adjoint is right deformable.

Such deformable adjunctions have derived adjunctions (3.4(v)). However, as we
noted that in dealing with these derived adjunctions we only used the total derived
functors mentioned in 6.4(iv), it seemed to make more sense to describe derived
adjunctions in terms of approximations instead. Instead of 3.4(v) we therefore

(i) show that every deformable adjunction f : X ↔ Y :f ′ induces, for every
pair consisting of a left approximation (k, a) of f and a right approxima-
tion (k′, a′) of f ′, an adjunction (called derived adjunction)

Ho k : HoX ←→ Ho Y :Ho k′

which is natural in (k, a) and (k′, a′).
We also note that

(ii) for every two composable deformable adjunctions

f1 : X ←→ Y :f ′1 and f2 : Y ←→ Z :f ′2
a sufficient condition in order that their composition f2f1 : X ↔ Z : f ′1f

′
2

is also an adjoint pair of deformable functors and the compositions of their
derived adjunctions are derived adjunctions of their composition is that
the pairs (f1, f2) and (f ′2, f

′
1) are respectively left and right deformable

(6.4(v))
and that
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6. A PREVIEW OF PART II 15

(iii) for every two composable deformable adjunctions between saturated (2.3(iv))
homotopical categories

f1 : X ←→ Y :f ′1 and f2 : Y ←→ Z :f ′2
for which the pairs (f1, f2) and (f ′2, f

′
1) are locally left and right de-

formable in the sense that 6.4(vi) (or equivalently 6.4(vii)) holds but
not necessarily 6.4(vi)′ (or 6.4(vii)′) the pair (f1, f2) is actually left de-
formable (6.4(v)) iff the pair (f ′2, f

′
1) is actually right deformable,

This last result is rather useful as it often allows one, for a composable pair of left or
right deformable functors between saturated homotopical categories, to verify the
left deformability of this pair by only verifying its local left or right deformability
in the sense of (iii).

6.6. A Quillen condition. At the end of chapter VII we note that, given a
deformable adjunction (6.5) f : X ↔ Y :f ′, a left deformation retract X0 ⊂X on
which f is homotopical (3.3(iii) and 6.1) and a right deformation retract Y 0 ⊂ Y
on which f ′ is homotopical

(i) for one (and hence every) pair consisting of a left approximation (k, a) of
f and a right approximation (k′, a′) of f ′, the homotopical functor

k : X −→ Y and k′ : Y −→X

are (inverse) homotopical equivalences of homotopical categories
in the sense that the two compositions k′k and kk′ are naturally weakly
equivalent (4.3(i)) to the identity functors of X and Y respectively

iff the Quillen condition holds, i.e.
(ii) for every pair of objects X0 ∈ X0 and Y0 ∈ Y 0, a map fX0 → Y0 ∈ Y

is a weak equivalence iff its adjunct X0 → f ′Y0 ∈X is so.

6.7. Homotopy colimit and limit functors and homotopical ones. In
the last chapter, chapter VIII, we note that, just as in 4.5(iii) we defined, for every
small category D, a homotopy D-colimit functor on a homotopical category as a left
approximation (6.4(i)) of an arbitrary but fixed D-colimit functor colimD : XD →
X on X, one can, for every functor u : A → B between not necessarily small
categories, define a homotopy u-colimit functor on X as a left approximation of
an arbitrary but fixed u-colimit functor colimu : XA →XB on X (by which we
mean an arbitrary but fixed left adjoint of the induced diagram functor u∗ : XB →
XA). We then show that

(i) such homotopy u-colimit functors on X, if they exist, are homotopically
unique (4.4(ii)),

(ii) a sufficient condition for their existence is the existence of a left de-
formable (3.4(iii)) u-colimit functor on X,

and that, for every composable pair of functors u : A→ B and v : B →D between
small categories

(iii) a sufficient condition in order that there exist homotopy u-colimit and v-
colimit functors on X and that every (appropriately defined) composition
of such a homotopy u-colimit functor with such a homotopy v-colimit
functor is a homotopy vu-colimit functor on X is that there exist u-
colimit and v-colimit functors on X, and
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16 I. AN OVERVIEW

(iii)′ the pair (colimu, colimv) is left deformable (6.4(v))
which in view of 6.5(iii) is in particular the case if

(iii)′′ X is saturated (2.3(iv)) and the pair (colimu, colimv) is locally left de-
formable in the sense of 6.5(iii).

We also note that there is a corresponding notion of homotopical cocom-
pleteness of a homotopical category X which is considerably stronger than the
requirement that, for every small category D, there exist homotopy D-colimit func-
tors on X and that

(iv) a sufficient condition for such homotopical cocompleteness of a homo-
topical category X is that X is cocomplete (which implies that, for every
functor u : A → B between small categories, there exist u-colimit func-
tors on X) and that there exists, for every small category D, a left
deformation retract (XD)0 ⊂ XD (3.3(iii)) such that, for every functor
u : A→ B between small categories, the u-colimit functor colimu

(iv)′ is homotopical on (XA)0, and
(iv)′′ sends all of (XA)0 into (XB)0,

which last restriction is superfluous if X is saturated (2.3(iv)).

We end the chapter with the observation that, while the above homotopy u-
colimit functors are only defined for homotopical categories on which there exist
u-colimit functors (and even then in addition require a choice of such a functor)

(v) there is also the notion of what we will call a homotopical u-colimit
functor which, as we define such a functor as a homotopically terminal
Kan extension (6.3(ii)) of the identity functor 1XB along the induced
diagram functor u∗ : XB → XA, is defined for arbitrary homotopical
categories and which “generalizes” the notion of a homotopy u-colimit
functor in the sense that

(vi) if there exist u-colimit functors on X, then
(vi)′ there exist homotopical u-colimit functors on X iff there exist homotopy

u-colimit functors on X, and
(vi)′′ in this case “composition with colimu” yields a 1-1 correspondence be-

tween the homotopy u-colimit functors on X and the homotopical u-
colimit functors on X.

Of course dual results hold for homotopy limit functors, homotopical
completeness and homotopical limit functors.
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CHAPTER II

Model categories and their homotopy categories

7. Introduction

7.1. Summary. In this chapter we
(i) introduce a notion of model category (i.e. a category M with three

distinguished classes of maps, weak equivalences, cofibrations and
fibrations, satisfying a few simple axioms which enable one to “do homo-
topy theory in M”), which is a slightly strengthened version of Quillen’s
notion of a closed model category ([Hir03], [Hov99]), and

(ii) discuss the homotopy category of such a model category M , i.e. the
category obtained from M by “formally inverting” its weak equivalences.

In more detail:

7.2. Model Categories. In [Qui67] Quillen introduced a notion of model
category and called such a model category closed whenever any two of the three
distinguished classes of maps (7.1) determined the third. Furthermore he charac-
terized these closed model categories by five particularly nice axioms [Qui69] and
noted that the requirement that a model category be closed is not a serious one.
In fact he showed that every model category, in which (as always seems to be the
case) the class of the weak equivalences is closed under retracts, can be turned into
a closed model category just by closing the other two classes under retracts.

The first and the fifth of Quillen’s five axioms for a closed model category
however are weaker than one would expect. The first axiom assumes the existence
of finite colimits and limits, but not of arbitrary small ones and the fifth axiom
assumes the existence of certain factorizations, but does not insist on their func-
toriality. This allows for the inclusion of various categories of finitely generated
chain complexes, but also considerably complicates much of the theory.

In view of all this we therefore throughout this monograph use the term model
category for a closed model category in the sense of Quillen, which satisfies the
above suggested stronger versions of this first and fifth axioms.

7.3. The second and third axioms. Quillen’s five axioms, with the first
and the fifth axioms strengthened as indicated above (7.2) are perfectly adequate.
However, for reasons which we will explain in 7.4 and 7.5 below, we prefer the
equivalent (9.3) set of axioms obtained by

(i) strengthening the second axiom which requires the weak equivalences to
have the two out of three property (i.e. if f and g are maps such that
gf is defined and two of f , g and gf are weak equivalences, then so is
the third) by requiring them to have the two out of six property that,
for every three maps r, s and t for which the two compositions sr and ts
are defined and are weak equivalences, the four maps r, s, t and tsr are
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also weak equivalences (which by restriction to the cases in which both
sr and ts are identity maps or at least one of r, s and t is an identity
map, implies that all isomorphisms are weak equivalences, as well as the
two out of three property), and

(ii) compensating for this by weakening the third axiom which requires that
the classes of the weak equivalences, the cofibrations and the fibrations
are all three closed under retracts, by omitting this requirement for the
class of the weak equivalences.

These changes are suggested by the following observations on

7.4. The role of the weak equivalences. A closer look at the notion of a
model category reveals that the weak equivalences already determine its “homo-
topy theory”, while the cofibrations and the fibrations provide additional structure
which enables one to “do” homotopy theory, in the sense that, while many homo-
topy notions involved in doing homotopy theory can be defined in terms of the
weak equivalences, the verification of many of their properties (e.g. their existence)
requires the cofibrations and/or the fibrations. Moreover in dealing with model
categories one often uses auxiliary categories which are not model categories, but
which still have obvious “weak equivalences” induced by the weak equivalences of
the model categories involved.

All this points to the desirability of having a better understanding of “categories
with weak equivalences”. But when one tries to develop such a “relative” category
theory, and in particular one which allows for reasonable “relative” versions of such
basic categorical notions as initial and terminal objects, colimit and limit functors
and universal properties, one realizes that the weak equivalences should have some
closure properties and that it is convenient to restrict oneself to what we will call

7.5. Homotopical categories. A homotopical category will be a category
with a single distinguished class of maps, called weak equivalences, which

(i) has the two out of six property (7.3) and
(ii) contains all the identity maps

which (see 7.3(i)) implies that it also
(iii) has the two out of three property (7.3), and
(iv) contains all the isomorphisms.

These homotopical categories will be investigated in Part II of this monograph
where we define for them such notions as homotopically initial and terminal
objects and homotopy and homotopical colimit and limit functors, which
can be characterized by homotopically universal properties which ensure that
such notions, if they exist, are homotopically unique in the sense that they form
a homotopically contractible category, i.e. a non-empty homotopical category
in which all maps are weak equivalences and for which its identity functor can be
connected by a (finite) zigzag of natural transformations to a constant functor, i.e.
functor which sends all maps to a single identity map.

Model categories and the auxiliary categories referred to in 7.4 are all homotopi-
cal categories and the various homotopy notions one encounters when working with
model categories are homotopically unique in the strong sense mentioned above.
To emphasize this strong connection between model categories and homotopical
categories we therefore prefer the modifications of the second and third axioms
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suggested in 7.3. Moreover, as the modified retract axiom no longer involves the
weak equivalences, this modification of the axioms also emphasizes the fact that
the weak equivalences play a different role than the cofibrations and fibrations.

7.6. The homotopy category. We also discuss the homotopy category
of a model category M , i.e. the category Ho M obtained from M by “formally
inverting” the weak equivalences and in particular note that

(i) this homotopy category Ho M is equivalent to the “classical homotopy
category” M cf/∼ of M ,

which is the quotient of the full subcategory M cf ⊂ M spanned by the cofibrant
fibrant objects by a homotopy relation ∼ on the maps of M which, on the maps of
M cf is an equivalence relation which is compatible with the composition. Moreover
this category M cf has the property that

(ii) a map in M cf is a weak equivalence iff its image in Ho M is an isomor-
phism.

The proofs of these results are rather long and technical and as several good
versions have recently been published in [DS95], [GJ99], [Hir03] and [Hov99],
we refer the reader to those sources.

7.7. Homotopical comments. From the results we just mentioned in 7.6(i)
and (ii) one can deduce that

(i) every model category M is saturated in the sense that a map in M is
a weak equivalence iff its image in the homotopy category Ho M is an
isomorphism, and

(ii) for every pair of objects X and Y in a model category M , the set of the
maps X → Y ∈ Ho M can be considered as the set of the equivalence
classes of the zigzags in M of the form

X ·oo // · Yoo

in which the backward maps are weak equivalences, where two such zigzags
are in the same class iff they are the top row and the bottom row in a
commutative diagram in M of the form

X ·oo // · Yoo

X

1

OO

1

��

·

OO

//

��

oo ·

OO

��

Yoo

1

OO

1

��

X ·oo // · Yoo

X

1

OO

·oo

OO

// ·

OO

Yoo

1

OO

in which the backward maps (and hence the vertical maps) are weak equiv-
alences.

As both these statements involve only the weak equivalences and not the cofi-
brations and the fibrations, it should be possible to find some reasonable properties
of the weak equivalences which imply these two results and we will in fact show
that both these results can be deduced from the observation that
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(iii) M is a homotopical category (7.5), and
(iv) this homotopical category admits a so-called 3-arrow calculus.

7.8. Organization of the chapter. There are four more sections. The first
of these (§8) is devoted to some categorical and homotopical preliminaries. The
next two sections deal with model categories (§9) and their homotopy categories
(§10) , while the last section (§11) elaborates on the homotopical comments of 7.7.

8. Categorical and homotopical preliminaries

In this section we
(i) indicate what exactly we will mean by small categories, locally small

categories and just plain categories, and
(ii) recall from chapter VI (in part II of this monograph) some homotopical

notions and results which will be needed in this chapter.
We thus start with a brief discussion of

8.1. Categories, locally small categories and small categories. In order
to avoid set theoretical difficulties one often defines categories in terms of a universe,
i.e. (see §32)

(i) one assumes that every set is an element of some universe, where one
defines a universe as a set U of sets (called U-sets) satisfying a few
simple axioms which imply that U is closed under the usual operations
of set theory and that every U-set is a subset of U , but that the set U
itself and many of its subsets are not U-sets, and

(ii) one then defines a U-category as a category of which the hom-sets are
U-sets and the set of objects is a subset of U and calls such a U-category
small if the set of its objects is actually a U-set.

It turns out that the notion of a small U-category is indeed a convenient one, in the
sense that any “reasonable” operation, when applied to small U-categories yields
again a small U-category, but that the notion of a U-category is not. For instance
one readily verifies that

(iii) for every two small U-categories C and D, the diagram or functor
category Fun(C,D) or DC (which has as objects the functors C →D
and as maps the natural transformations between them) is also a small
U-category, and that

(iv) for every small U-category C and subcategory W ⊂ C, there exists a lo-
calization of C with respect to W , i.e. a small U-category C[W−1], to-
gether with an often suppressed localization functor γ : C → C[W−1]
which is 1-1 and onto on objects, sends the maps of W to isomorphisms
in C[W−1] and has the universal property that, for every category B
and functor b : C → B which sends the maps of W to isomorphisms in
B, there is a unique functor bγ : C[W−1]→ B such that bγγ = b.

However both these statements are no longer true if one drops the requirement that
the U-categories involved are small. Still one cannot avoid the notion of U-category
as many of the categories one is interested in are not small. A way to get around
this problem is to note that

(v) for every universe U , there exists a unique successor universe U+, i.e.
the unique smallest universe U+ such that the set U is a U+-set.
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This implies that every U-category is a small U+-category so that any “reasonable”
operation when applied to U-categories yields a small U+-category.

In view of all this we choose an arbitrary but fixed universe U and use
the term

small category for small U-category, and
locally small category for U-category

(instead of the customary use of the term category for U-category) and reserve,
unless the context clearly indicates otherwise, the term

category for small U+-category.

Similarly we will usually use the term

set for U+-set, and
small set for U-set.

We then define as follows

8.2. Homotopical categories. A homotopical category will be a category
C (8.1) with a distinguished set W (8.1) of maps (called weak equivalences) such
that

(i) W contains all the identity maps of C, and
(ii) W has the two out of six property that, for every three maps r, s

and t ∈ C for which the two composition sr and ts exist and are in W ,
the four maps r, s, t and tsr are also in W

which one readily verifies (by assuming that both sr and ts are identity maps or
that at least one of r, s and t is an identity map) is equivalent to requiring that

(i)′ W contains all the identity maps of C,
(ii)′ W has the weak invertibility property that every map s ∈ C for

which there exist maps r and t ∈ C such that the compositions sr and
ts exist and are in W , is itself in W (which, together with (i)′, implies
that all isomorphisms of C are in W ), and

(iii)′ W has the two out of three property that, for every two maps f and
g ∈ C for which gf exists and two of f , g and gf are in W , so is the
third (which implies that W is actually a subcategory of C).

and two objects of C will be called weakly equivalent whenever they can be
connected by a zigzag of weak equivalences. Furthermore we will refer to the
category W as the homotopical structure of C and consider every subcategory
C ′ ⊂ C as a homotopical category with W ∩C ′ as its homotopical structure.

There is of course the corresponding notion of

8.3. Homotopical functors. Given two homotopical categories C and D, a
homotopical functor C → D will be a functor C → D which preserves weak
equivalences.

One can also consider not necessarily homotopical functors C →D and call a
natural transformation between two such functors a natural weak equivalence
if it sends the objects of C to weak equivalences in D. The homotopical structure
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on D (8.2) then gives rise to a homotopical structure on the diagram or functor
category (8.1(iii))

Fun(C,D) or DC

in which the weak equivalences are the natural weak equivalences, as well as (8.2)
on its full subcategory spanned by the homotopical functors which we will denote by

Funw(C,D) or
(
DC

)
w

.

Furthermore, given two homotopical categories C and D, we
(i) call two homotopical functors C →D naturally weakly equivalent if

they can be connected by a zigzag of natural weak equivalences, and
(ii) call a homotopical functor f : C →D a homotopical equivalence of

homotopical categories if there exists a homotopical functor f ′ : D →
C (called a homotopical inverse of f) such that the compositions f ′f
and ff ′ are naturally weakly equivalent to the identity functors 1C and
1D respectively

and given a homotopical category C and a subcategory C0 ⊂ C, we
(iii) call C0 a left (or a right) deformation retract of C if there exists a

left (or a right) deformation of C into C0, i.e. a pair (r, s) consisting
of a homotopical functor r : C → C0 and a natural weak equivalence

s : r −→ 1C (or s : 1C −→ r)

such that rC ∈ C0 for every object C ∈ C.

We end with discussing

8.4. The homotopy category of a homotopical category. Given a homo-
topical category C, its homotopy category Ho C will be the category obtained
from C by “formally inverting” the week equivalences, i.e. the category with the
same objects as C in which, for every pair of objects X,Y ∈ C, the hom-set
Ho C(X,Y ) consists of the equivalence classes of zigzags in C from X to Y in
which the backward maps are weak equivalences, by the weakest equivalence rela-
tion which puts two zigzags in the same class when one can be obtained from the
other by

(iv)′ omitting an identity map,
(iv)′′ replacing two adjacent maps which go in the same direction by their

composition, or
(iv)′′′ omitting two adjacent maps when they are the same but go in opposite

directions,
and this homotopy category Ho C, together with the functor γ : C → Ho C (called
localization functor) which is the identity on the objects and which sends a map
c : X → Y ∈ C to the class containing the zigzag which consists of the map c only,
is a localization of C with respect to its subcategory of weak equivalences (8.1(iv)).

In view of the terminological assumptions make in 8.1, such homotopy cate-
gories always exist (see 33.8), although the homotopy category of a locally small
homotopical category need not also be locally small.

As localizations were defined by means of a universal property (8.1(iv)), one
readily verifies that
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(i) for every two homotopical categories C and D with localization functors
γ : C → Ho C and γ′ : D → Ho D, and homotopical functor f : C → D,
there is a unique functor Ho f : Ho C → Ho D such that (Ho f)γ = γ′f ,
and

(ii) for every two such functors f1, f2 : C → D and natural transformations
(resp. natural weak equivalences) h : f1 → f2, there is a unique natural
transformation (resp. natural isomorphism) Hoh : Ho f1 → Ho f2 such
that (Hoh)γ = γ′h

which implies that
(iii) for every two homotopical functors f1, f2 : C → D which are naturally

weakly equivalent (8.3(i)), the functors Ho f1,Ho f2 : HoC → Ho D are
naturally isomorphic, and

(iv) if a functor f : C → D is a homotopical equivalence of homotopical cat-
egories (8.3(ii)), then the functor Ho f : HoC → Ho D is an equivalence
of categories.

We end with mentioning that we will call a homotopical category C saturated
when a map c ∈ C is a weak equivalence iff the map γc ∈ Ho C is an isomorphism,
and noting (see 33.9(v)) that this definition readily implies that

(v) if C is a saturated homotopical category, then so are, for every homo-
topical category D, the homotopical functor categories (8.3)

Fun(D,C) and Funw(D,C) .

9. Model categories

We now
(i) define model categories, as mentioned in 7.2, as closed model categories

in the sense of Quillen, but satisfying a strengthened version of his first
and fifth axioms in which, as explained in 7.3, we modify his second and
third axioms in a manner which does not affect the resulting notion of
model category,

(ii) discuss a few immediate consequences of this definition, and
(iii) describe a few rather obvious examples.

We thus start with defining

9.1. Model categories. A model category will be a locally small category
M (8.1) with a model structure, i.e. three sets (8.1) of maps, weak equiva-
lences, cofibrations and fibrations (which are often denoted by ∼→, � and �
respectively) satisfying the following five axioms:

MC1 Limit axiom: The category M is cocomplete and complete, i.e. there
exists, for every small category D (8.1) a D-colimit and a D-limit functor
MD →M on X (i.e. a left and a right adjoint of the constant diagram
functor M →MD).

MC2 Two out of six axiom: The weak equivalences have the two out of
six property, i.e. if r, s and t are maps in M such that the two compo-
sitions sr and ts are defined and are weak equivalences, then the four
maps r, s, t and tsr are also weak equivalences (8.2).
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MC3 Retract axiom: The cofibrations and the fibrations are closed under
retracts, i.e. if in a commutative diagram in M of the form

A
p

//

a

��

X
q

//

x

��

A

a

��

A′
p′

// X ′
q′

// A′

in which qp = 1A and q′p′ = 1A′ , the map x : X → X ′ is a cofibration or
a fibration, then so is the map a : A→ A′.

MC4 Lifting axiom:
(i) Every cofibration has the left lifting property with respect to every

trivial fibration (i.e. a fibration which is also a weak equivalence and
which therefore often will be indicated by ∼

�), and
(ii) every fibration has the right lifting property with respect to every

trivial cofibration (i.e. a cofibration which is also a weak equivalence
and which therefore often will be indicated by ∼

�),
by which one means that
(iii) for every commutative solid arrow diagram in M

A
f

//
��

i

��

X

p

����

B g
//

k

>>~
~

~
~

Y

in which i is a cofibration and p is a fibration, there exists a dotted
arrow k : B → X such that ki = f and pk = g whenever at least one
of i and p is a weak equivalence.

MC5 Factorization axiom: The maps f ∈ M admit functorial factor-
izations
(i) f = qi, where i is a cofibration and q is a trivial fibration, and
(ii) f = pj, where p is a fibration and j is a trivial cofibration.

One then has

9.2. Proposition. Every model category M is a homotopical category (8.2).

Proof. It suffices to prove that, for every object X ∈ M , the identity map
1X : X → X ∈M is a weak equivalence and one does this by noting that the map
1X admits (in view of MC5) a factorization 1X = qi in which q is a trivial fibration,
and then applying the two out of three property (8.2(iii)) to the equality 1Xq = q.

Next we deal with the

9.3. Comparison with Quillen’s closed model categories. To show that
the above notion of a model category agrees with that of a closed model category in
the sense of Quillen [Qui69] with his first and last axiom strengthened as in MC1
and MC5, one has to verify that

(i) the axioms MC1–5 imply that the weak equivalences are closed under
retracts, and
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(ii) the axioms MC1, MC3, MC4 and MC5, together with the closure of
the weak equivalences under retract and the two out of three property
(8.2(iii)) imply axiom MC2, i.e. the two out of six property (8.2(i)).

Such a verification of (i) will be given in 9.4 below, while (ii) follows from
proposition 10.6 below (which states that every model category is saturated (8.4))
and the observation that its proof, for which we refer the reader to [DS95], [GJ99],
[Hir03] or [Hov99], uses only the assumptions made in (ii).

It thus remains to prove

9.4. Proposition. The weak equivalences in a model category are closed under
retracts.

Proof.
We have to show that, if in the diagram of MC3 the map x is a weak equivalence

then so is the map a, and we do this by noting
(i) that, in view of MC5, the diagram of MC3 gives rise to a commutative

diagram of the form (9.1)

A p
//

��

a′

��

X q
//

��

x′

��

A // ∼
j

// B

r
~~~~}}
}}

}}
}}

A′′
p′′

//

a′′ ∼
����

X ′′
q′′

//

x′′ ∼
����

A′′

∼a′′

����

A′
p′

// X ′
q′

// A′

in which a′′a′ = a, x′′x′ = x, q′′p′′ = 1A′′ and rj = a′ (and of course
qp = 1A and q′p′ = 1A′),

(ii) that in view of the two out of three property and the assumption on the
map x, the map x′ is a weak equivalence,

(iii) that therefore (MC4) there exists a map k : X ′′ → B such that

rk = q′′ and kx′ = jq

which implies that

rkp′′ = q′′p′′ = 1A′′ and kp′′a′ = kx′p = jqp = j

(iv) and that, as (9.2) the map 1A′′ is a weak equivalence, application of the
two out of six property to the triple (a′, kp′′, r) yields that a′ and r are
weak equivalences, and so is therefore, in view of the two out of three
property the map a.

Using this proposition we now prove the following useful

9.5. Closure properties. Any two of the sets of the weak equivalences, the
cofibrations and the fibrations in a model category (9.1) determine the third. In fact

(i) a map is a cofibration iff it has the left lifting property with respect to all
trivial fibrations,

(i)′ a map is a fibration iff it has the right lifting property with respect to all
trivial cofibrations,
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(ii) a map is a trivial cofibration iff it has the left lifting property with respect
to all fibrations,

(ii)′ a map is a trivial fibration iff it has the right lifting property with respect
to all cofibrations, and

(iii) a map is a weak equivalence iff it admits a factorization into a trivial
cofibration followed by a trivial fibration.

9.6. Corollary.
(i) The cofibrations and the trivial cofibrations form subcategories which are

closed under pushouts, and
(ii) the fibrations and the trivial fibrations form subcategories which are closed

under pullbacks.

Proof of 9.5. Let f be a map which has the left lifting property with respect to
all fibrations and (MC5) factor f into a trivial cofibration j followed by a fibration
p. The lifting axiom (MC4) then yields a commutative diagram of the form

· // ∼
j

//

f

��

·
p

����
·

1
//

@@�������
·

This readily implies that f is a retract of j and hence (MC3 and 9.4) a trivial
cofibration, proving (ii).

The proofs of (i), (i)′ and (ii)′ are similar, while (iii) is a consequence of the
factorization axiom (MC5) and the two out of three property (MC2).

We end with a few rather straightforward

9.7. Examples.
(i) If M is a model category, then so is its opposite Mop, with the “oppo-

sites” of the weak equivalences as weak equivalences, the “opposites” of
the fibrations as cofibrations and the “opposites” of the cofibrations as
fibrations.

(ii) For every object X in a model category M , the under category (X ↓M)
and the over category (M ↓X) inherit from M a model structure in
which a map is a weak equivalence, a cofibration or a fibration iff its
image in M under the forgetful functor is so.

(iii) Every product of model categories, indexed by a small set (8.1), admits
a model structure in which a map is a weak equivalence, a cofibration or
a fibration iff all its projections onto the given model categories are so.

(iv) Every cocomplete and complete category admits a (unique) minimal
model structure in which the weak equivalences are the isomorphisms
and all maps are cofibrations as well as fibrations.

(v) Every cocomplete and complete category also admits maximal model
structures, i.e., model structures in which all maps are weak equiva-
lences. In one such model structure all maps are cofibrations, while the
fibrations are the isomorphisms or dually one could require all maps to
be fibrations and take for the cofibrations the isomorphisms. But there
might be other maximal model structures as well. For instance in the
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category of small sets (8.1) one could take as cofibrations the monomor-
phisms and as fibrations the epimorphisms, or conversely as cofibrations
the epimorphisms and as fibrations the monomorphisms.

10. The homotopy category

With every model category M one can associate its homotopy category
Ho M (i.e. the category obtained from M be “formally inverting” the weak equiv-
alences) and our main aim in this section is to obtain a more explicit description
of this homotopy category by noting that

(i) the homotopy category Ho M is equivalent to the homotopy category
Ho M cf of the full subcategory M cf ⊂ M spanned by the cofibrant
fibrant objects, and

(ii) the homotopy category Ho M cf is canonically isomorphic to the quotient
M cf/∼ of M cf by a homotopy relation ∼.

These results readily imply that
(iii) the homotopy category Ho M is, just like the category M itself, locally

small, and
(iv) the maps in Ho M can be considered as equivalence classes of zigzags in

M of the form

· ·oo // · ·oo

in which the backward maps are weak equivalences, by an equivalence
relation which can be formulated in terms of the weak equivalences.

We also note that
(v) a map in M cf is a weak equivalence iff its image in M cf/∼ is an isomor-

phism which implies that
(vi) every model category M is saturated, i.e. (8.4) a map in M is a weak

equivalence iff its image in HoM is an isomorphism.
We start with recalling from 8.4

10.1. The homotopy category. Given a model category M (9.1), its homo-
topy category Ho M is the homotopy category (8.4) of its underlying homotopical
category (9.2), i.e. the category with the same objects as M in which, for every
pair of objects X,Y ∈M , the hom-set HoM(X,Y ) consists of equivalence classes
of zigzags in M from X to Y in which the backward maps are weak equivalences.
It comes with a localization functor γ : M → Ho M which is the identity on the
objects and which sends a map f : X → Y ∈M to the class containing the zigzag
which consists of the map f only.

In order to obtain a more explicit description of this homotopy category of M
one first considers the full subcategories of M spanned by its

10.2. Cofibrant and fibrant objects. Given a model category M , an object
X ∈M will be called cofibrant if the unique map to X from an initial object of
M (which exists in view of the limit axiom (9.1)) is a cofibration, and dually an
object Y ∈M will be called fibrant if the unique map from Y to a terminal object
is a fibration. Clearly (9.5)

(i) if X ∈ M is cofibrant and f : X → Y ∈ M is a cofibration, then Y is
cofibrant, and dually
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(ii) if Y ∈M is fibrant and f : X → Y ∈M is a fibration, then X is fibrant.
Let M c, M f and M cf = M c∩M f denote the full subcategories of M spanned

respectively by the cofibrant objects, the fibrant objects and the cofibrant fibrant
ones, i.e. the objects which are both cofibrant and fibrant. Then the inclusions of
M cf, M c, M f and M in each other induce (8.4) functors between their homotopy
categories Ho M cf, HoM c, HoM f and Ho M and (i) and (ii) above together with
the factorization axiom (9.1) readily imply

10.3. Proposition. Let M be a model category (9.1). Then
(i) M c (10.2) is a left deformation retract of M (i.e. (8.3(iii)) M c is a

full subcategory of M for which there exists a pair (r, s) consisting of
a weak equivalence preserving functor r : M → M c and a natural weak
equivalence (8.3) s : r → 1M ), and dually

(ii) M f is a right deformation retract of M , while
(iii) M cf is a left deformation retract of M f and a right deformation retract

of M c.

10.4. Corollary. The inclusions of M cf, M c, M f and M in each other in-
duce (8.3(iii), 8.4(iv) and 10.3) a commutative diagram of functors

Ho M c

**UUUUUU

Ho M cf

44iiiiii

**UUUUUU Ho M

Ho M f

44iiiiii

in which all functors are equivalences of categories.

To obtain a more explicit description of HoM cf (and hence of Ho M) one next
considers various

10.5. Homotopy relations. Given a model category M one can consider
the following homotopy relations on the maps of M :

(i) Left homotopic maps. Two maps f, g : B → X ∈ M will be called
left homotopic if there exists a factorization

B qB //
i0qi1 // B′

∼ // B

of the folding map ∇ : B qB → B into a cofibration followed by a weak
equivalence, together with a map h : B′ → X ∈ M such that hi0 = f
and hi1 = g.

(ii) Right homotopic maps. Dually two maps f, g : B → X ∈M will be
called right homotopic if there exists a factorization

X
∼ // X ′

p0×p1// // X ×X
of the diagonal map ∆: X → X ×X into a weak equivalence followed by
a fibration, together with a map k : B → X ′ ∈M such that p0k = f and
p1k = g.

(iii) Homotopic maps. Two maps f, g : B → X ∈M will be called homo-
topic (denoted by f ∼ g) if they are both left and right homotopic and
a map f : B → X ∈M will be called a homotopy equivalence if there
exists a map f ′ : X → B ∈M (called a homotopy inverse of f) such
that f ′f ∼ 1B and ff ′ ∼ 1X .
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The usefulness of these homotopy relations is due to the fact that not only
clearly

(iv) if two maps f, g : B → X ∈ M are homotopic, left homotopic or right
homotopic, then (10.1) γf = γg ∈ Ho M ,

but that, under suitable restrictions on B and X, these homotopy relations are
equivalence relations for which the opposite of (iv) also holds. More precisely:

10.6. Proposition. Let M be a model category. Then, for every pair of ob-
jects B ∈M c and X ∈M f (10.2)

(i) the above (10.5) three homotopy relations agree on the set M(B,X) and
are an equivalence relation on this set (which we will denote by ∼), and

(ii) this equivalence relation induces a map (10.5(iv))

M(B,X)/∼ −→ Ho M(B,X)

which is 1-1 and onto.

Moreover

(iii) on the subcategory M cf ⊂M , this equivalence relation is compatible with
the composition and thus induces a functor

M cf/∼ −→ Ho M cf

which is an isomorphism of categories, and
(iv) a map in M cf is a weak equivalence iff it is a homotopy equivalence

(10.5(iii)) or equivalently (iii) iff its image in Ho M cf is an isomorphism.

In view of 9.2, 10.3, 10.4 and 10.5 this result implies the following corollaries.

10.7. Corollary. For every model category M ,

(i) its homotopy category Ho M (10.1) is equivalent to its “classical homo-
topy category” M cf/∼ (10.6(iii)), and hence

(ii) its homotopy category Ho M is, just like M itself (9.1), a locally small
category (8.1).

10.8. Corollary. Let M be a model category. Then M is a saturated homo-
topical category (8.4).

10.9. Corollary. Let M be a model category and γ : M → Ho M its local-
ization functor. Then for every pair of objects X,Y ∈M ,

(i) the function which assigns to every zigzag in M of the form

X ·p

∼
oo

q
// · Y

r
∼

oo

in which the backward maps are weak equivalences, the map

(γr)−1(γg)(γp)−1 : X −→ Y ∈ Ho M

induces a 1-1 correspondence between the maps X → Y ∈ Ho M and the
equivalence classes of the above zigzags, in which two such zigzags are in
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the same class whenever they are the top row and the bottom row in a
commutative diagram in M of the form

X ·∼oo // · Y
∼oo

X

1

OO

1

��

·∼oo

∼

OO

//

∼
��

·

∼

OO

∼
��

Y
∼oo

1

OO

1

��

X ·∼oo // · Y
∼oo

X

1

OO

·∼oo

∼

OO

// ·

∼

OO

Y
∼oo

1

OO

in which all the backward maps (and hence all the vertical maps) are weak
equivalences, and

(ii) for every map f : X → Y ∈ M , the equivalence class corresponding to
the map γf : X → Y ∈ Ho M is the class which contains the zigzag

X X
1oo

f
// Y Y

1oo

It thus remains to prove proposition 10.6. However, as the proof of this prop-
osition is rather long and technical and as good versions of it have recently been
published in [DS95], [GJ99], [Hir03] and [Hov99], we refer the interested reader
to those sources.

11. Homotopical comments

We ended the preceding section with two corollaries 10.8 and 10.9 in which we
established two properties of model categories of which the formulation involved
only the weak equivalences and not the cofibrations and the fibrations, and our
aim in this section is to point out that there is a relatively simple property of the
weak equivalences in a model category which implies these two properties.

To do this we start with recalling from 36.1 the notion of

11.1. 3-arrow calculi. Given a homotopical category C with category of
weak equivalences W (8.2), C is said to admit a 3-arrow calculus {U ,V } if
there exist subcategories U ,V ⊂W such that in a functorial manner

(i) for every zigzag A′ u←− A
f−→ B in C which u ∈ U , there exists a zigzag

A′
f ′−→ B′

u′←− B in C with u′ ∈ U such that

u′f = f ′u and

u′ is an isomorphism whenever u is

(e.g. if C is closed under pushouts and every pushout of a map in U is
again in U),
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(ii) for every zigzag X
g−→ Y

v←− Y ′ in C with v ∈ V , there exists a zigzag

X
v′←− X g′−→ Y in C with v′ ∈ V such that

gv′ = vg′ and

v′ is an isomorphism whenever v is

(e.g. if C is closed under pullbacks and every pullback of a map in V is
again in V ), and

(iii) every map w ∈W admits a factorization w = vu with u ∈ U and v ∈ V .
Note that (iii) implies that U and V contain all the objects of W and hence

of C.

We then showed in 36.3

11.2. Proposition. Let C be a homotopical category (8.2) which admits a 3-
arrow calculus (11.1) and let γ : C → Ho C be its localization functor (8.4). Then,
for every pair of objects X,Y ∈ C,

(i) the function which assigns to every zigzag in C of the form

X ·∼
p

oo
q

// · Y∼
roo

in which the backward maps are weak equivalences, the map

(γr)−1(γq)(γp)−1 : X −→ Y ∈ Ho C

induces a 1-1 correspondence between the maps X → Y ∈ Ho C and the
equivalence classes of the above zigzags, in which two such zigzags are in
the same class whenever they are the top row and the bottom row in a
commutative diagram in C of the form

X ·∼oo // · Y
∼oo

X

1

OO

1

��

·∼oo

∼

OO

//

∼
��

·

∼

OO

∼
��

Y
∼oo

1

OO

1

��

X ·∼oo // · Y
∼oo

X

1

OO

·∼oo

∼

OO

// ·

∼

OO

Y
∼oo

1

OO

in which all the backward maps (and hence all the vertical maps) are weak
equivalences, and

(ii) for every map f : X → Y ∈ C, the equivalence class corresponding to the
map γf : X → Y ∈ Ho C is the class which contains the zigzag

X X
1oo

f
// Y Y .

1oo

Furthermore, using this result, we prove in 36.4

11.3. Proposition. Every homotopical category which admits a 3-arrow cal-
culus is saturated (8.4).
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Corollaries 10.8 and 10.9 then follow immediately from 11.3 and 11.2 and the
observation that 9.1, 9.2 and 9.6 readily imply

11.4. Proposition. Every model category admits a 3-arrow calculus (11.1)
consisting of the subcategories of the trivial cofibrations and the trivial fibrations.
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CHAPTER III

Quillen functors

12. Introduction

12.1. Summary. We now consider a useful kind of “morphism between model
categories” which is not, as one might expect, a functor which is compatible with
the model structures, but an adjoint pair of functors, each of which is compatible
with one half of the model structures involved. Neither of these two functors (which
are called left and right Quillen functors) is required to be homotopical, i.e. (8.3)
to preserve (all the) weak equivalences, but they still have “homotopical meaning”:
The left Quillen functor has left approximations, i.e. homotopical functors which,
in a homotopical sense, are closest to it from the left, and which are homotopically
unique, and the right Quillen functors have similar right approximations. Moreover
these approximations have the convenient property that the functors between the
homotopy categories induced by the left approximations are left adjoints of those
induced by the right approximations.

In more detail:

12.2. Quillen functors. Given two model categories M and N , a Quillen
adjunction between them will be an adjunction

f : M ←→N :f ′

such that the left adjoint f (the left Quillen functor) preserves cofibrations and
trivial cofibrations (9.1), while the right adjoint f ′ (the right Quillen functor)
preserves fibrations and trivial fibrations. Thus neither functor is required to pre-
serve weak equivalences. However they have the crucial property that

(i) the left Quillen functor f preserves weak equivalences between cofibrant
objects, i.e., f restricts to a homotopical functor (8.3) on the left defor-
mation retract M c of M (10.2 and 10.3), and dually

(ii) the right adjoint f ′ preserves weak equivalences between fibrant objects,
i.e. f ′ restricts to a homotopical functor on the right deformation retract
M f of M ,

which ensures the existence of

12.3. Approximations. The usefulness of Quillen functors is that they have
approximations which are homotopically unique. More precisely, a left Quillen func-
tor f : M → N has left approximations, i.e. pairs (k, a) consisting of a homo-
topical functor k : M → N and a natural transformation a : k → f , which in a
homotopical sense are closest to f from the left. They are homotopically unique,
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in the sense that they form a homotopical category which is homotopically con-
tractible, i.e. for which the (unique) functor to the terminal (homotopical) cate-
gory [0] (which consists of only one object and its identity map) is a homotopical
equivalence of homotopical categories (8.3).

Furthermore given two composable left Quillen functors f1 : M → N and
f2 : N → P , their composition f2f1 : M → P is also a left Quillen functor and for
every pair of left approximations (k1, a1) of f1 and (k2, a2) of f2, their composition
(k2k1, a2a1) in which a2a1 is the diagonal of the commutative diagram

k2k1
a2 //

a1

��

f2k1

a1

��

k2f1
a2 // f2f1

is a left approximation of f2f1.
Of course dually every right Quillen functor has right approximations with

similar properties.

12.4. Derived adjunctions. A convenient property of the approximations
of Quillen functors (12.3) is that, given a Quillen adjunction f : M ↔ N :f ′, its
adjunction induces, for every left approximation (k, a) of f and right approximation
(k′, a′) of f ′, a derived adjunction between the homotopy categories of M and
N

Ho k : HoM ←→ Ho N :Ho k′

which is natural in (k, a) and (k′, a′) and which is compatible with compositions in
the sense that, for every two composable Quillen adjunctions

f1 : M ←→N :f ′1 and f2 : N ←→ P :f ′2

the compositions of their derived adjunctions are derived adjunctions of their com-
position.

We end with a brief discussion of Quillen adjunctions whose derived adjunctions
are equivalences of categories and which are called

12.5. Quillen equivalences. It turns out that, given a Quillen adjunction
f : M ↔N :f ′, the following six statements are equivalent:

(i) for one (and hence every) left approximation (k, a) of f , the functor
k : M →N is a homotopical equivalence of homotopical categories (8.3),

(i)′ for one (and hence every) right approximation (k′, a′) of f ′, the functor
k′ : N →M is a homotopical equivalence of homotopical categories,

(ii) for one (and hence every) pair consisting of a left approximation (k, a)
of f and a right approximation (k′, a′) of f ′, the functors k : M → N
and k′ : N →M are homotopically inverse homotopical equivalences of
homotopical categories (8.3),

(iii) for one (and hence every) left approximation (k, a) of f , the functor
Ho k : HoM → Ho N is an equivalence of categories,

(iii)′ for one (and hence every) right approximation (k′, a′) of f ′, the functor
Ho k′ : HoN → Ho M is an equivalence of categories, and

Draft: May 14, 2004



12. INTRODUCTION 35

(iv) for one (and hence every) pair consisting of a left approximation (k, a) of
f and a right approximation (k′, a′) of f ′, the functors Ho k : Ho M →
Ho N and Ho k′ : HoN → Ho M are inverse equivalences of categories.

Thus a Quillen adjunction with these properties induces a kind of “equivalence
of homotopy theories” and one therefore calls the left adjoint of such a Quillen
adjunction a left Quillen equivalence and the right adjoint a right Quillen
equivalence.

A useful necessary and sufficient condition in order that a Quillen adjunction
f : M ↔N : f ′ be an adjunction of Quillen equivalences is the Quillen condition
that, for every pair of objects X ∈M c and Y ∈ N f (10.2), a map X → f ′Y ∈M
is a weak equivalence iff its adjunct fX → Y ∈N is so.

12.6. Homotopical comments. Most of the results of this chapter are spe-
cial cases of more general results on homotopical categories, some of which we will
need in chapter IV.

(i) Left and right Quillen functors (12.2) are special cases of left and right
deformable functors, i.e. not necessarily homotopical functors between
homotopical categories which are homotopical on a left or a right de-
formation retract (8.3) of the domain category and such left and right
deformable functors have left or right approximations which are ho-
motopically unique (12.3).

(ii) Given two composable left or right deformable functors f1 : X → Y and
f2 : Y → Z, their composition f2f1 : X → Z need not again be left or
right deformable, nor need the compositions of their left or right approx-
imations be left or right approximations of their composition. However
a sufficient condition for this to happen is that the pair (f1, f2) is what
we will call left or right deformable.

(iii) Deformable functors often are part of a deformable adjunction (i.e. an
adjunction f : X ↔ Y :f ′ of which the left adjoint f is left deformable
and the right adjoint f ′ is right deformable) and the adjunction of such a
deformable adjunction induces, for every pair consisting of a left approx-
imation (k, a) of f and a right approximation (k′, a′) of f ′, a derived
adjunction Ho k : HoX ↔ Ho Y :Ho k′ (8.4).

(iv) Given two composable deformable adjunctions f1 : X ↔ Y :f ′1 and f2 :
Y ↔ Z :f ′2, a sufficient condition in order that their composition f2f1 :
X ↔ Z :f ′1f

′
2 is also a deformable adjunction and that the compositions

of their derived adjunctions are derived adjunctions of their composition
is that

(iv)′ the pair (f1, f2) is left deformable (ii) and the pair (f ′2, f
′
1) is right de-

formable,

which in particular is the case if

(iv)′′ the category X is saturated (8.4), the pair (f1, f2) is left deformable and
the pair (f ′2, f

′
1) is locally right deformable (which is a weaker requirement

than being right deformable)

or dually if

(iv)′′′ the category Z is saturated, the pair (f ′2, f
′
1) is right deformable and the

pair (f1, f2) is just locally left deformable.
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(v) We end with noting that, for a deformable adjunction f : X ↔ Y :f ′,
one can formulate a Quillen condition which implies the six statements
of 12.5 and which, if the categories X and Y are saturated (8.4) is in
turn implied by each of them.

12.7. Organization of the chapter. We start (in §13) with a brief review
of the notion of homotopical uniqueness. Next we introduce Quillen functors (in
§14), their approximations (in §15), their derived adjunctions (in §16) and Quillen
equivalences (in §17), and in the last section (§18) we elaborate on the homotopical
comments of 12.6.

13. Homotopical uniqueness

In this section we recall from chapter VI (§37 and §38) below some of the
definitions and results on homotopical uniqueness, which are the homotopical analog
of the categorical notion of uniqueness up to a unique isomorphism which we will
call

13.1. Categorical uniqueness. This is the kind of uniqueness produced by
universal properties and can be described as follows.

Call a category G categorically contractible if
(i) the unique functor G→ [0] (where [0] denotes the category consisting of

a single object 0 and its identity map) is an equivalence of categories, or
equivalently

(ii) G is a non-empty groupoid in which there is exactly one isomorphism
between any two of its objects.

Given a category Y and a non-empty set I, we then say that objects Yi ∈ Y
(i ∈ I) are canonically isomorphic or categorically unique if

(iii) the full subcategory of Y spanned by these objects
or equivalently

(iv) the categorically full subcategory o Y spanned by these objects, i.e.
the full subcategory of Y spanned by these objects and all isomorphic
ones

is categorically contractible.
Moreover as

(v) for every category, its full subcategory spanned by its initial or terminal
objects is either empty or categorically contractible

one can often verify the categorical uniqueness of a non-empty set of objects in a
category Y by noting that these objects are initial or terminal objects of Y . This
is for instance what happens when one makes the somewhat imprecise statement
that

(vi) some objects in a category X are unique up to a unique isomorphism
because they have a certain initial (or terminal) universal property,

as what one really means is that
(vii) these objects together with some, often not explicitly mentioned, addi-

tional structure are initial (or terminal) objects in the category of all
objects of X with such additional structure.
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However not every categorical uniqueness results in this manner. For instance, the
coproducts of an objects A with a product of objects B and C are neither initial
nor terminal objects of the category of diagrams of the form

A

��

B

· ·oo

OO

// C

Similarly we now define

13.2. Homotopical uniqueness. We call a homotopical category G (8.2)
homotopically contractible if

(i) the unique functor G → [0] (13.1(i)) is a homotopical equivalence of
homotopical categories (8.3),

which in view of the two out of three property (8.2) readily implies that
(ii) every map in G is a weak equivalence and every two objects of G are

weakly equivalent (8.2).
Given a homotopical category Y and a non-empty set I, we then say that

objects Yi (i ∈ I) are canonically weakly equivalent or homotopically unique
if

(iii) the homotopically full subcategory of Y spanned by these objects,
i.e. the full subcategory of Y spanned by these objects and all weakly
equivalent (8.2) ones is homotopically contractible.

However in order to formulate the corresponding homotopically universal prop-
erties we first have to define appropriate

13.3. Homotopically initial and terminal objects. Given a homotopical
category Y , an object Y ∈ Y will (motivated by 38.1) be called homotopically
initial (resp. homotopically terminal) if there exists a zigzag of natural trans-
formations

cstY · · ·F0
f−→ F1 · · · 1Y (resp. 1Y · · ·F1

f−→ F0 · · · cstY )

in which
(i) cstY : Y → Y denotes the constant functor which sends every map of Y

to the identity map of the object Y ,
(ii) 1Y : Y → Y denotes the identity functor of Y ,
(iii) the ·’s denote (possibly empty) zigzags of natural weak equivalences, and
(iv) the map fY ∈ Y is a weak equivalence

which readily implies that, as one would expect
(v) for every homotopically initial or terminal object of Y its image in Ho Y

(8.4) is initial or terminal.
Furthermore, using the two out of six property (8.2) one then (see 38.3 and

38.5) can prove that
(vi) if Y is a homotopically initial or terminal object of Y , then an object

Y ′ ∈ Y is also homotopically initial or terminal iff Y ′ is weakly equivalent
(8.2) to Y ,

and from this it is not difficult to deduce that
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(vii) for every homotopical category, its full subcategory spanned by its ho-
motopically initial or terminal objects is either empty or homotopically
contractible

which in turn implies that, as in the categorical case (13.1), one can often verify
the homotopical uniqueness (13.2) of a non-empty set of objects in a category Y
by noting that these objects are homotopically initial or homotopically terminal
objects of Y . It is therefore sometimes convenient to make the somewhat imprecise
statement that

(viii) some objects in a homotopical category X are homotopically unique be-
cause they have a certain homotopically initial (or terminal) homotopi-
cally universal property,

as a shorthand for saying that
(ix) these objects together with some, not necessarily explicitly mentioned,

additional structure are homotopically initial (or terminal) objects in the
category of all objects of X with such additional structure.

We end with noting that an easily verifiable and sometimes useful application
of this is

13.4. Proposition. Given a homotopical category X, subcategories X1, X2 ⊂
Xof which X1 (resp. X2) is categorically contractible (13.1), and objects X1 ∈X1

and X2 ∈X2,
(i) a map X1 → X2 ∈ X is a homotopically initial (resp. terminal) object

of the category (X1 ↓X2) (which has as objects the maps Y1 → Y2 ∈ X
with Y1 ∈X1 and Y2 ∈X2), iff

(ii) it is a homotopically initial (resp. terminal) object of its subcategory
(X1 ↓X2) (resp. (X1 ↓X2)).

14. Quillen functors

We now introduce a useful notion of “morphism between model categories”
which is not, as one might expect, a functor which is compatible with the model
structures in the sense that it preserves cofibrations, fibrations and weak equiva-
lences, but an adjoint pair of functors of which the left adjoint is compatible with
one half of the model structures in the sense that it preserves cofibrations and trivial
cofibrations, while the right adjoint is compatible with the other half and preserves
fibrations and trivial fibrations. Neither adjoint is thus required to preserve weak
equivalences.

14.1. Quillen functors. Given two model categories M and N (9.1), a
Quillen adjunction will be an adjunction

f : M ←→N :f ′

of which
(i) the left adjoint is a left Quillen functor, i.e. a functor which preserves

cofibrations and trivial cofibrations, and
(ii) the right adjoint is a right Quillen functor, i.e. a functor which pre-

serves fibrations and trivial fibrations.
They have the
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14.2. Elementary properties.

(i) The identity functor of a model category is both a left and a right Quillen
functor.

(ii) Every right adjoint of a left Quillen functor is a right Quillen functor
and every left adjoint of a right Quillen functor is a left Quillen functor.

(iii) The opposite of a left Quillen functor is a right Quillen functor and the
opposite of a right Quillen functor is a left Quillen functor.

(iv) The composition of two left Quillen functors is a left Quillen functor and
the composition of two right Quillen functors is a right Quillen functor.

Proof. Parts (i) and (iv) are obvious, part (iii) follows from 9.7(i) and part (ii)
can be verified using 9.5.

14.3. Remark. Probably the most useful of the above properties is 14.2(ii)
as, for an adjoint pair of functors f : M ↔N :f ′ between model categories, of the
two equivalent statements

(i) f preserves cofibrations and trivial cofibrations, and
(ii) f ′ preserves fibrations and trivial fibrations

one is often much easier to verify than the other.

Less obvious is the following

14.4. Key property of Quillen functors. Let f : M ↔N :f ′ be a Quillen
adjunction (14.1). Then (8.3, 10.2 and 10.3)

(i) f is homotopical on the left deformation retract M c of M , i.e. f pre-
serves weak equivalences between cofibrant objects, and dually

(ii) f ′ is homotopical on the right deformation retract N f of N , i.e. f ′ pre-
serves weak equivalences between fibrant objects.

Proof. This follows readily from

14.5. Ken Brown’s lemma. Let C be a homotopical category and let M
be a model category. Then every functor M → C which sends trivial cofibrations
(resp. trivial fibrations) to weak equivalences in C, sends weak equivalences in M c

(resp. M f) (10.2) to weak equivalences in C, i.e. is homotopical (8.3) on M c (resp.
M f).

Proof (of the cofibration half). Given a weak equivalence f : A → B ∈ M c,
factor the map (f, 1B) : A qB → B ∈M c into a cofibration j : A qB � C and a
trivial fibration p : C ∼

�B. Then the composite cofibrations

A //
i1 // AqB //

j
// C and B //

i2 // AqB //
j

// C

have the property that p(ji1) = f and p(ji2) = 1B and therefore are, in view of
the two out of three property, trivial cofibrations and the desired result now follows
readily using again the two out of three property.
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15. Approximations

The usefulness of left and right Quillen functors is due to the fact that they
have left and right approximations, i.e. homotopically unique (13.2) homotopical
functors which, in a homotopical sense, are closest to them from the left or from
the right.

To define these approximations it is convenient to consider certain

15.1. Auxiliary categories. With a (not necessarily homotopical) functor
f : X → Y between homotopical categories (8.2 and 8.3) one can associate the
homotopical category of the homotopical functors X → Y over (resp.
under) f , i.e. the homotopical category(

Funw(X,Y ) ↓ f
)

(resp.
(
f ↓Funw(X,Y )

)
)

which has
(i) as objects the pairs (k, a), where k is a homotopical functor k : X → Y

and a is a natural transformation

a : k −→ f (resp. a : f −→ k)

and which has
(ii) as maps and weak equivalences t : (k1, a1) → (k2, a2) respectively the

natural transformations and natural weak equivalences t : k1 → k2 such
that

a2t = a1 (resp. ta1 = a2).

15.2. Approximations of Quillen functors. Given a Quillen adjunction
f : M ↔N :f ′

(i) a left approximation of the left Quillen functor f will be a homotopi-
cally terminal object (13.3) of

(
Funw(M ,N) ↓ f

)
(15.1), and

(ii) a right approximation of the right Quillen functor f ′ will be a homo-
topically initial object of

(
f ′ ↓Funw(N ,M)

)
.

Thus (13.3(viii))
(iii) the left approximations of f and the right approximations of f ′, if they

exist, are homotopically unique (13.2)
and it remains to verify their

15.3. Existence. For every Quillen adjunction f : M ↔ N :f ′ (14.1), left
deformation (r, s) of M into M c (8.3 and 10.2) and right deformation (r′, s′) of
N into N f, the pairs

(fr, fs) and (f ′r′, f ′s′)

are respectively a left approximation of f (15.2) and a right approximation of f ′.

Proof (of the left half). In view of 14.4 the pair (fr, fs) is an object of
(
Funw(M ,N) ↓ f

)
and to show that this object is homotopically terminal (13.3) one notes that every
object (k, a) ∈

(
Funw(M ,N) ↓ f

)
gives rise to a zigzag in

(
Funw(M ,N) ↓ f

)
(k, a) (kr, as)ksoo ar // (fr, fs)
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where as denotes the diagonal of the commutative square

kr
ar //

ks

��

fr

fs

��

k
a // f

which has the property that
(i) this zigzag is natural in (k, a),
(ii) the map ks is a weak equivalence, and
(iii) if (k, a) = (fr, fs), then ar = fsr is also a weak equivalence.

As one would like, approximations are compatible with compositions, and to
prove this we first consider two

15.4. Composition functors. Given two composable (not necessarily homo-
topical) functors

f1 : X −→ Y and f2 : Y −→ Z

between homotopical categories (8.2 and 8.3), one can consider the composition
functor (15.1)(

Funw(X,Y ) ↓ f1
)
×

(
Funw(Y ,Z) ↓ f2

)
−→

(
Funw(X,Z) ↓ f2f1

)
which sends a pair of objects (k1, a1) and (k2, a2) to their composition

(k2, a2)(k1, a1) = (k2k1, a2a1)

where a2a1 denotes the diagonal of the commutative diagram

k2k1
a2 //

a1

��

f2k1

a1

��

k2f1
a2 // f2f1

and the composition functor(
f1 ↓Funw(X,Y )

)
×

(
f2 ↓Funw(Y ,Z)

)
−→

(
f2f1 ↓Funw(X,Z)

)
which sends a pair of objects (k1, a1) and (k2, a2) to their composition

(k2, a2)(k1, a1) = (k2k1, a2a1)

where a2a1 denotes the diagonal of the commutative diagram

f2f1
a2 //

a1

��

k2f1

a1

��

f2k1
a2 // k2k1

and note that
(i) these composition functors are both homotopical (8.3)

and hence (13.3(vi))
(ii) if they send one homotopically terminal (or initial) object to a homotopi-

cally terminal (or initial) one, then they do so for every homotopically
terminal (or initial) object.
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Now we can state

15.5. Proposition. Given two composable Quillen adjunctions

f1 : M ←→N :f ′1 and f2 : N ←→ P :f ′2

(i) their composition

f2f1 : M ←→ P :f ′1f
′
2

is also a Quillen adjunction,
(ii) every composition of a left approximation of f1 with a left approximation

of f2 is a left approximation of f2f1, and
(iii) every composition of a right approximation of f ′2 with a right approxima-

tion of f ′1 is a right approximation of f ′1f
′
2.

Proof (of the left half). Part (i) is an immediate consequence of 14.2(iv) and
in view of 15.4(ii) it suffices to verify (ii) for only one choice of left deformation.
To do this, let (r1, s1) and (r2, s2) be left deformations of M into M c and N into
N c respectively (8.3 and 10.2). Then the map (15.3 and 15.4)

(f2r2, f2s2)(f1r1, f1s1)
f2s2f1r1−−−−−→ (f2f1r1, f2f1s1) ∈

(
Funw(M ,P ) ↓ f2f1

)
is readily verified to be a weak equivalence (15.1) and hence (13.3(vi)) the composi-
tion (f2r2, f2s2)(f1r1, f1s1) (15.4) is just like (f2f1r1, f2f1s1) a left approximation
of f2f1.

16. Derived adjunctions

A useful property of the approximations of Quillen functors is that

(i) for every Quillen adjunction f : M ↔ N : f ′, its adjunction induces,
for every pair consisting of a left approximation (k, a) of f and a right
approximation (k′, a′) of f ′ (15.2), a derived adjunction

Ho k : Ho M ←→ Ho N :Ho k′

which is natural in (k, a) and (k′, a′), and has the property that
(ii) for every two composable Quillen adjunctions, the compositions of their

derived adjunctions are derived adjunctions of their composition.

Before precisely formulating this result we first note the existence of

16.1. An induced partial adjunction. Let f : M ↔ N :f ′ be a Quillen
adjunction. Then, for every pair of objects X ∈ M c and Y ∈ N f (10.2), the
adjunction isomorphism

N(fX, Y ) ≈M(X, f ′Y )

is compatibly with the homotopy relation ∼ ( 10.5(ii)) and hence (10.6) induces a
partial adjunction isomorphism (10.1)

Ho N(fX, Y )
φ
≈ Ho M(X, f ′Y )

which is natural in X and Y .
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Moreover, for every two composable Quillen adjunctions f1 : M ↔ N :f ′1 and
f2 : N ↔ P :f ′2 and pair of objects X ∈ M c and Z ∈ P f, the diagram of partial
adjunction isomorphisms

Ho P (f2f1X,Z)
φ

≈
//

≈
φ

))RRRRRRRRRRRRRR
Ho M(X, f ′1f

′
2Z)

Ho N(f1X, f ′2Z)

≈
φ

55llllllllllllll

commutes.

Proof. This follows from the observation that, in view of 10.5, the given ad-
junction sends right homotopic maps fX → Y ∈ N to right homotopic maps
X → f ′Y ∈M and left homotopic maps X → f ′Y ∈M to left homotopic maps
fX → Y ∈N , and the second part then follows readily from the first.

We also need certain

16.2. Derived natural isomorphisms. Let f : M ↔ N :f ′ be a Quillen
adjunction. Then there are unique functions u and u′ which assign to every pair
of left approximations (k1, a1) and (k2, a2) of f and every pair of right approxi-
mations (k′1, a

′
1) and (k′2, a

′
2) of f ′, natural isomorphisms (called derived natural

isomorphisms)

u(k1, k2) : Ho k1 −→ Ho k2 and u′(k′2, a
′
2) : Ho k′2 −→ Ho k′1

such that
(i) u and u′ are natural in both variables, and
(ii) for every map

t : (k1, a1) −→ (k2, a2) ∈
(
Funw(M ,N) ↓ f

)
and every map

t′ : (k′2, a
′
2) −→ (k′1, a

′
1) ∈

(
f ′ ↓Funw(N ,M)

)
one has

u(k1, k2) = Ho t and u′(k′2, k
′
1) = Ho t′ .

Proof (of the left half). The composition(
Funw(M ,N) ↓ f

) j
// Funw(M ,N) Ho // Fun(Ho M ,Ho N)

in which j denotes the forgetful map and Ho is as in 8.4, sends weak equivalences
to isomorphisms and hence (8.4) admits a unique factorization(

Funw(M ,N) ↓ f
) γ′

// Ho
(
Funw(M ,N) ↓ f

)
// Fun(Ho M ,Ho N)

in which γ′ denotes the localization functor. One then readily verifies that the
function which sends a pair

(
(k1, a2), (k2, a2)

)
to the image in Fun(HoM ,Ho N)

of the (in view of 13.3(v)) unique map

γ′(k1, a1) −→ γ′(k2, a2) ∈ Ho
(
Funw(M ,N) ↓ f

)
has the desired properties.
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Using these derived natural isomorphisms we now implicitly define

16.3. Derived adjunctions. Given a Quillen adjunction f : M ↔ N :f ′,
there is a unique function which associates with every pair consisting of a left ap-
proximation (k, a) of f (15.2) and a right approximation (k′, a′) of f ′, a derived
adjunction

Ho k : HoM ←→ Ho N :Ho k′

such that
(i) for every two left approximations (k1, a1) and (k2, a2) of f and right ap-

proximations (k′1, a
′
1) and (k′2, a

′
2) of f ′, the derived natural isomorphisms

(16.2)

u(k1, k2) : Ho k1 −→ Ho k2 and u′(k′2, k
′
1) : Ho k′2 −→ Ho k′1

are conjugate (39.10) with respect to the associated derived adjunctions

Ho k1 : HoM ←→ Ho N :Ho k′1 and Ho k2 : HoM ←→ Ho N :Ho k′2
and

(ii) for every left deformation (r, s) of M into M c (8.3) and right defor-
mation (r′, s′) of N into N f, the adjunction isomorphism of the derived
adjunction

Ho(fr): Ho M ←→ Ho N :Ho(f ′r′)

associated with (fr, fs) and (f ′r′, f ′s′) (15.3) assigns to every pair of
objects X ∈M and Y ∈N the composition

Ho N(frX, Y ) ≈ Ho N(frX, r′Y )
φ
≈ Ho M(rX, f ′r′Y ) ≈ Ho M(X, f ′r′Y )

in which φ is the partial adjunction isomorphism (16.1) and the other
isomorphisms are induced by s′ and s.

16.4. Corollary. Let f : M ↔ N :f ′ be a Quillen adjunction and let (k, a)
and (k′, a′) respectively be a left approximation of f and a right approximation of
f ′. Then the functor Ho k : Ho M → Ho N is an equivalence of categories iff the
functor Ho k′ : HoN → Ho M is so.

We also note that the above (16.3) derived adjunctions are compatible with

16.5. Compositions. Let

f1 : M ←→N :f ′1 and f2 : N ←→ P :f ′2
be two composable Quillen adjunctions and let

(k1, a1) and (k2, a2) and (k′1, a
′
1) and (k′2, a

′
2)

respectively be left approximations of f1 and f2 and right approximations of f ′1 and
f ′2. Then the composition of the associated derived adjunctions

Ho k1 : HoM ←→ Ho N :Ho k′1 and Ho k2 : HoN ←→ Ho P :Ho k′2
is exactly the derived adjunction

Ho(k2k1): Ho M ←→ Ho P :Ho(k′1k
′
2)

associated with their compositions (15.4 and 15.5)

(k2k1, a2a1) and (k′1k
′
2, a
′
1a
′
2)

Draft: May 14, 2004



16. DERIVED ADJUNCTIONS 45

It thus remains to give a proof of 16.3 and 16.5.

16.6. Proof of 16.3. As (39.10)

(i) given an adjunction g1 : X ↔ Y : g′1, a pair of functors g2 : X → Y
and g′2 : Y → X and a pair of natural isomorphisms h : g1 → g2 and
h′ : g′2 → g′1, there is a unique adjunction g2 : X ↔ Y :g′2 such that h
and h′ are conjugate with respect to these two adjunctions

it suffices, in view of 16.2, to show that

(ii) for every two left deformations (r1, s1) and (r2, s2) of M into M c and
right deformations (r′1, s

′
1) and (r′2, s

′
2) of N into N f, the derived natural

isomorphisms (16.2)

u(fr1, fr2) : Ho(fr1) −→ Ho(fr2) and u′(f ′r′2, f
′r′1) : Ho(f ′r′2) −→ Ho(f ′r′1)

associated with the approximations (15.3)

(fr1, fs1) and (fr2, fs2) and (f ′r′2, f
′s′2) and (f ′r′1, f

′s′1)

are conjugate with respect to the derived adjunctions

Ho(fr1) : Ho M ←→ Ho N : Ho(f ′r′1) and Ho(fr2) : Ho M ←→ Ho N : Ho(f ′r′2)

associated, as in 16.3(ii), with the approximations

(fr1, fs1) and (f ′r′1, f
′s′1) and (fr2, fs2) and (f ′r′2, f

′s′2) .

To do this one notes that the commutativity of the diagrams

r2r1
r2s1 //

s2r1

��

r2

s2

��
r1 s1

// 1M

and

1N

s′1 //

s′2
��

r′1

s′2r
′
1

��

r′2
r′2s

′
1

// r′2r
′
1

implies that

(r2r1, s2s1) and (r′2r
′
1, s
′
2s
′
1)

where s2s1 and s′2s
′
1 denote their diagonals, are a left deformation of M into M c

and a right deformation of N into N f, from which in turn one can deduce that
(15.3 and 16.2)

Ho(fr2s1) Ho(fs2r1)−1 = u(fr1, fr2) : Ho(fr1) −→ Ho(fr2)

and

Ho(f ′s′2r
′
1)
−1 Ho(f ′r′2s

′
1) = u′(f ′r′2, f

′r′1) : Ho(f ′r′2) −→ Ho(f ′r′1)
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and the desired result then follows from the observation that every pair of objects
X ∈M and Y ∈N gives rise to a commutative diagram of isomorphisms

Ho N(fr2X,Y ) ≈ · · ·
φ
≈ · · · ≈ Ho M(X, f ′r′2Y )

(fr2s1)
∗

��

(f ′r′2s
′
1)∗

��

Ho N(fr2r1X,Y ) ≈ · · ·
φ
≈ · · · ≈ Ho M(X, f ′r′2r

′
1Y )

Ho N(fr1X,Y ) ≈ · · ·
φ
≈ · · · ≈ Ho M(X, f ′r′1Y )

(f ′s′2r
′
1)∗

OO

(fs2r1)
∗

OO

in which the horizontal sequences are as in 16.3(ii).

16.7. Proof of 16.5. In view of 16.3(i) it suffices to prove 16.5 for only one
choice of the left and right approximations. To do this let

(r1, s1) and (r2, s2) and (r′1, s
′
1) and (r′2, s

′
2)

respectively be left approximations of M into M c and N into N c and right ap-
proximations of N into N f and P into P f. Then the desired result follows readily
from the observation that, for every pair of objects X ∈M and Z ∈ P , in view of
16.1(ii) and the naturality of the maps induced by s1, s2, s′1 and s′2, the following
diagram of isomorphisms commutes.

Ho P (f2r2f1r1X,Z)
(s′2)∗ //

(s∗2)−1

��

Ho P (f2r2f1r1X, r′2Z)

(s∗2)−1

��

φ
**UUUUUUUUUUUUUUUUU

Ho N(r2f1r1X, f ′2r
′
2Z)

(s∗2)−1

��

Ho P (f2f1r1X,Z)
(s′2)∗ // Ho P (f2f1r1X, r′2Z)

φ
**UUUUUUUUUUUUUUUUU

φ

��

Ho N(f1r1X, f ′2r
′
2Z)

φ

ttiiiiiiiiiiiiiiiii

(s′1)∗

��

Ho M(X, f ′1f
′
2r
′
2Z)

(s′1)∗

��

Ho M(r1X, f ′1f
′
2r
′
2Z)

(s∗1)−1

oo

(s′1)∗

��

Ho N(f1r1X, r′1f
′
2r
′
2Z)

φ

ttiiiiiiiiiiiiiiiii

Ho M(X, f ′1r
′
1f
′
2r
′
2Z) HoM(r1X, f ′1r

′
1f
′
2r
′
1Z)

(s∗1)−1

oo

17. Quillen equivalences

We now briefly discuss Quillen equivalences, i.e. Quillen adjunctions f : M ↔
N :f ′ (14.1) with the property that, for every left approximation (k, a) of f (15.2)
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and every right approximation (k′, a′) of f ′, the functors

k : M −→N and k′ : N −→M

are inverse homotopical equivalences of homotopical categories (8.3).
We start with noting that corollary 16.4 generalizes to

17.1. Proposition. Let f : M ↔ N : f ′ be a Quillen adjunction (14.1).
Then the following six statements are equivalent:

(i) for one (and hence every) left approximation (15.2) (k, a) of f and one
(and hence every) right approximation (k′, a′) of f ′, the homotopical func-
tors k and k′ are homotopically inverse homotopical equivalences of cat-
egories (8.3)

(i)′ for one (and hence every) left approximation (k, a) of f , the homotopical
functor k is a homotopical equivalence of homotopical categories,

(i)′′ for one (and hence every) right approximation (k′, a′) of f ′ the homo-
topical functor k′ is a homotopical equivalence of homotopical categories,

(ii) for one (and hence every) left approximation (k, a) of f and one (and
hence every) right approximation (k′, a′) of f ′, the functors Ho k and
Ho k′ are inverse equivalences of categories

(ii)′ for one (and hence every) left approximation (k, a) of f , the functor Ho k
is an equivalence of categories, and

(ii)′′ for one (and hence every) right approximation (k′, a′) of f ′, the functor
Ho k′ is an equivalence of categories.

A Quillen adjunction with these properties thus induces some kind of “equiv-
alence of homotopy theories”, and such a pair is therefore called an adjunction
of

17.2. Quillen equivalences. A Quillen adjunction with the six equivalent
properties of (17.2) will be called an adjunction of Quillen equivalences and
one refers to its left Quillen functor as a left Quillen equivalence and its right
Quillen functor as a right Quillen equivalence.

A useful necessary and sufficient condition in order that a Quillen adjunction
be an adjunction of Quillen equivalences is the so-called

17.3. Quillen condition. A Quillen adjunction f : M ↔ N :f ′ is an ad-
junction of Quillen equivalences (17.2) iff it satisfies the Quillen condition that,
for every pair of objects X ∈ M c and Y ∈ N f (10.2), a map fX → Y ∈ N is a
weak equivalence iff its adjoint X → f ′Y ∈M is so.

17.4. Corollary. If for three Quillen adjunctions

f1 : X ←→ Y :f ′1, f2 : Y ←→ Z :f ′2 and f3 : Z ←→ T :f ′3

the two compositions

f2f1 : X ←→ Z :f ′1f
′
2 and f3f2 : Y ←→ T :f ′2f

′
3

are adjunctions of Quillen equivalences, then so are the original three pairs.
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It remains to give

Proofs of 17.1 and 17.3. In view of the fact that a functor is an equivalence of
categories iff it is part of an adjunction of which the unit and the counit are natural
isomorphisms, 17.1 and 17.3 follow readily from 16.4 and the following

17.5. Proposition. Let f : M ↔N :f ′ be a Quillen adjunction and let (r, s)
and (r′, s′) respectively be a left deformation of M into M c and a right deformation
of N into N f (8.3 and 10.2). Then the following three statements are equivalent:

(i) for every pair of objects X ∈M c and Y ∈N f, a map X → f ′Y ∈M is
a weak equivalence if (resp. only if) its adjunct fX → Y ∈N is so

(ii) the zigzag of natural transformations

1M r
soo // f ′r′fr (resp. frf ′r′ // r′ 1N

s′oo )

in which the unnamed map is the adjunct of the natural weak equivalence

fr
s′fr

// r′fr (resp. rf ′r′
sf ′r′

// f ′r′ )

is a zigzag of natural weak equivalences, and
(iii) the unit (resp. counit) (39.10)

1Ho M −→ Ho(f ′r′) Ho(fr) (resp. Ho(fr) Ho(f ′r′) −→ 1Ho N )

of the associated derived adjunction ( 16.3(ii))

Ho(fr): Ho M ←→ Ho N :Ho(f ′r′)

is a natural isomorphism.

Proof (of the first half). Clearly (i) implies (ii) and a straightforward calculation
using 16.1, 16.3(ii) and 39.10 yields that the image of the zigzag 1M

s←− r → f ′r′fr
in Ho X is exactly the unit 1Ho M → Ho(f ′r′) Ho(fr) of the derived adjunction, so
that (ii) implies (iii).

It thus remains to show that (iii) implies (i) and we do this by successively
noting that, if p : X → f ′Y ∈M is a map such that its adjunct q : fX → Y ∈ N
is a weak equivalence, then

(i) the map q(fsX) : frX → Y ∈N is also a weak equivalence and hence its
image γ′

(
q(fsX)

)
∈ Ho N under the localization functor γ′ : N → Ho N

is an isomorphism,
(ii) in view of 16.1 and 16.3(ii), the adjunct of γ′

(
q(fsX)

)
is the image

γ
(
(f ′s′Y )p

)
∈ Ho M of the map (f ′s′Y )p : X → f ′r′Y ∈ M under

the localization functor γ : M → Ho M ,
(iii) this adjunct γ

(
(f ′s′Y )p

)
is the composition of the unit (which is assumed

to be an isomorphism) with the image of γ′
(
q(fsX)

)
under the functor

Ho(f ′r′) and hence is also an isomorphism, and
(iv) in view of the saturation of M (10.8), the map (f ′s′Y )′ is thus a weak

equivalence and so is therefore the original map p : X → fY ∈M .
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18. Homotopical comments

In this last section we note that the main results of this chapter are special
cases of more general results on homotopical categories which we will obtain in
chapter VII, some of which we will need in chapter IV.

We start with observing that, in view of 14.4, Quillen functors (14.1) are

18.1. Deformable functors. Given two homotopical categories X and Y
(8.2), a (not necessarily homotopical) functor f : X → Y is called left (resp. right)
deformable if (40.2) f is homotopical (8.3) on a left (resp. a right) deformation
retract of X (8.3).

Similarly Quillen adjunctions (14.1) are

18.2. Deformable adjunctions. Given two homotopical categories X and
Y , an adjoint pair of functors f : X ↔ Y :f ′ is called a deformable adjunction
if (43.1) the left adjoint f is left deformable (18.1) and the right adjoint is right
deformable.

Just like Quillen functors (15.2 and 15.3), deformable functors have

18.3. Approximations. Given a (not necessarily homotopical) functor f : X →
Y between homotopical categories, a left (resp. a right) approximation of f is
(41.1) a homotopically terminal (resp. initial) object (13.3) of the “homotopical
category of homotopical functors X → Y over (resp. under) f”(

Funw(X,Y ) ↓ f
)

(resp.
(
f ↓Funw(X,Y )

)
)

(which is defined as in 15.1), and thus (13.3(viii))

(i) such approximations of f , if they exist, are homotopically unique (13.2).

The existence of approximations of Quillen functors (15.2 and 15.3) then is a special
case of 41.2, which is proven exactly as 15.3, and which states that

(ii) a sufficient condition in order that a (not necessarily homotopical) func-
tor f : X → Y between homotopical categories has left (resp. right)
approximations is that f be left (resp. right) deformable (18.1),

as in that case

(iii) for every left (resp. right) deformation retract X0 ⊂ X (8.3) on which
f is homotopical and every left (resp. right) deformation (r, s) of X into
X0, the pair

(fr, fs) ∈
(
Funw(X,Y ) ↓ f

)
(resp. (fr, fs) ∈

(
f ↓Funw(X,Y )

)
)

is a left (resp. a right) approximation of f .

Next we consider
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18.4. Compositions of deformable functors. Deformable functors are not
as well behaved under composition as Quillen functors. For instance, the compo-
sition of two deformable functors need not be deformable, nor if it is, are the
compositions of their approximations necessarily approximations of their composi-
tion. To deal with this we call, for two composable (not necessarily homotopical)
functors between homotopical categories

f1 : X −→ Y and f2 : Y −→ Z

the pair (f1, f2) locally left (resp. right) deformable if (42.3) there exist left
(resp. right) deformation retracts X0 ⊂X and Y 0 ⊂ Y (8.3) such that

(i) f1 is homotopical on X0 (and hence f1 is left (resp. right) deformable),
(ii) f2 is homotopical on Y 0 (and hence f2 is left (resp. right) deformable),

and
(iii) f2f1 is homotopical on X0 (and hence f2f1 is left (resp. right) de-

formable),

and call such a pair left (resp. right) deformable if (42.3)

(iv) f1 sends all of X0 into Y 0 (which together with (i) and (ii) implies (iii)),

and note that (42.3(v)) such left (resp. right) deformability is equivalent to the
requirement that

(v) there exist left (resp. right) deformations (r1, s1) on X and (r2, s2) on Y
such that f1 and f2 are homotopical on the full subcategories spanned
by the images of r1 and r2 respectively and the natural transformation

f2s2f1r1 : f2r2f1r1 −→ f2f1r1 (resp. f2s2f1r1 : f2f1r1 −→ f2r2f1r1)

is a natural weak equivalence

as in that case f2 is homotopical on the full subcategory of Y spanned by the
images of r2 and f1r1.

This last result implies that the behavior of approximations of Quillen functors
under composition (15.5) is a special case of 42.4, which is proven exactly as in
15.5, and which states that

(vi) if, for two composable functors

f1 : X −→ Y and f2 : Y −→ Z

the pair (f1, f2) is left (resp. right) deformable, then their composition is
left (resp. right) deformable and the compositions (as defined in 15.4) of
their left (resp. right) approximations are left (resp. right) approximations
of their composition.

Moreover, one can often verify the deformability of two composable functors,
by noting that (42.6)

(vii) if, for two composable deformable adjunctions (18.2)

f1 : X ←→ Y :f ′1 and f2 : Y ←→ Z :f ′2

between saturated (8.4) homotopical categories, the pair (f1, f2) is locally
left deformable and the pair (f ′2, f

′
1) is locally right deformable, then the

pair (f1, f2) is left deformable iff the pair (f ′2, f
′
1) is right deformable.
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Next we note that, just like Quillen adjunctions, deformable adjunctions (18.2)
give rise to

18.5. Partial adjunctions and derived adjunctions. The existence of the
induced partial adjunction of a Quillen functor (16.1) is a special case of 43.2 which
states in part that

(i) given a deformable adjunction (18.2) f : X ↔ Y :f ′, a left deformation
retract X0 ⊂ X on which f is homotopical and a right deformation
retract Y 0 ⊂ Y on which f ′ is homotopical, its adjunction induces a
partial adjunction which to every pair of objects X ∈X0 and Y ∈ Y 0

assigns the unique partial adjunction isomorphism (8.4)

Ho Y (fX, Y ) ≈ Ho X(X, f ′Y )

which
(ii) is natural in X and Y , and
(iii) is compatible with the given adjunction in the sense that the diagram

Y (fX, Y ) ≈

��

X(X, f ′Y )

��

Ho Y (fX, Y ) ≈ Ho X(X, f ′Y )

in which the top map is the given adjunction isomorphism and the vertical
maps are induced by the localization functors (8.4), commutes.

Using these partial adjunctions and the observation that (44.1)

(iv) the results of 16.2 remain valid if one replaces everywhere the Quillen
adjunction f : M ↔ N :f ′ by a deformable adjunction f : X ↔ Y :f ′

(18.2)

one then can show, using the same arguments as were used in proving 16.3 and 16.5
that (44.2)

(v) the results of 16.3 remain valid if one replaces everywhere the Quillen
adjunction f : M ↔ N :f ′ by a deformable adjunction f : X ↔ Y :f ′

and the deformation retracts M c and N f by a left deformation retract
X0 of X on which f is homotopical and a right deformation retract Y 0

of Y on which f ′ is homotopical

and that (44.4)

(vi) the results of 16.5 remain valid if one replaces the composable Quillen
adjunctions

f1 : M ←→N :f ′1 and f2 : N ←→ P :f ′2

by composable deformable adjunctions

f1 : X ←→ Y :f ′1 and f2 : Y ←→ Z :f ′2

for which the pairs (f1, f2) and (f ′1, f
′
2) are respectively left and right

deformable (18.4).
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We end with a comment on

18.6. The Quillen condition. A deformable adjunction (18.2) f : X ↔ Y :
f ′ is (45.1) said to satisfy the Quillen condition if

(i) there exist a left deformation retract X0 ⊂X on which f is homotopical
and a right deformation retract Y 0 ⊂ Y on which f ′ is homotopical, such
that, for every pair of objects X ∈X0 and Y ∈ Y 0, a map fX → Y ∈ Y
is a weak equivalence iff its adjunct X → f ′Y ∈X is so,

which is readily verified to be equivalent to the requirement that
(ii) for every left deformation retract X0 ⊂ X on which f is homotopical

and every right deformation retract Y 0 ⊂ Y on which f ′ is homotopical,
for every pair of objects X ∈X0 and Y ∈ Y 0, a map fX → Y ∈ Y is a
weak equivalence iff its adjunct X → f ′Y ∈X is so.

The results of 17.1 and 17.3 for Quillen adjunctions then are a special case of the
essentially identical results for deformable adjunctions obtained in the last sentence
of 45.3 (where we assume that the categories involved are saturated (8.4)).
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CHAPTER IV

Homotopical cocompleteness and completeness of
model categories

19. Introduction

19.1. Summary. In this chapter we consider the “homotopically correct” ho-
motopy colimit and limit functors on a model category, i.e. the homotopy colimit
and limit functor which, for all diagrams indexed by a small category (and not
merely the objectwise cofibrant or fibrant ones), yield the “correct” homotopy type,
and show in particular that every model category M not only (by definition) is co-
complete and complete; but also is homotopically cocomplete and complete in a
sense which is considerably stronger than the requirement that there exist homo-
topy D-colimit and D-limit functors on M for every small category M .

In more detail (in the colimit case only):

19.2. Homotopy colimit functors. Let cat denote the category of small
categories (8.1). Given a model category M we then define, for every object D ∈
cat,

(i) a homotopy D-colimit functor on M as a left approximation (18.3)
of an arbitrary but fixed left adjoint

colimD : MD −→M

of the constant diagram functor M →MD,
and more generally, for every map u : A→ B ∈ cat,

(ii) a homotopy u-colimit functor on M as a left approximation of an
arbitrary but fixed left adjoint

colimu : MA −→MB

of the induced diagram functor

u∗ = Mu : MB −→MA

and show that
(iii) such homotopy u-colimit functors exist and are homotopically unique

(13.2),
(iv) every such homotopy u-colimit functor (k, a) on M comes with a derived

adjunction (16.3 and 18.5(v))

Ho k : HoXA ←→XB :Hou∗

and that
(v) these homotopy colimit functors on M are composable.

We also note that
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(vi) left Quillen functors are homotopically compatible with homotopy co-
limit functors in the sense that, for every left Quillen functor f : M →N
and map u : A→ B ∈ cat

(vi)′ the compositions (15.4 and 18.4) of a homotopy u-colimit functor on M

with a left approximation (18.3) of the functor fB : MB →NB, and
(vi)′′ the compositions of a left approximation of the functor fA : MA →NA

with a homotopy u-colimit functor on N ,
are respectively left approximations of the (see 19.6(v) below) canonically (naturally)
isomorphic compositions

MA colimu

−−−−→MB fB

−−→NB and MA fA

−−→NA colimu

−−−−→NB

and hence (13.4) canonically weakly equivalent (13.2).

19.3. Homotopical cocompleteness. We show that every model category
M is homotopically cocomplete in a sense which is stronger than the require-
ment that there exist homotopy D-colimit functors on M for every object D ∈ cat
(19.2) or even homotopy u-colimit functors on M for every map u : A→ B ∈ cat,
as it requires the existence of what we will call a homotopy colimit system on
M , i.e. the existence of a function which assigns

(i) to every map u : A → B ∈ cat, a homotopy u-colimit functor (ku, au)
on M , and

(ii) to every composable pair of maps u : A → B and v : B → D ∈ cat, a
weak equivalence from the composition of the chosen homotopy u- and
v-colimit functors to the chosen homotopy vu-colimit functor, which is
associative

We also note that
(iii) such homotopy colimit systems on M are homotopically unique (13.2).

19.4. The proofs. The results mentioned in 19.2 and 19.3 will be obtained
by combining some of the statements in §18 (the proofs of which are in Part II)
with the deformability result (20.5) that

(i) there exists, for every model category M and object D ∈ cat (19.2), a
left deformation retract MD

vc ⊂MD (8.3) such that
(ii) for every map u : A→ B ∈ cat, the functor colimu : MA →MB sends

objectwise weak equivalences in MA
vc to objectwise weak equivalences in

MB, and
(iii) for every left Quillen functor f : M → N and object D ∈ cat, the

functor fD : MD → ND sends objectwise weak equivalences in MD
vc to

objectwise weak equivalences in ND
vc .

The proof of this result relies heavily on the fact that, for every object D ∈ cat,
the category of simplices ∆D of D and its opposite ∆op D have the property that,
for every model category M , the model structure of M induces a Reedy model
structure on the diagram categories M∆ D and M∆op D.

19.5. Organization of the chapter. After fixing some notation and termi-
nology involving colimit and limit functors (in the remainder of this section) we
devote two sections to homotopy colimit and limit functors (§20) and homotopical
cocompleteness and completeness (§21) and then deal in the last two sections with
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Reedy model structures (§22) and a proof of the deformability result (§23). In the
last section (§24) we note that the main results of this chapter, i.e. those obtained
in §20 and §21 are special cases of more general results on homotopical categories
which we discuss in chapter VIII.

It thus remains to discuss

19.6. Colimit and limit functors. Given a category X and a category D,
(i) a D-colimit (resp. D-limit) functor on X will be a left (resp. a right)

adjoint XD → X of the constant diagram functor c∗ : D → XD

(which sends every object of X to the corresponding constant D-diagram)
and, if such adjoints exist, we denote an arbitrary but fixed such adjoint
by

colimD (resp. limD)
and more generally, given a functor u : A→ B

(ii) a u-colimit (resp. a u-limit) functor on X will be a left (resp. a right)
adjoint XA →XB of the induced diagram functor

Xu = u∗ : XB −→XA

(which sends every functor B → X to its composition with u) and, if
such adjoints exist, we denote an arbitrary but fixed such adjoint by

colimu (resp. limu)

and similarly
(iii) if, for two composable functors u : A → B and v : B → D there exist

u-colimit (resp. u-limit) functors and v-colimit (resp. v-limit) functors
(and hence vu-colimit (resp. vu-limit) functors) on X we denote by

colim(v,u) : colimv colimu −→ colimvu (resp. lim(v,u) : limvu −→ limv limu)

the conjugate (see 39.10) of the identity natural transformation of the
functor

(vu)∗ = u∗v∗ : XD −→XA .
These definitions readily imply that colimit and limit functors are composable, i.e.
that

(iv) for every composable pair of functors u : A → B and v : B → D, every
composition of a u-colimit (resp. u-limit) functor on X with a v-colimit
(resp. v-limit) functor on X, if these both exist, is a vu-colimit (resp.
vu-limit) functor on X,

and that left and right adjoints are compatible with respectively colimit and limit
functors, in the sense that

(v) for every adjunction f : X ↔ Y : g and functor u : A → B and ev-
ery pair of u-colimit (resp. u-limit) functors s on X and t on Y , the
compositions

fBs and tfA : XA −→ Y B (resp. gBt and sgA : Y A −→XB)

are left (resp. right) adjoints of the composition

XugB = gAY u : Y B −→XA (resp. Y ufB = fAXu : XB −→ Y A)

and hence canonically naturally isomorphic (13.1).
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We end with some comments on the related notions of

19.7. Cocompleteness and completeness. One calls a category X co-
complete (resp. complete) if

(i) for every object D ∈ cat (the category of small categories (8.1)), there
exist D-colimit (resp. D-limit) functors on X (19.6(i)),

and such cocompleteness (resp. completeness) implies that

(ii) for every map u : A → B ∈ cat, there exist u-colimit (resp. u-limit)
functors on X ( 19.6(ii)),

for instance the functor which sends an object T ∈ XA to the functor B → X
which associates with each object B ∈ B the object (19.6)

colim(u↓B) j∗T ∈X (resp. lim(B↓u) j∗T ∈X)

where j denotes the forgetful functor

j : (u ↓B) −→ A (resp. j : (B ↓u) −→ A) .

However, in spite of 19.6(iv), it is in general not possible to find for each map
u ∈ cat a u-colimit (resp. a u-limit) functor on X such that these functors form a
diagram indexed by the category cat, but only what we will call a colimit (resp.
a limit) system on X, and by which we mean a function F which assigns

(iii) to every object D ∈ cat the diagram category XD,
(iv) to every map u : A → B ∈ cat, a u-colimit (resp. u-limit) functor

Fu : FA→ FB, and
(v) to every composable pair of maps u : A → B and v : B → D ∈ cat the

conjugate (see 39.10)

F (v, u) : (Fv)(Fu) −→ F (vu) (resp. F (v, u) : F (vu) −→ (Fv)(Fu))

of the identity natural transformation

(vu)∗ = u∗v∗ : FD −→ FA .

Clearly

(vi) such a colimit (resp. limit) system on X exists iff X is cocomplete (resp.
complete).

In fact in that case a for our purposes convenient example of such a colimit
(resp. limit) system on X is the function

colim(cat) (resp. lim(cat))

which assigns to every map u : A → B ∈ cat the u-colimit (resp. u-limit) functor
(19.6(ii))

colim(cat) u = colimu (resp. lim(cat) u = limu)

and to every composable pair of maps u : A→ B and v : B →D ∈ cat, the natural
isomorphism (19.6(iii))

colim(cat)(v, u) = colim(v,u) (resp. lim(cat)(v, u) = lim(v,u)) .
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20. Homotopy colimit and limit functors

Given a model category M , we now

(i) define, for every functor u : A→ B between small categories (8.1) homo-
topy u-colimit and u-limit functors on M ,

(ii) prove their existence, homotopical uniqueness (13.2), composability and
homotopical compatibility with Quillen functors, and

(iii) note that they give rise to derived adjunctions which are compatible with
composition.

We thus start with defining

20.1. Homotopy colimit and limit functors. Given a model category M
and an object D ∈ cat (the category of small categories (8.1)),

(i) a homotopy D-colimit (resp. D-limit) functor on M will be a left
(resp. a right) approximation (18.3) of the functor colimD : MD → M

(resp. limD : MD →M) (19.6(i)),

and more generally, given a map u : A→ B ∈ cat,

(ii) a homotopy u-colimit (resp. u-limit) functor on M will be a left
(resp. a right) approximation of the functor colimu : MA →MB (resp.
limu : MA →MB) (19.6(ii))

and hence (18.3(i))

(iii) such homotopy colimit (resp. limit) functors on M , if they exist, are
homotopically unique (13.2).

Moreover

20.2. Existence. For every model category M and map u : A→ B ∈ cat

(i) there exist homotopy u-colimit (resp. u-limit) functors on M , and
(ii) every homotopy u-colimit (resp. u-limit) functor (k, a) on M comes with

a derived adjunction

Ho k : Ho MA ←→ Ho MB :Hou∗ (resp. Hou∗ : HoMB ←→ Ho MA :Ho k)

associated (16.3 and 18.5(v)) with the pair of approximations(
(k, a), (u∗, 1u∗)

)
(resp.

(
(u∗, 1u∗), (k, a)

)
)

which has as its counit (resp. unit) the natural transformation

Ho
(
e(au∗)

)
: (Ho k)(Hou∗) −→ 1Ho MB (resp. Ho

(
(au∗)e

)
: 1Ho MB −→ (Ho k)(Hou∗))

where

e : colimu u∗ −→ 1MB (resp. e : 1MB −→ limu u∗)

denotes the counit (resp. the unit) of the adjunction

colimu : MA ←→MB :u∗ (resp. u∗ : MB ←→MA :limu) .
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20.3. Composability. For every model category M , composable pair of maps
u : A → B and v : B → D ∈ cat and homotopy u-colimit (resp. u-limit) functor
(ku, au) and homotopy v-colimit (resp. v-limit) functor (kv, av) on M ,

(i) their “composition”

(kvku, colim(v,u) avau) (resp. (kvku, avau lim(v,u)))

in which colim(v,u) (resp. lim(v,u)) is as in 19.6(ii) and avau denotes the
diagonal of the commutative diagram

kvku
av //

au

��

colimv ku

au

��

kv colimu
av

// colimv colimu

(resp.

limv limu av //

au

��

kv limu

au

��

limv ku av

// kvku

)

is a homotopy vu-colimit (resp. vu-limit) functor on M , and
(ii) the composition of their derived adjunctions (20.2) is the derived adjunc-

tion of their “composition”.

We also note their compatibility with Quillen functors, i.e.

20.4. Homotopical compatibility with Quillen functors. For every Quillen
adjunction f : M ↔ N :g (14.1) and map u : A→ B ∈ cat, the left Quillen func-
tor f is homotopically compatible with the homotopy u-colimit functors and
right Quillen functor g is homotopically compatible with the homotopy u-limit
functors on M and N in the sense that

(i) the compositions of a homotopy u-colimit functor on M with a left ap-
proximation (18.3) of fB and of a left approximation of fA with a homo-
topy u-colimit functor on N are respectively left approximations of the
canonically (naturally) isomorphic (19.6(v)) compositions

MA colimu

−−−−→MB fB

−−→NB and MA fA

−−→NA colimu

−−−−→NB

and hence are all canonically weakly equivalent (13.4), and dually
(ii) the compositions of a homotopy u-limit functor on N with a right ap-

proximation of gB and of a right approximation of gA with a homotopy
u-limit functor on M are respectively right approximations of the canon-
ically (naturally) isomorphic compositions

NA limu

−−−→NB gB

−−→MB and NA gA

−−→MA limu

−−−→MB

and hence are all canonically weakly equivalent.

The proof of these three propositions will use the following result which we will
prove in 23.4.

20.5. Deformability result. In 23.3 below we define, for every model cate-
gory M and object D ∈ cat, a full subcategory

(MD)vc ⊂MD (resp. (MD)vf ⊂MD)

and then show in 23.4 below that
(i) for every model category M and object D ∈ cat, (MD)vc (resp. (MD)vf)

is a left (resp. a right) deformation retract (8.3) of MD,
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(ii) for every Quillen adjunction f : M ↔ N :g (14.1) and object D ∈ cat,
the functor

fD : MD −→ND (resp. gD : ND −→MD)

sends objectwise weak equivalences in (MD)vc (resp. (ND)vf) to object-
wise weak equivalences in (ND)vc (resp. (MD)vf), and

(iii) for every model category M and map u : A → B ∈ cat, the functor
(19.6)

colimu : MA −→MB (resp. limu : MA −→MB)

sends objectwise weak equivalences in (MA)vc (resp. (MA)vf) to object-
wise weak equivalences in MB

c (resp. MB
f ) (10.2).

20.6. Proofs (of the colimit halves) of 20.2, 20.3 and 20.4. The first
part of 20.2 follows from 18.3(ii) and the fact that, in view of 20.5(i) and (iii), the
functor colimu is left deformable (18.1), the first part of 20.3 is a consequence of
18.4, the saturation of M and hence of MA and MB (8.4 and 10.2), the right
deformability (18.4) of the pair (Mv,Mu) and, in view of 20.5(iii), the local left
deformability of the pair (colimu, colimv), and if (r, s) is a left deformation (8.2) of
MA into MA

vc (20.5), then the resulting commutative diagram

(kr)u∗
(ks)u∗

//

(ar)u∗

��

ku∗

e(au∗)

((PPPPPPPPPPPPPP

au∗

��

(colimu r)u∗
(colimu s)u∗

// colimu u∗
e // 1MB

gives rise to the commutative diagram

(Ho kr)(Hou∗) //

��

(Ho k)(Hou∗)

Ho(e(au∗))

��

(Ho colimu r)(Hou∗) // 1Ho MB

and the second part of 20.2 now follows from the observation that, in view of 16.3
and 18.5(v), the natural transformation (Ho k)(Hou∗)→ 1Ho MB obtained by going
counter clockwise around this diagram is exactly the desired counit.

To prove the second part of 20.3 one notes that in the commutative diagram

kvkuu
∗v∗

au //

1

��

kv colimu u∗v∗
eu //

av

��

kvv
∗ av //

av

��

colimv v∗
ev // 1MB

1

��

colimv colimu u∗v∗
eu //

colim(v,u)

��

colimv v∗
ev // 1MB

1

��

kvku(vu)∗ // colimvu(vu)∗
evu // 1MB

in which eu, ev and evu are (induced by) the relevant counits, the top row, in
view of 16.5 and 18.5(vi), induces the counit of the adjunction associated with the
composition, in the sense of 15.4, of (ku, au) and (kv, av), while the bottom row,
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in view of the first half of the proposition, induces the counit of the adjunction
associated with their “composition”, in the sense of 20.3(i).

21. Homotopical cocompleteness and completeness

In this section we show that every model category M is homotopically cocom-
plete and complete in the sense that there exist homotopy colimit and limit systems
on M , which we define as a kind of left and right approximation of the colimit and
limit systems colim(cat) and lim(cat) (19.7).

To do this it is convenient to first introduce the notions of

21.1. Left and right cat-systems. Given a model category M , a left (resp.
a right) cat-system on M will be a function F which assigns

(i) to every object D ∈ cat the diagram category FD = MD,
(ii) to every map u : A → B ∈ cat a (not necessarily homotopical) functor

fu : FA→ FB, and
(iii) to every composable pair of maps u : A → B and v : B → D ∈ cat, a

natural weak equivalence (called composer)

F (v, u) : (Fv)(Fu) −→ F (vu) (resp. F (v, u) : F (vu) −→ (Fv)(Fu))

which is associative in the sense that
(iv) for every three composable maps u : A → B, v : B → D and x : D →

E ∈ cat, the following diagram commutes

(Fx)(Fv)(Fu)
(Fx)F (v,u)

//

F (x,v)(Fu)

��

(Fx)F (vu)

F (x,vu)

��

F (xv)(Fu)
F (xv,u)

// F (xvu)

(Fx)F (vu)
(Fx)F (v,u)

// (Fx)(Fv)(Fu)

F (xvu)

F (x,vu)(resp.
OO

F (xv,u)
// F (xv)(Fu)

F (x,v)(Fu) )
OO

and such a cat-system will be called homotopical if, for every map u : A→ B ∈
cat, the functor Fu : FA→ FB is homotopical.

Furthermore a map h : F → G between two such left (resp. right) cat-systems
F and G will be a function h which assigns to every map u : A → B ∈ cat a
natural transformation hu : Fu → Gu, which commutes with the composers in the
sense that

(v) for every composable pair of maps u : A→ B and v : B →D ∈ cat, the
following diagram commutes:

(Fv)(Fu)
F (v,u)

//

(hv)(hu)

��

F (vu)

h(vu)

��

(Gv)(Gu)
G(v,u)

// G(vu)

F (vu)
F (v,u)

//

(resp. h(vu)

��

(Fv)(Fu)

(hv)(hu) )
��

G(vu)
G(v,u)

// (Gv)(Gu)

and such a map will be called a weak equivalence whenever, for every
map u ∈ cat, the natural transformation hu is a natural weak equivalence.

We denote the resulting homotopical category of left (resp. right) cat-systems
by

catL-syst (resp. catR-syst)
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and its full subcategory spanned by the homotopical cat-systems (iv) by

catL-systw (resp. catR-systw) .

21.2. Example. For every model category M , the colimit (resp. the limit)
systems on M (19.7) are left (resp. right) cat-systems on M , and so is in particular
the colimit system colim(cat) (resp. the limit system lim(cat)) (19.7).

Now we can define

21.3. Homotopy colimit and limit systems. Given a model category M ,
a homotopy colimit (resp. limit) system on M will be a pair (K, a) consisting
of an object (21.1)

K ∈ catL-systw (resp. K ∈ catR-systw)

and a map (21.1 and 21.2)

a : K −→ colim(cat) ∈ catL-syst (resp. a : lim(cat) −→ K ∈ catR-syst)

such that

(i) for every map u ∈ cat, the pair (Ku, au) is a homotopy u-colimit (resp.
u-limit) functor on M (20.1), and

(ii) (K, a) is a homotopically terminal (resp. initial) object of the “homo-
topical category of homotopical left (resp. right) cat-systems on M over
colim(cat) (resp. under lim(cat))

(catL-systw ↓ colim(cat)) (resp. (lim(cat) ↓ catR-systw))

which has as objects the above pairs (K, a) and, for every two such pairs
(K1, a1) and (K2, a2) as maps and weak equivalences (K1, a1)→ (K2, a2)
the maps and weak equivalences t : K1 → K2 (21.1) such that a2t = a1

(resp. ta1 = a2).

It then follows from 13.2(ii) and 13.3(vii) that

(iii) if one object of

(catL-systw ↓ colim(cat)) (resp. (lim(cat) ↓ catR-systw))

satisfies both (i) and (ii), then every object which satisfies one of (i) and
(ii) also satisfies the other

and hence (13.3(vii))

(iv) the homotopy colimit (resp. limit) systems on M , if they exist, are ho-
motopically unique (13.2).

It thus remains to prove the promised

21.4. Homotopical cocompleteness and completeness of model cate-
gories. Let M be a model category. Then

(i) M is homotopically cocomplete and complete in the sense that
(ii) there exist homotopy colimit and limit systems on M (21.3).

Moreover 21.3(iii)
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(iii) every object of

(catL-systw ↓ colim(cat)) (resp. (lim(cat) ↓ catR-systw))

which satisfies either 21.3(i) or 21.3(ii) satisfies both and hence is such
a homotopy colimit (resp. limit) system.

Proof (of the colimit half). Let (r, s) be a pair of functions which assign to every
object D ∈ cat a left deformation (rD, sD) of MD into MD

vc (8.3 and 20.5(i)), and
for every left cat-system K on M (21.1), let Kr denote the function which assigns

(i) to every map u : A→ B ∈ cat, the functor

(Kr)u = (Ku)rA : MA −→MB

and
(ii) to every composable pair of maps u : A→ B and v : B → D ∈ cat, the

composition (Kr)(v, u) of the natural transformation

(Kr)v(Kr)u = (Kv)rB(Ku)rA
(Kv)sB(Ku)rA−−−−−−−−−−→ (Kv)(Ku)rA

with the natural weak equivalence

(Kv)(Ku)rA
K(v,u)rA−−−−−−→ K(vu)rA = (Kr)(vu)

and let Ks denote the function which assigns
(iii) to every map u : A→ B ∈ cat, the natural transformation

(Ks)u = (Ku)sA : (Ku)rA −→ Ku .

Clearly
(iv) if K is a homotopical left cat-system (21.1), then so is Kr and the func-

tion Ks is a weak equivalence Kr → K ∈ catL-systw (21.1).
Furthermore the saturation of M , together with 18.3(iii), 18.4 and 20.5(iii) and
the fact that, for every map u : A → B ∈ cat, the functor Mu : MB → MA is
homotopical, implies that

(v) Fr is a homotopical left cat-system and the function Fs is a map Fr →
F ∈ catL-syst.

In view of the naturality in K of the functions Kr and Ks, it therefore follows that

(vi) every object (K, a) ∈ (catL-systw ↓ colim(cat)) (21.2 and 21.3) gives rise
to a zigzag in (catL-systw ↓ colim(cat))

(K, a) Ks←−− (Kr, as) ar−→ (colim(cat) r, colim(cat) s)

in which as denotes the diagonal of the commutative diagram

Kr
ar //

Ks

��

colim(cat) r

colim(cat) s
��

K
a // colim(cat)

which is natural in (K, a) and in which ar : Kr → colim(cat) r is the map
given by (ar)u = (au)rA for every map u : A→ B ∈ cat
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and 21.4(ii) now is a consequence of 13.3, 21.3 and the observation that, as for
every map u : A→ B ∈ cat the natural transformation(

(colim(cat) s)r
)
u = (colim(cat) s)urA = colimu sArA

is a natural weak equivalence, the map

(colim(cat) s)r : (colim(cat) r)r −→ colim(cat) r ∈ catL-systw

is a weak equivalence.

22. Reedy model categories

In preparation for the next section, where we will give a proof of 20.5, we
(i) review the notion of a Reedy category and, for every Reedy category

B and model category M , the resulting Reedy model structure on the
diagram category MB [Hir03] and [Hov99], and

(ii) discuss briefly the rather useful special case of a Reedy category with
fibrant or cofibrant constants, i.e. [Hir03] a Reedy category B with the
property that, for every model category M the adjoint pair of functors
(19.6)

colimB : MB ←→M :c∗ or c∗ : M ←→MB :limB

are the left and right adjoints of a Quillen adjunction.
We thus start with

22.1. Reedy category. A Reedy category consists of a small category B

(8.1), together with two subcategories
−→
B and

←−
B such that

(i) there exists a degree function which assigns to every object B ∈ B a
non-negative integer deg B such that all non-identity maps of

−→
B raise

the degree and all non-identity maps of
←−
B lower it, and

(ii) every map b ∈ B admits a functorial factorization b =
−→
b
←−
b with

−→
b ∈
−→
B

and
←−
b ∈
←−
B .

Such Reedy categories give rise to

22.2. Reedy model structures. For every model category M and Reedy
category B (22.1) the Reedy model structure on the diagram category MB

will be the model structure in which the weak equivalences, the cofibrations and
the fibrations (which will sometimes be referred to as Reedy weak equivalences,
Reedy cofibrations and Reedy fibrations) are as in the last part of the following

22.3. Proposition. For every model category M and Reedy category B (22.1),

(i) the diagram category M
−→
B admits a model structure in which the weak

equivalences and the fibrations are the objectwise ones,
(ii) the diagram category M

←−
B admits a model structure in which the weak

equivalences and the cofibrations are the objectwise ones, and
(iii) the diagram category MB admits a model structure in which a map is a

weak equivalence, a cofibration or a fibration iff its restriction to both
−→
B

and
←−
B is so in the sense of (i) and (ii).
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22.4. Corollary. If f : M ↔N : g is a Quillen adjunction (14.1), then so is,
for every Reedy category B, the induced adjunction

fB : MB ←→NB :gB .

To give a more explicit description (than 22.3) of the (trivial) cofibrations and
the (trivial) fibrations in these Reedy model structures it is convenient to first
introduce the notions of

22.5. Latching and matching objects. Given a model category M , a
Reedy category B and an object X ∈ MB one can, for every object B ∈ B
consider the maximal subcategories

∂(
−→
B ↓B) ⊂ (

−→
B ↓B) and ∂(B ↓

←−
B) ⊂ (B ↓

←−
B)

which do not contain the identity maps 1B of B and define the latching object
LXB and the matching object MXB of X at B as the object (19.6)

LXB = colim∂(
−→
B↓B) j∗X and MXB = lim∂(B↓

←−
B) j∗X

where j denotes the forgetful functor.
In terms of these latching and matching objects one then can formulate the

following

22.6. Explicit description of the Reedy model structure. Let M be a
model category and B a Reedy category (22.1). In the Reedy model structure on
MB (22.3) a map f : X → Y ∈MB

(i) is a weak equivalence iff it is an objectwise weak equivalence,
(ii) is a (trivial) cofibration if, for every object B ∈ B, the induced map

(22.5)
XB qLXB LY B −→ Y B ∈M

is a (trivial) cofibration, and
(iii) is a (trivial) fibration iff, for every object B ∈ B, the induced map

XB −→ Y B ΠMY B MXB ∈M

is a (trivial) fibration.

For a proof of 22.3 and 22.6 we refer the reader to [Hir03] and [Hov99].

A rather useful kind of Reedy category are the so-called

22.7. Categories with fibrant or cofibrant constants. A category with
fibrant (resp. cofibrant) constants will be a Reedy category B such that, for
every model category M , the adjunction (19.6)

colimB : MB ←→M :c∗ (resp. c∗ : M ←→MB :limB)

is a Quillen adjunction (14.1).
A necessary and sufficient condition for this to happen is provided by

22.8. Proposition. A Reedy category B has fibrant (resp. cofibrant) constants
(22.7) iff the subcategory

←−
B (resp.

−→
B) is a disjoint union of categories with a

terminal (resp. an initial) object.
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Proof (of the cofibrant half). The proof of the “if” part is straightforward and
if one endows the category set of small sets (8.1) with the model structure (9.7(v))
in which the cofibrations are the monomorphisms and the fibrations are the epi-
morphisms, then the requirement that the diagram c∗[0] ∈ setB (13.1) be Reedy
cofibrant readily implies the “only if” part.

22.9. Corollary. If M is a model category, B a Reedy category with fibrant
(resp. cofibrant) constants (22.7) which has an initial (resp. a terminal) object B0,
and X ∈ MB is a Reedy cofibrant (resp. fibrant) diagram in which all maps are
weak equivalences, then the induced map

XB0 −→ colimB X ∈M (resp. limB X −→ XB0 ∈M)

is also a weak equivalence.

Important examples of categories with fibrant or cofibrant constants are the

22.10. Categories of simplices and their opposites. For every integer
n ≥ 0 let [n] denote the category which has as objects the integers 0, . . . , n and
which has exactly one map i→ j whenever i ≤ j. For every small category D (8.1)
its category of simplices ∆D then will be the category which has as objects the
functors [n]→D (n ≥ 0) and which has as maps

(E1 : [n1]→D) −→ (E2 : [n2]→D)

the commutative triangles of the form

[n1] //

E1
!!B

BB
BB

BB
B

[n2]

E2
}}||

||
||

||

D

The opposite of ∆D will be denoted by ∆op D.
Clearly

(i) ∆D and ∆op D are Reedy categories with fibrant and cofibrant constants
respectively (for which the subcategories

−−→
∆D ⊂∆D and

←−−−−
∆op D ⊂∆op D

consist of the above triangles in which the horizontal map is 1-1 and the
subcategories

←−−
∆D ⊂∆D and

−−−−→
∆op D ⊂∆op D

consist of those in which this map is onto)
and hence (14.4 and 22.7)

(ii) for every model category M , the functor

colim∆ D : M∆ D −→M (resp. lim∆op D : M∆op D −→M)

sends Reedy weak equivalences between Reedy cofibrant (resp. fibrant) di-
agrams to weak equivalences between cofibrant (resp. fibrant) objects.

Moreover one also readily verifies that, in view of the fact that left (resp. right)
adjoints preserve colimits (resp. limits)
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(iii) every functor u : A → B between small categories gives rise to Quillen
adjunctions (14.1)

(∆u)∗ : M∆ B ←→M∆ A :lim∆u

(resp. colim∆op u : M∆op A ←→M∆op B :(∆op u)∗).

We end with generalizing (ii) to a similar result for colimit and limit functors
involving the following

22.11. Projection functors. Given a small category D, it terminal pro-
jection functor pt and its initial projection functor pi will be the functors

pt : ∆D −→D and pi : ∆op D −→D

which send an object E : [n]→D (22.7) to the objects En and E0 ∈D respectively.
A straightforward calculation then yields that

(i) for every object D ∈D,

(pt ↓D) = ∆(D ↓D) and (D ↓ pi) = ∆op(D ↓D)

and more generally that

(ii) for every functor u : A→ B between small categories and object B ∈ B,

(upt ↓B) = ∆(u ↓B) and (B ↓upi) = ∆op(B ↓u)

and these two observations, together with 19.7(ii) and 22.10(ii) and (iii) then readily
imply

22.12. Proposition. Let M be a model category. Then, for every small cat-
egory D, the functor (19.6)

colimpt : M∆ D −→MD (resp. limpi : M∆op D −→MD)

and more generally, for every functor u : A → B between small categories, the
functor

colimupt : M∆ A −→MB (resp. limupi : M∆op A −→MB)

sends Reedy weak equivalences between Reedy cofibrant (resp. fibrant) diagrams to
objectwise weak equivalences between objectwise cofibrant (resp. fibrant) diagrams.

23. Virtually cofibrant and fibrant diagrams

Given a model category M and a small category D we now introduce the
notions of virtually cofibrant and virtually fibrant D-diagrams in M and show that
the full subcategories spanned by them

(MD)vc ⊂MD and (MD)vf ⊂MD

have the properties mentioned in 20.5.
We start with considering the auxiliary notion of
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23.1. Restricted ∆D- and ∆op D-diagrams. Given a model category M

and a small category D, we call an object X ∈ M∆ D (resp. M∆op D) (22.10)
restricted if, for every map h ∈ ∆D (resp. ∆op D) for which the associated
functor [n1] → [n2] (22.10) sends n1 to n2 (resp. 0 to 0), the map Xh ∈ M is a
weak equivalence and we denote by

(M∆ D)res ⊂M∆ D (resp. (M∆op D)res ⊂M∆op D)

the full subcategory spanned by these restricted diagrams.

The usefulness of these restricted diagram categories is due to the following
proposition which we will prove in 23.5.

23.2. Proposition. Let M be a model category and D a small category. Then
(22.12)

(i) the adjunction

colimpt : (M∆ D)res ←→MD :p∗t (resp. p∗i : MD ←→ (M∆op D)res :limp
i )

is a deformable adjunction (18.2), which
(ii) satisfies the Quillen condition (18.6) that, for every Reedy cofibrant (resp.

fibrant) object X ∈ (M∆ D)res (resp. (M∆op D)res) and every object Y ∈
MD, a map

X −→ p∗tY ∈ (M∆ D)res (resp. p∗i Y −→ X ∈ (M∆op D)res)

is a Reedy weak equivalence iff its adjoint

colimpt X −→ Y ∈MD (resp. Y −→ limpi X ∈MD)

is an objectwise weak equivalence, and hence (18.6)
(iii) these functors are inverse homotopical equivalences of homotopical cate-

gories (8.3).

This result in turn suggests the promised notions of

23.3. Virtually cofibrant and fibrant diagrams. Given a model category
M and a small category D, we

(i) call an object Y ∈ MD virtually cofibrant if there exists a Reedy
cofibrant object X ∈ (M∆ D)res such that Y is isomorphic to colimpt X,

(ii) call an object Y ∈MD virtually fibrant if there exists a Reedy fibrant
object X ∈ (M∆op D)res such that Y is isomorphic to limpi X, and

(iii) denote by

(MD)vc ⊂MD and (MD)vf ⊂MD

the full subcategories of MD spanned by these virtually cofibrant or
fibrant diagrams.
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Now we can finally give a

23.4. Proof (of the colimit half) of 20.5. To prove 20.5(i) one notes that
in view of 23.2, for every left deformation (r, s) of M∆ D into (M∆ D)c (8.3, 10.2
and 22.3), the pair consisting of the functor

colimpt rp∗t : MD −→MD

and the natural transformation

colimpt rp∗t −→ 1MD

which associates with every object Y ∈MD the adjunct of the weak equivalence

sp∗tY : rp∗tY −→ p∗tY

is a left deformation of MD into (MD)vc, while 20.5(ii) readily follows from 22.4
and the observation that the functor f∆ D : M∆ D → N∆ D sends restricted dia-
grams (23.1) to restricted diagrams.

It thus remains to prove 20.5(iii), i.e. to verify that, for every two Reedy cofi-
brant diagrams X1, X2 ∈ (M∆ A)res and objectwise weak equivalences

f : colimpt X1 −→ colimpt X2 ∈MA

the induced map

colimu f : colimu colimpt X1 −→ colimu colimpt X2 ∈MB

is an objectwise weak equivalence between objectwise cofibrant diagrams. To do
this one constructs a commutative diagram in M∆ A of the form

X1
// a

∼
//

∼ηtX1

��

X3

b
∼

%% %%LLLLLLLLLL X2
coo

ηtX2∼
��

p∗t colimpt X1

p∗t f

∼
// p∗t colimpt X2

in which

(i) the vertical maps are the unit maps, i.e. the adjuncts of the identity maps
of colimpt X1 and colimpt X2, which, in view of 23.2 are weak equivalences

(ii) maps a and b are (9.1) a factorization of the weak equivalence (p∗t f)(ηtX1)
into a trivial Reedy cofibration a followed by a trivial Reedy fibration b,
and

(iii) the map c is obtained by lifting ηtX2 along b.

Adjunction then yields the commutative diagram in MA

colimpt X1
colimpt a //

1

��

colimpt X3

((QQQQQQQQQQQQQ colimpt X2
colimpt coo

1

��

colimpt X1

f
// colimpt X2
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and application of the functor colimu to this diagram yields a commutative diagram
in MB of the form

colimu colimpt X1
//

��

colimu colimpt X3

))SSSSSSSSSSSSSS colimu colimpt X2
oo

��

colimu colimpt X1

colimu f
// colimu colimpt X2

in which, in view of (ii), (iii), 19.6(iii) and 22.12, the two top maps are objectwise
weak equivalences between objectwise cofibrant objects, which readily implies that
so is the bottom map.

It thus remains to give the promised

23.5. Proof (of the colimit half) of 23.2. For every object D ∈ D, let
p−1

t D ⊂∆D denote the subcategory which has as objects the functors E : [n]→D
(n ≥ 0) such that En = D and as maps (E1 : [n1] → D) → (E2 : [n2] → D) the
functors e : [n1]→ [n2] such that E1 = E2e and en1 = n2. The one readily verifies
that

(i) the category p−1
t D has as an initial object the functor ED : [0]→D such

that ED0 = D, and is a Reedy category for which
−−−→
p−1

t D =
−−→
∆D ∩ p−1

t D and
←−−−
p−1

t D =
←−−
∆D ∩ p−1

t D

with the property that
←−−−
p−1

t D is a disjoint union of categories with a
terminal object,

and that
(ii) for every Reedy cofibrant diagram X ∈ M∆ D, the diagram i∗X ∈

Mp−1
t D induced by the inclusion functor i : p−1

t D → ∆D is also Reedy
cofibrant, in view of the fact that, if dn : [n−1]→ [n] denotes the functor
such that dni = i for 0 ≤ i ≤ n, then for every object E : [n]→D ∈ p−1

t D
with n > 0, the commutative diagram (22.6)

LX(Edn) //
��

��

L(i∗X)E //

��

(i∗X)E

1

��

X(Edn) // LXE // // XE

has the property that the square on the left is a pushout square and the
map LX(Edn) → X(Edn) and XLE → XE are cofibrations and that
therefore the map L(i∗X)E → (i∗X)E is also a cofibration.

One can therefore, for every objectD ∈D, diagram Y ∈MD, Reedy
cofibrant diagram X ∈ (M∆ D)res and map X → p∗tY ∈ (M∆ D)res
consider the induced commutative diagram

(colimpt X)D
a1 //

��

colim(pt↓D) j∗X

��

colimp−1
t D i∗X

b1oo

��

XED
c1oo

��

(colimpt p∗tY )D
a2 // colim(pt↓D) j∗p∗tY colimp−1

t D i∗p∗tY
b2oo p∗tY ED =

c2oo Y D

in which
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(iii) j : (pt ↓D) = ∆(D ↓D) → ∆D is the forgetful functor and a1 and a2

are the isomorphism implied by 19.7(ii),
(iv) b1 and b2 are induced by the functor k : p−1

t D → (pt ↓D) which sends an
object E ∈ p−1

t D to the object (E, 1D) ∈ (pt ↓D), and are isomorphisms
because the functor k is right cofinal (i.e. for every object E ∈ (pt ↓D),
the category (E ↓ k) is non-empty and every two of its objects can be
connected by a zigzag of maps), and

(v) c1 and c2 are the restrictions to ED of the respective colimiting cocones
and hence ((i) and 22.9) c1 is a weak equivalence while c2 is actually an
isomorphism.

A somewhat technical but essentially straightforward calculation then yields that
(vi) the composition c−1

2 b−1
2 a2 : (colimpt p∗tY )D → Y D is the restriction to D

of the counit of the adjunction colimpt : (M∆ D)res ↔MD :p∗t
and that therefore

(vii) the composition of this map with the map (colimpt X)D → (colimpt p∗tY )D
is the restriction to D of the adjunct of the given map X → p∗tY

and from this one now readily deduces 23.2.

24. Homotopical comments

We end with noting that the main results of this chapter, i.e. those obtained
in §20 and §21, are special cases of, and proven in essentially the same manner, as
more general results for cocomplete and complete homotopical categories which we
will obtain in chapter VIII.

In more detail:

24.1. Homotopy colimit and limit functors (47.1). Given a homotopical
category X which is cocomplete and complete (19.7) and a map u : A→ B ∈ cat,

(i) a homotopy u-colimit (resp. u-limit) functor on X will be a left
(resp. a right) approximation (18.3) of the functor (19.6)

colimu : XA −→XB (resp. limu : XA −→XB).

Thus (13.3)
(ii) such u-colimit (resp. u-limit) functors on X, if they exist, are homotopi-

cally unique (13.3)
and essentially the same arguments that (in 20.6) were used to prove 20.2, 20.3 and
20.4 yield that (47.2)

(iii) the result of 20.2 remains valid if one replaces everywhere the model cat-
egory M by a homotopical category X for which

(iii)′ there exist u-colimit (resp. u-limit) functors on X, and
(iii)′′ the functor colimu (resp. limu) : XA → XB is left (resp. right) de-

formable (18.1),
that (47.4)

(iv) the result of 20.3 remains valid if one replaces everywhere the model cat-
egory M by a homotopical category X for which

(iv)′ there exist u-colimit (resp. u-limit) and v-colimit (resp. v-limit) functors
on X, and
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(iv)′′ the pair (colimu, colimv) (resp. (limu, limv)) is left (resp. right) deformable
(18.4), which is in particular the case if X is saturated (8.4) and this pair
is locally left (resp. right) deformable (18.4)

and that (47.6)
(v) the result of 20.4 remains valid if one replaces everywhere the Quillen

adjunction f : M ↔ N :g by a deformable adjunction f : X ↔ Y :g
(18.2) for which

(v)′ there exist u-colimit (resp. u-limit) functors on both X and Y , and
(v)′′ the pairs

(colimu : XA →XB, fB) and (fA, colimu : Y A → Y B)

(resp. (limu : Y A → Y B, gB) and (gA, limu : XA →XB) )

are left (resp. right) deformable (18.4), which is in particular the case if
X and Y are saturated (8.4) and these pairs are locally left (resp. right)
deformable (18.4).

It thus remains to discuss

24.2. Homotopical cocompleteness and completeness (49.2). Given a
homotopical category X which is cocomplete and complete one

(i) defines left and right cat-systems and homotopy colimit and limit
systems on X exactly as in 21.1 and 21.3 (i.e. by replacing everywhere
in 21.1 and 21.3 the model category M by the homotopical category X),
and

(ii) calls X homotopically cocomplete or complete if there exist homo-
topy colimit or limit systems on X.

The arguments used in the proof of 21.4 then yield that (49.3)
(iii) the result of 21.4 remains valid if one replaces everywhere the model cat-

egory M by a homotopical category X such that
(iii)′ X is cocomplete, complete and saturated (8.4), and
(iii)′′ the colimit system colim(cat) (resp. limit system lim(cat)) on X (19.7) is

locally left (resp. right) deformable in the sense, for every object D ∈
cat, there exists a left (resp. a right) deformation retract (XD)0 ⊂ XD

(8.3) such that, for every object E ∈ cat and map x : D → E ∈ cat, the
functor colimx (resp. limx) is homotopical on (XD)0.
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CHAPTER V

Summary of part II

25. Introduction

25.1. Motivation. In [Qui67] and [Qui69] Quillen introduced the notion of
a model category, i.e. a category with three distinguished classes of maps (weak
equivalences, cofibrations and fibrations) satisfying a few simple axioms which en-
able one to “do homotopy theory”. A closer look at this notion however reveals
that the weak equivalences already determine the “homotopy theory”, while the
cofibrations and the fibrations provide additional structure which enables one to
“do” homotopy theory, in the sense that, while the homotopy notions involved in
doing homotopy theory can be defined in terms of the weak equivalences, the verifi-
cation of their properties (e.g. their existence) requires the cofibrations and/or the
fibrations. Consequently many model category arguments are a mix of arguments
which only involve weak equivalences and arguments which also involve cofibrations
and/or fibrations and as these two kinds of arguments have different flavors, the
resulting mix often looks rather mysterious. In this part II we therefore try to
isolate the key model category arguments which involve only weak equivalences by
developing a kind of “relative category theory” or theory of homotopical cate-
gories, which are categories with a single distinguished class of maps called weak
equivalences which

(i) includes all the identity maps, and
(ii) has the two out of six property that, for every three maps r, s and t

for which the two maps sr and ts exist and are weak equivalences, the
four maps r, s, t and tsr are also weak equivalences,

which property is slightly stronger than Quillen’s “two out of three” property.

25.2. Organization of part II. In developing the beginnings of a relative or
homotopical category theory we are guided by the desire to be able to

(i) define homotopy or more generally homotopical colimit and limit functors
which, if they exist, are in an appropriate sense homotopically unique and
the associated notions of homotopical cocompleteness and completeness,
and

(ii) describe useful sufficient conditions for the existence of such homotopical
colimit and limit functors and for such homotopical cocompleteness and
completeness.

In the final chapter VIII we indeed obtain these objectives. However most
of the work is done in the two preceding chapters. In the first of these, chap-
ter VI, we introduce homotopical categories and homotopical (i.e. weak equivalence
preserving) functors between them, discuss the homotopy category of such a homo-
topical category and explain what exactly we will mean by homotopical uniqueness.
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In the other chapter, chapter VII, we investigate what we will call left and right
deformable functors, which are a frequently occurring kind of functors between ho-
motopical categories which are not necessarily homotopical, but which still have
“homotopical meaning”, because they have homotopically unique left or right ap-
proximations, i.e. homotopical functors which, in a homotopical sense, are closest
to them from the left or from the right.

In order to help the reader navigate through all this we devote this first chapter
of part II to a preview of some of the key notions and results of chapters VI, VII
and VIII.

25.3. Organization of the present chapter. There are five more sections,
of which the first three deal with chapter VI and the other two with the other two
chapters.

In §26 we explain why we will not assume that a category necessarily has small
hom-sets, introduce homotopical categories and homotopical functors and discuss
a few immediate consequences of their definitions. In §27 we then discuss the
homotopy category of such a homotopical category and consider in particular the
not infrequently occurring case that the homotopical category admits a so-called
3-arrow calculus and in §28 we deal with the notion of homotopical uniqueness.

In §29 we introduce deformable functors and their approximations and describe
sufficient conditions on a composable pair of deformable functors in order that their
composition is also deformable and all compositions of their approximations are
approximations of their composition.

And in §30 we then finally discuss homotopy and homotopical colimit functors
and the associated notion of homotopical cocompleteness.

26. Homotopical categories

Before introducing homotopical categories we explain what exactly we will
mean by

26.1. Categories, locally small categories and small categories. In or-
der to avoid set theoretical difficulties one often defines categories in terms of a
universe, i.e.

(i) one assumes that every set is an element of some universe, where one
defines a universe as a set U of sets (called U-sets) satisfying a few
simple axioms which imply that U is closed under the usual operations
of set theory and that every U-set is a subset of U , but that the set U
itself and many of its subsets are not U-sets, and

(ii) one then chooses an arbitrary but fixed universe U and defines a U-
category as a category of which the hom-sets are U-sets and the set
of objects is a subset of U and calls such a U-category small if the set of
its objects is actually a U-set.

It turns out that the notion of a small U-category is indeed a convenient one,
in the sense that any “reasonable” operation, when applied to small U-categories
yields again a small U-category, but that the notion of a U-category is not, as such
operations as the formation of the category of functors between two U-categories
or the localization of a U-category with respect to a subcategory is not necessarily
again a U-category. Still one cannot avoid the notion of a U-category as many of
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the categories one is interested in are not small. However a way of getting around
this problem is by not insisting on working in only one universe and noting that

(iii) there exists a unique successor universe U+ of our chosen (ii) universe
U , i.e. a unique smallest universe U+ such that the set U is a U+-set.

This implies that every U-category is a small U+-category so that any “reasonable”
operation when applied to U-categories yields a small U+-category.

In view of all this we choose an arbitrary but fixed universe U and use
the term

small category for small U-category, and
locally small category for U-category

(instead of the customary use of the term category for U-category) and reserve,
unless the context clearly indicates otherwise, the term

category for small U+-category

Similarly we use the term

small set for U-set, and

set for U+-set.

26.2. Homotopical categories and homotopical functors. A homotopi-
cal category will be a category C (26.1) with a distinguished set W (26.1) of maps
(called weak equivalences) such that

(i) W contains all the identity maps of C, and
(ii) W has the two out of six property that, for every three maps r, s

and t ∈ C for which the two compositions sr and ts exist and are in W ,
the four maps r, s, t and tsr are also in W

which one readily verifies (by assuming that both sr and ts are identity maps or
that at least one of r, s and t is an identity map) is equivalent to requiring that

(i)′ W contains all the identity maps of C,
(ii)′ W has the weak invertibility property that every map s ∈ C for

which there exist maps r and t ∈ C such that the compositions sr and
ts exist and are in W , is itself in W (which, together with (i)′, implies
that all isomorphisms of C are in W ), and

(iii)′ W has the two out of three property that, for every two maps f and
g ∈ C for which gf exists and two of f , g and gf are in W , so is the
third (which implies that W is actually a subcategory of C).

This definition suggests, given two homotopical categories C and D

(v) calling a functor f : C → D a homotopical functor whenever f pre-
serves weak equivalences, and

(vi) considering two kinds of homotopical functor or diagram categories,
the first, denoted by

Fun(C,D) or DC

being the usual functor category (which has as objects the (ordinary)
functors C →D and as maps the natural transformations between them)
in which the weak equivalences will be the natural weak equivalences,
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i.e. those natural transformations which send the objects of C to weak
equivalences in D, while the other kind of homotopical functor category
will be the full homotopical subcategory of the first spanned by the ho-
motopical functors C →D and will be denoted by

Funw(C,D) or
(
DC

)
w

.

It is also convenient to consider the following notions.

26.3. Homotopical equivalences of homotopical categories. A homo-
topical functor f : C → C ′ will be called a homotopical equivalence of ho-
motopical categories if there exists a homotopical functor f ′ : C ′ → C (called
homotopical inverse of f) such that the compositions f ′f and ff ′ are naturally
weakly equivalent, i.e. can be connected by a zigzag of natural weak equivalences,
to the identity functors 1C and 1C′ respectively.

26.4. Minimal and maximal homotopical categories. Homotopical cat-
egories can be seen as a generalization of categories by considering an (ordinary)
category as either a minimal or a maximal homotopical category, i.e. a homo-
topical category in which either only the isomorphism or all the maps are weak
equivalences. The first of these approaches seems to be the more useful one and we
therefore

(i) usually consider ordinary categories as minimal homotopical categories,
and

(ii) when we talk of a homotopical version of some categorical notion or
result we usually mean (as for instance in §28 below) a notion or result
which on minimal homotopical categories reduces to the given categorical
one.

26.5. The homotopy category of a homotopical category. With a ho-
motopical category C one can, in a functorial manner, associate not only its un-
derlying category and its category of weak equivalences, but also its homotopy
category Ho C, i.e. the category obtained from C by “formally inverting” the
weak equivalences. In view of the assumptions made in 26.1, such homotopy cate-
gory always exists (although the homotopy category of a locally small homotopical
category need not again be locally small).

These homotopy categories and the induced functors between them have the
properties that

(i) if two homotopical functors f, g : C →D between homotopical categories
are naturally weakly equivalent, then the induced functors

Ho f,Ho g : HoC −→ Ho D

are naturally isomorphic, and hence
(ii) if f : C →D is a homotopical equivalence of homotopical categories, then

the induced functor Ho f : HoC → Ho D is an equivalence of categories.

27. The hom-sets of the homotopy categories

27.1. An initial description of the hom-sets. Given a homotopical cate-
gory C, its homotopy category Ho C (26.5) is obtained from C by “formally invert-
ing” the weak equivalences, i.e. (see 33.8) the category which has the same objects
as C and in which, for every two objects X,Y ∈ C, a map X → Y ∈ Ho C is an
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appropriately defined equivalence class of restricted zigzags in C, i.e. sequences
of maps in C

X = C0 C1 · · · Cn = Y n ≥ 0

in which some maps are forward (i.e. go to to the right), while the others are
backward (i.e. go to the left) and are weak equivalences. It comes with a local-
ization functor γ : C → Ho C which is the identity on objects and which sends
each map of C to the class of zigzags containing the zigzag which consists of only
this map.

This description in which each equivalence class contains zigzags of countably
many different types (i.e. numbers of forward and backward maps and/or the order
in which they appear) can be used to obtain a sometimes more useful

27.2. Colimit description of the hom-sets of the homotopy category.
This is a description of each hom-set of HoC as a colimit of a diagram of sets,
indexed by a category of types, in which each set consists of equivalence classes
of zigzags in C of only one type.

Occasionally one can do even much better than this and describe the hom-sets
themselves as equivalences classes of zigzags of only one type. In particular this
happens when the homotopical category C admits a

27.3. 3-arrow calculus. By this we mean that the category of weak equiv-
alences W of C has subcategories U and V (like the categories of the trivial
cofibrations and the trivial fibrations in a model category (§11)) such that, in a
functorial manner,

(i) for every zigzag A′ u←− A
f−→ B in C with u ∈ U , there exists a zigzag

A′
f ′−→ B′

u′←− B in C with u′ ∈ U such that u′f = f ′u and in which u′

is an isomorphism whenever u is,
(ii) for every zigzag X

g−→ Y
v←− Y ′ in C which v ∈ V , there exists a zigzag

X
v′←− X ′ g

′

−→ Y ′ in C with v′ ∈ V such that gv′ = vg′ and in which v′ is
an isomorphism whenever v is, and

(iii) every map w ∈W admits a factorization w = vu with u ∈ U and v ∈ V .

Then we can formulate

27.4. A 3-arrow description of the hom-sets. If a homotopical category
C admits a 3-arrow calculus, then the maps of Ho C be be described as equivalence
classes of restricted zigzags (27.1) in C of the form

· ·oo // · ·oo
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in which two such zigzags are in the same equivalence class iff they are the top row
and the bottom row in a commutative diagram in C of the form

· ·oo // · ·oo

·

1

OO

1

��

· //

��

oo

OO

·

��

OO

·oo

1

OO

1

��
· ·oo // · ·oo

·

1

OO

·oo

OO

// ·

OO

·oo

1

OO

in which the middle rows are also restricted zigzags.

Moreover, using for the first time the full strength of the two out of six property
(26.2) and not merely the two out of three property, we deduce from the 3-arrow
description the following somewhat surprising

27.5. Saturation result. Let C be a homotopical category which admits a
3-arrow calculus (27.3). Then C is saturated in the sense that a map in C is a
weak equivalence iff its image in Ho C is an isomorphism.

This last result is not only pleasing, but also quite useful as it allows one, in
the many situations (like those which arise from model categories) where one has
a 3-arrow calculus, to use the labor saving result mentioned in 29.6 below.

28. Homotopical uniqueness

When working with homotopical categories one often constructs objects in a
homotopical category which are homotopically unique, in the sense that they sat-
isfy a homotopical version (26.4) of the categorical notion of uniqueness up to a
(unique) isomorphism, which one encounters when certain objects in a category Y
(for instance because they have a common universal property) have the property
that, for every two of them Y1 and Y2, there is exactly one map Y1 → Y2 ∈ Y and
this unique map is moreover an isomorphism. We will refer to this categorical no-
tion as categorical uniqueness and reformulate as follows in a fashion which readily
points to a corresponding homotopical notion.

28.1. Categorical uniqueness. Given a nonempty set of objects in a cate-
gory C, the objects in this set are categorically unique or canonically isomor-
phic if

(i) the full subcategory of C spanned by these objects,
or equivalently

(i)′ the categorically full subcategory of C spanned by these objects, i.e.
the full subcategory of C spanned by these objects and all isomorphic
ones,

is categorically contractible in the sense that
(ii) this category is a non-empty groupoid in which there is exactly one iso-

morphism between any two objects
or equivalently
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(ii)′ the unique functor from this category to the category [0] which consists of
only a single object 0 and its identity map, is an equivalence of categories.

This suggests the following notion of

28.2. Homotopical uniqueness. Given a non-empty set of objects in a ho-
motopical category C, the objects in this set will be called homotopically unique
or canonically weakly equivalent if the homotopically full subcategory G ⊂
C spanned by these objects, i.e. the full subcategory of C spanned by these ob-
jects and all weakly equivalent ones is homotopically contractible in the sense
that the unique functor G→ [0] (28.1) is a homotopical equivalence of homotopical
categories (26.3).

28.3. Homotopically initial and terminal objects. We also obtain a ho-
motopical version (26.4) of the fact that,

(i) as the full subcategory of a category spanned by its initial or terminal
objects is empty or categorically contractible (28.1), one can often verify
categorical uniqueness (28.1) by noting that the objects in question are
either initial or terminal

and we do this by

(ii) defining homotopically initial or terminal objects in a homotopi-
cal category with the property that the full subcategory of a homotopi-
cal category spanned by its homotopically initial or terminal objects is
a homotopically full (28.2) subcategory which is empty or homotopically
contractible (28.2) (the proof of which, for the second time, uses the full
strength of the two out of six property (26.2)).

29. Deformable functors

In dealing with homotopical categories one often runs into functors between
homotopical categories which are not necessarily homotopical, but which still have
“homotopical meaning” because they are homotopical on a so-called left (or right)
deformation retract of the domain category and which we will therefore refer to as
left (or right) deformable functors.

More precisely

29.1. Left and right deformation retracts. Given a homotopical category
X, a left (resp. a right) deformation retract of X will be a full subcategory
X0 ⊂X for which there exists a left (resp. a right) deformation of X into X0,
i.e. a pair (r, s) consisting of

(i) a homotopical functor f : X →X which sends all of X into X0, and
(ii) a natural weak equivalence

s : r → 1X (resp. s : 1X → r)

(which clearly implies that the inclusion X0 → X is a homotopical equivalence of
homotopical categories (26.3)).
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29.2. Left and right deformable functors. A (not necessarily homotopi-
cal) functor f : X → Y between homotopical categories will be called left (resp.
right) deformable if f is homotopical on a left (resp. a right) deformation retract
of X (29.1).

The usefulness of this notion is due to the fact that such left and right de-
formable functors have homotopically unique (28.2)

29.3. Left and right approximations. Given a (not necessarily homotopi-
cal) functor f : X → Y between homotopical categories, a left (resp. a right)
approximation of f will be a pair (k, a) consisting of

(i) a homotopical functor k : X → Y , and
(ii) a natural transformation

a : k → f (resp. a : f → k)

which is a homotopically terminal (resp. initial) (28.3) object in “the category of
homotopical functors X → Y over (resp. under) f”. Thus (28.3(ii))

(iii) such a left (resp. right) approximation of f , if it exists, is homotopically
unique (28.2).

Moreover a sufficient condition for the existence of such an approximation is that
f be left (resp. right) deformable, as we show that

(iv) for every left (resp. right) deformation retract X0 ⊂ X on which f is
homotopical and every left (resp. right) deformation (r, s) of X into X0

(29.1), the pair (fr, fs) is a left (resp. a right) approximation of f .

29.4. Compositions of deformable functors. Given two composable left
(or right) deformable functors f1 : X → Y and f2 : Y → Z (29.2), the question
arises whether

(i) their composition f2f1 : X → Z is also left (or right) deformable, and
(ii) the compositions of their left (or right) approximations (29.3) are left (or

right) approximations of their composition,

and we show that a sufficient condition for (i) and (ii) to happen is that the pair
(f1, f2) is left (or right) deformable in the following sense.

29.5. Left (or right) deformable composable pairs of functors. Given
two composable functors f1 : X → Y and f2 : Y → Z between homotopical cat-
egories, the pair (f1, f2) will be called locally left (resp. right) deformable if
there exist left (resp. right) deformation retracts X0 ⊂X and Y 0 ⊂ Y (29.1) such
that

(i) f1 is homotopical on X0 (and hence f1 is left (resp. right) deformable),
(ii) f2 is homotopical on Y 0 (and hence f2 is left (resp. right) deformable),

and
(iii) f2f1 is also homotopical on X0 (and hence f2f1 is also left (resp. right)

deformable),

and the pair (f2, f1) will be called left (resp. right) deformable if in addition

(iv) f1 sends all of X0 into Y 0 (which together with (i) and (ii) implies (iii)).
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29.6. A special case. Occasionally, to prove the deformability of a compos-
able pair of functors, i.e. the existence of deformation retracts satisfying 29.5(i)–
(iv), it suffices to verify the local deformability of the pair, i.e. the existence of
deformation retracts satisfying only 29.5(i)–(iii), because

(i) given two composable adjunctions

f1 : X ←→ Y :f ′1 and f2 : Y ←→ Z :f ′2
of functors between homotopical categories such that the pair (f1, f2) is
locally left deformable (29.5) and the pair (f ′2, f

′
1) is locally right de-

formable,
(ii) if the category Z is saturated (27.5) and the pair (f ′2, f

′
1) is right de-

formable, then the pair (f1, f2) is left deformable, and dually
(iii) if the category X is saturated and the pair (f1, f2) is left deformable, then

the pair (f ′2, f
′
1) is right deformable.

30. Homotopy colimit and limit functors and homotopical ones

As an application of the above results we
(i) generalize the homotopy colimit and limit functors on model categories

(see chapter IV) encountered in homotopical algebra, by similarly defin-
ing homotopy colimit and limit functors on a homotopical category X
as respectively the left and right approximations (29.1) of arbitrary but
fixed colimit and limit functors on X, and give sufficient conditions for
their existence and composability,

(ii) describe associated notions of homotopical cocompleteness and complete-
ness which are considerably stronger than the requirement that there
exist small colimit and limit functors and give sufficient conditions for
such homotopical cocompleteness and completeness, and

(iii) note that, while the above homotopy colimit and limit functors are only
defined when there exist colimit and limit functors, there is a more general
notion of what we will call homotopical colimit and limit functors which
is not subject to such a restriction.

In more detail (in the colimit case):

30.1. Homotopy colimit functors. Given a homotopical category X and a
category D, we

(i) define a D-colimit functor on X as a left adjoint of the constant di-
agram functor c∗ : X → XD and, if such a D-colimit functor exists,
denote by colimD : XD → X an arbitrary but fixed such D-colimit
functor, and

(i)′ define a homotopy D-colimit functor on X as a left approximation (29.1)
of the functor colimD,

and more generally, given a functor u : A→ B, we
(ii) define a u-colimit functor on X as a left adjoint of the induced diagram

functor u∗ : XB →XA and, if such a u-colimit functor exists, denote by
colimu : XA →XB an arbitrary but fixed such u-colimit functor, and

(ii)′ define a homotopy u-colimit functor on X as a left approximation of the
functor colimu.
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Then
(iii) such homotopy u-colimit functors on X, if they exist, are homotopically

unique (28.2), and
(iv) a sufficient condition for their existence is that there exists a u-colimit

functor on X which is left deformable (29.2),
and, given two composable functors u : A→ B and v : B →D

(v) a sufficient condition in order that every composition of a homotopy
u-colimit functor on X with a homotopy v-colimit functor on X is a
homotopy vu-colimit functor on X

is that
(v)′ the pair (colimu, colimv) exists and is left deformable (29.5)

which in particular is the case if (29.6)
(v)′′ X is saturated (27.5) and the pair (colimu, colimv) exists and is locally

left deformable (29.5).

30.2. Homotopical cocompleteness. While (categorical) cocomplete-
ness, i.e. the existence of D-colimit functors on a homotopical category X for
every object D ∈ cat, where cat denotes the category of small categories (26.1),
implies

(i) the existence, for every map u ∈ cat, of u-colimit functors on X (29.1(ii)),
and

(i)′ the existence, for every composable pair of maps u, v ∈ cat, u-colimit
functor f on X, v-colimit functor g on X and vu-colimit functor h on
X, of a canonical natural isomorphism gf → h, and hence

(i)′′ the existence of what we will call a colimit system on X, i.e. a function
F which assigns to every map u ∈ cat a u-colimit functor Fu and to every
composable pair of maps u, v ∈ cat, this canonical natural isomorphism
(Fv)(Fu) → F (vu) which is associative in the obvious sense that every
three composable maps u, v, w ∈ cat give rise to a commutative diagram
of the form

(Fw)(Fv)(Fu) //

��

F (wv)(Fu)

��

(Fw)(Fvu) // F (wvu) ,

and in particular of the colimit system colim(cat) which assigns to every
map u ∈ cat the functor colimu (30.1)

the existence, for every object D ∈ cat, of a homotopy D-colimit functor on X
has in general no such implications.

Therefore we will call a homotopical category X homotopically cocomplete
if there exists what we will call a homotopy colimit system on X, which we
define as a kind of left approximation of the colimit system colim(cat) (i)′′ and
which essentially is a function K which assigns to every map u ∈ cat a homotopy
u-colimit functor on X and to every composable pair of maps u, v ∈ cat a natural
weak equivalence which is associative in the sense of (i)′′.

We then show that a sufficient condition for such homotopical cocompleteness,
i.e. for the existence of such a homotopy colimit system on X is that
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(ii) X is cocomplete and the colimit system colim(cat) (i)′′ is left deformable
in the sense that there exists a function F0 which assigns to every object
D ∈ cat, a left deformation retract F0D ∈ XD (29.1) such that, for
every map u : A→ B ∈ cat

(ii)′ the functor colimu : XA →XB is homotopical on F0A, and
(ii)′′ the functor colimu : XA →XB sends all of F0A into F0B,

and note that in particular this is the case if
(iii) X is cocomplete and is saturated (27.5) and the colimit system colim(cat)

(i)′′ is locally left deformable in the sense that there exists a function
F0 as in (ii) which satisfies (ii)′ but not necessarily (ii)′′

as in that case the saturation ensures the existence of a (possibly different) such
function which satisfies both (ii)′ and (ii)′′.

It thus remains to discuss

30.3. Homotopical colimit functor. To get around the fact that (30.1),
given a functor u : A→ B, the homotopy u-colimit functors on a category X were
only defined when there existed u-colimit functors on X, we note

(i) that the u-colimit functors on X, i.e. the left adjoints of the induced
diagram functor u∗ : XB → XA, are also exactly the Kan extension of
the identity functor 1XB along the functor u∗, and

(ii) that there is a notion of homotopical Kan extension of 1XB along u∗

with the property that, if there exist Kan extensions of 1XB along u∗,
then these homotopical Kan extensions of 1XB along u∗ are essentially
the same as the left approximations of an arbitrary but fixed such Kan
extension.

It follows that
(iii) if there exist u-colimit functors on X, then these homotopical Kan exten-

sions of 1XB along u∗ are essentially the same as the homotopy u-colimit
functors

and we therefore define a homotopical u-colimit functor on X as a homotopical
Kan extension of 1XB along u∗.

We also note that in a similar fashion the notion of homotopy colimit systems
can be generalized to that of homotopical colimit systems.
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CHAPTER VI

Homotopical Categories and Homotopical
Functors

31. Introduction

31.1. Summary. This introductory chapter on homotopical categories and
homotopical functors between them consists essentially of three parts.

(i) After attempting to explain why we will not assume that a category nec-
essarily has small hom-sets, we introduce homotopical categories as
such categories with a distinguished class of maps (called weak equiva-
lences) satisfying two simple axioms, and discuss a few immediate con-
sequences of their definition.

(ii) Next we investigate the homotopy category Ho C of such a homotopi-
cal category C, i.e. the category obtained from C by “formally inverting”
the weak equivalences (which homotopy category, in view of the above
(i) mentioned assumption, always “exists”), and in particular

(ii)′ show that if C admits a so-called 3-arrow calculus, then the maps in
Ho C can be described as equivalence classes of zigzags in C of the form

· ·oo // · ·oo

in which the two backward maps are weak equivalences, from which in
turn we deduce that

(ii)′′ the presence of such a 3-arrow calculus ensures that the homotopical
category C has the useful property of being saturated in the sense that
a map in C is a weak equivalence iff its image in HoC is an isomorphism.

(iii) And finally we end the chapter with a discussion of homotopical analogs of
such basic categorical notions as uniqueness up to a unique isomorphism
(which we will call categorical uniqueness), universal properties, initial
and terminal objects and Kan extensions.

In more detail:

31.2. Categories, locally small categories and small categories. In or-
der to avoid set theoretical difficulties one often defines categories in terms of a
universe, i.e.

(i) one assumes that every set is an element of some universe, where one
defines a universe as a set U of sets (called U-sets) satisfying a few
simple axioms which imply that U is closed under the usual operations
of set theory and that every U-set is a subset of U , but that the set U
itself and many of its subsets are not U-sets, and
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(ii) one then defines a U-category as a category of which the hom-sets are
U-sets and the set of objects is a subset of U and calls such a U-category
small if the set of its objects is actually a U-set.

It turns out that the notion of a small U-category is indeed a convenient one,
in the sense that any “reasonable” operation, when applied to small U-categories
yields again a small U-category, but that the notion of a U-category is not, as such
operations as the formation of the category of functors between two U-categories
(33.2) or the localization of a U-category with respect to a subcategory (33.9) do
not necessarily yield again a U-category. Still one cannot avoid the notion of a
U-category as many of the categories one is interested in are not small. However
a way of getting around this problem is by not insisting on working in only one
universe and noting that

(iii) for every universe U there exists a unique successor universe U+, i.e.
a unique smallest universe U+ such that the set U is a U+-set.

This implies that every U-category is a small U+-category so that any “reasonable”
operation when applied to U-categories yields a small U+-category.

In view of all this we choose an arbitrary but fixed universe U and use the
term

small category for small U-category
locally small category for U-category, and

category for small U+-category

(instead of the customary use of the term “category” for U-category) and similarly
use the term

small set for U-set, and

set for U+-set

31.3. Homotopical categories. A homotopical category will be a cate-
gory C (31.2) with a distinguished set (31.2) W of maps (called weak equiva-
lences) such that

(i) W contains all the identity maps of C, and
(ii) W has the two out of six property that, for every three maps r, s

and t ∈ C for which the two compositions sr and ts exist and are in W ,
the four maps r, s, t and tsr are also in W ,

which implies that
(iii) W contains all the isomorphisms of C, and
(iv) W has the two out of three property (26.2(iii)) and hence is a subcategory

of C.
Furthermore, given two homotopical categories C and D,

(v) a functor C →D will be called homotopical if it preserves weak equiv-
alences,

(vi) a natural transformation between two functors C → D will be called a
natural weak equivalence if it sends the objects of C to weak equiva-
lences in D,

(vii) two functors C → D will be called naturally weakly equivalent if
they can be connected by a zigzag of natural weak equivalences, and
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(viii) a homotopical functor f : C →D will be called a homotopical equiva-
lence of homotopical categories if there exists a homotopical functor
f ′ : D → C such that the compositions f ′f and ff ′ are naturally weakly
equivalent to the identity functors 1C and 1D respectively.

31.4. The homotopy category. Given a homotopical category C (31.3), its
homotopy category will be the category (31.2) obtained from C by “formally
inverting” the weak equivalences, i.e., the category Ho C with the same objects as
C in which, for every pair of objects X,Y ∈ C, the hom-set (31.2) Ho C(X,Y )
consists of equivalence classes of zigzags in C from X to Y in which the backward
maps are weak equivalences, by the weakest equivalence relation which puts two
such zigzags in the same class

(i) when one can be obtained from the other by omitting identity maps,
(ii) when one can be obtained from the other by replacing adjacent maps

which go in the same direction by their composition, and
(iii) when one can be obtained from the other by omitting two adjacent maps

which are the same but go in opposite directions.

From this description of HoC(X,Y ) in which each equivalence class of zigzag
contains zigzags of countably many types one can deduce sometimes more useful
descriptions of Ho C(X,Y ) as a colimit of sets in which each set consists of equiv-
alence classes of only one type. Moreover for homotopical categories which admit a
so-called 3-arrow calculus one can even do much better and describe the hom-sets
themselves as equivalence classes of only one type as follows.

31.5. 3-arrow calculi. A homotopical category C will be said to admit a
3-arrow calculus if the category of weak equivalences W of C has subcategories
U and V (like the categories of the trivial cofibrations and the trivial fibrations in
a model category (§11)) such that, in a functorial manner,

(i) for every zigzag A′ u←− A
f−→ B in C with u ∈ U , there exists a zigzag

A′
f ′−→ B′

u′←− B in C with u′ ∈ U such that u′f = f ′u and in which u′

is an isomorphism whenever u is,
(ii) for every zigzag X

g−→ Y
v←− Y ′ in C which v ∈ V , there exists a zigzag

X
v′←− X ′ g

′

−→ Y ′ in C with v′ ∈ V such that gv′ = vg′ and in which v′ is
an isomorphism whenever v is, and

(iii) every map w ∈W admits a factorization w = vu with u ∈ U and v ∈ V .

Such a homotopical category C which admits a 3-arrow calculus then has the
property that, for every pair of objects X,Y ∈ C, the hom-set HoC(X,Y ) can be
described as the set of the equivalence classes of zigzags in C of the form

X ·oo // · Yoo

in which the backward maps are weak equivalences, where two such zigzags are
in the same class iff they are the top row and the bottom row in a commutative
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diagram in C of the form

X ·oo // · Yoo

X

1

OO

1

��

·oo

OO

//

��

·

OO

��

Y

1

OO

1

��

oo

X ·oo // · Yoo

X

1

OO

·oo

OO

// ·

OO

Yoo

1

OO

in which the backward maps and hence also the vertical maps are weak equivalences,
from which in turn we deduce the rather useful

31.6. Saturation result. Using the above 3-arrow description of the hom-
sets we show that if C is a homotopical category which admits a 3-arrow calculus
(31.5), then C is saturated in the sense that a map in C is a weak equivalence iff
its image in Ho C is an isomorphism.

31.7. Categorical and homotopical uniqueness. We reformulate the usual
notion of uniqueness up to a unique isomorphism of certain objects in a category Y ,
i.e. the fact that for any two of these objects Y 1 and Y 2 there is exactly one map
Y 1 → Y 2 ∈ Y and that this unique map is an isomorphism, by saying that, given
a category Y and a non-empty set I (31.2), certain objects Yi (i ∈ I) are categor-
ically unique or canonically isomorphic if the full subcategory of Y spanned
by these objects (or equivalently the categorically full subcategory spanned by
these objects, i.e. the full subcategory spanned by these objects and all isomorphic
ones) is categorically contractible in the sense that it is a non-empty groupoid
in which there is exactly one isomorphism between any two objects, or equivalently,
that the unique functor from this category to the category [0] (where [0] denotes the
category which consists of only one object 0 and its identity map) is an equivalence
of categories and if Y is a homotopical category we therefore say similarly that
objects Yi (i ∈ I) are homotopically unique or canonically weakly equiva-
lent if the homotopically full subcategory spanned by these objects, i.e. the full
subcategory spanned by these objects and all weakly equivalent ones, is homotopi-
cally contractible in the sense that the unique functor G→ [0] is a homotopical
equivalence of homotopical categories (31.3).

As
∗ the full subcategory of a category spanned by its initial or terminal objects

is either empty or categorically contractible (31.7),
one can often verify the categorical uniqueness (31.7) of a non-empty set of objects
in a category Y by noting that these objects are initial or terminal objects of
Y and similarly one can often verify the homotopical uniqueness (31.7) of a non-
empty set of objects in a homotopical category Y by noting that these objects are
homotopically initial or homotopically terminal objects of Y in the following sense.

31.8. Homotopically initial and terminal objects. If, given a category
Y and an object Y ∈ Y , one denotes by 1Y : Y → Y the identity functor of Y and
by cstY : Y → Y the constant functor which sends all maps of Y to the identity
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map of the object Y ∈ Y , then (see 38.1) an object Y ∈ Y is initial (resp. terminal)
iff there exists a natural transformation

f : cstY → 1Y (resp. f : 1Y → cstY )

such that the map fY : Y → Y ∈ Y is an isomorphism.
We therefore call an object Y of a homotopical category Y homotopically

initial (or terminal) if there exist homotopical functors F0, F1 : Y → Y and a
natural transformation

f : F0 → F1 (resp. f : F1 → F0)

such that the map fY ∈ Y is a weak equivalence and the functors F0 and F1 are
naturally weakly equivalent (31.3) to cstY and 1Y respectively, and note that this
definition indeed implies that

∗ the full subcategory of Y spanned by the homotopically initial (resp. ter-
minal) objects is a homotopically full subcategory (31.7) which is either
empty or homotopically contractible (31.7).

31.9. Homotopical Kan extensions. Just as one defines (ordinary) Kan
extensions as terminal or initial objects in an appropriate category, one can define
homotopical Kan extensions as homotopically terminal or initial objects in an
appropriate homotopical category. Except for a brief mention in 39.3 and 41.1,
these Kan extensions will only be used in the second half of chapter VIII.

We end with

31.10. Organization of the chapter. After some categorical preliminaries
(in §32) we introduce homotopical categories and define their homotopy categories
(in §33). Next (in §34) we give a more explicit description of this homotopy category
and investigate (in §36) the consequences of the presence of a 3-arrow calculus. And
finally we discuss homotopical uniqueness and homotopically universal properties
(in §37) and the related notions of homotopically terminal and initial objects and
homotopical Kan extensions (in §38).

32. Universes and categories

The aim of this section is to explain what exactly we mean by the terms cat-
egory, locally small category, and small category.

In order to avoid the usual set theoretical problems we will work in the setting
of

32.1. Universes. ([AGV72], [Mac71], [Sch72]). When one works in the
setting of universes one makes the basic assumption that

(∗) every set is an element of some universe
where a universe is, roughly speaking, a set of “sufficiently small sets” satisfying
a few simple axioms which ensure that the usual operations of set theory, when
applied to these sufficiently small sets, produce again such sets. More precisely, a
universe is a set U of sets (called U-sets) such that

(i) if x ∈ U and y ∈ x, then y ∈ U ,
(ii) if x ∈ U and y ∈ U , then {x, y} ∈ U , where {x, y} denotes the 2-element

set with x and y as its elements,
(iii) if a ∈ U and, for every i ∈ a, xi ∈ U , then the union

⋃
i∈a xi ∈ U ,
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(iv) if x ∈ U , then P(x) ∈ U , where P(x) denotes the power set of x, i.e. the
set of the subsets of x, and

(v) the set of the finite ordinals is an element of U ,
from which one can deduce such other closure properties as

(vi) if x ∈ U and y ⊆ x, then y ∈ U ,
(vii) if a ∈ U and, for every i ∈ a, xi ∈ U , then the product

∏
a∈a xi ∈ U ,

(viii) if x ∈ U and y ∈ U , then xy ∈ U , where xy denotes the set of the functions
y → x,

(ix) the intersection of any set of universes is again a universe, and
(x) if x ∈ U , then x ⊆ U .

However the opposite of (x) does not hold, i.e. not every subset of U is an element
of U . For instance, U itself cannot be an element of U as this would imply (iv)
that P(U) would also be an element of U and hence (x) a subset of U , which is
impossible as P(U) has greater cardinality than U .

A consequence of (∗) is not only the existence of universes, but also the fact
that

(xi) for every universe U , there exists a higher universe, i.e. a universe V
such that U ∈ V, and in fact (ix) a unique smallest such higher universe
which will be called the successor universe of U and denoted by U+.

In such a setting of universes one then defines as follows

32.2. U-categories and small U-categories. Given a universe U (32.1), a
U-category will be a category C such that

(i) for every pair of object X,Y ∈ C, the hom-set C(X,Y ), i.e. the set of
the maps X → Y ∈ C, is an element of U , and

(ii) the set of the objects of C is a subset of U ,
and a small U-category will be a U-category such that

(ii)′ the set of the objects of C is actually an element of U , which implies
(32.1(iii)) that so is the set of all its maps.

These definitions readily imply that
(iii) the small U-categories and the functors between them form a U-category.

However this conclusion does not hold for the (not necessarily small) U-categories
as the set of all U-categories has greater cardinality than U . But

(iv) every U-category is a small U+-category,
where U+ denotes the successor universe of U (32.1). Thus U-categories and the
functors between them form a U+-category and a rather straightforward calculation
yields that in fact

(v) the U-categories and the functors between them form a small U+-category.
Now we can explain what we will mean by

32.3. Categories, locally small categories and small categories. We
choose an arbitrary but fixed universe U and use the term

small category for small U-category, and
locally small category for U-category
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instead of the customary use of the term category for U-categories, and unless the
context clearly indicates otherwise we reserve the term

category for small U+-category.

Moreover we use the term

small set for U-set, and

set for U+-set.

In a similar fashion we denote by

cat the U-category of the small U-categories, and

CAT the U+-category of the small U+-categories.

Our justification for the above terminology is the following:
The notion of a small U-category is a quite convenient one as any “reasonable”

operation, when applied to small U-categories, yields again a small U-category. For
instance, in view of the arguments given in 33.2 and 33.8 (with U instead of U+),

(i) the category of functors between two small U-categories (33.2), and
(ii) the localization of a small U-category with respect to a subcategory (33.9)

are again small U-categories. However many interesting U-categories, and in partic-
ular the model categories of part I to which we want to apply the results of part II,
are not small and, while many operations, when applied to U-categories yield again
a U-category,

(i)′ the colimit or limit of a diagram of U-categories indexed by a U-category,
(ii)′ the category of functors between two U-categories, and
(iii)′ the localization of a U-category with respect to a subcategory

are (in view of 32.2 (iv)) always a small U+-category, but need not be a U-category.
As a result, in dealing with U-categories it is difficult to avoid the use of small
U+-categories and one gets a cleaner exposition if one works most of the time with
small U+-categories and, only in the few instances when this is really necessary,
notes sufficient conditions in order that some operation on U-categories yields a
small U+-category which is actually a U-category.

33. Homotopical categories

We now introduce homotopical categories and homotopical functors between
them and discuss several functorial ways in which one can associate with each
homotopical category an (ordinary) category and conversely with each category a
homotopical category.

33.1. Homotopical categories and homotopical functors. A homotopi-
cal category will be a category C (32.3) with a distinguished set W (32.3) of maps
(called weak equivalences) such that

(i) W contains all the identity maps of C, and
(ii) W has the two out of six property that, for every three maps r, s

and t ∈ C for which the two compositions sr and ts exist and are in W ,
the four maps r, s, t and tsr are also in W

which one readily verifies (by assuming that both sr and ts are identity maps or
that at least one of r, s and t is an identity map) is equivalent to requiring that

(iii) W contains all the identity maps of C,
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(iv) W has the weak invertibility property that every map s ∈ C for
which there exist maps r and t ∈ C such that the compositions sr and
ts exist and are in W , is itself in W (which together with (iii) implies
that all isomorphisms of C are in W ), and

(v) W has the two out of three property that, for every two maps f and
g ∈ C for which gf exists and two of f , g and gf are in W , the third is
also in W (which implies that W is a subcategory of C).

Such a homotopical category will be called small or locally small whenever the
category C is (32.3).

Two objects of C will be called weakly equivalent if they can be connected by
a zigzag of weak equivalences. The category C will be referred to as the underlying
category and its subcategory W as the homotopical structure or category of
weak equivalences and a homotopical subcategory of C will be a subcategory
C0 ⊂ C with C0 ∩W as its homotopical structure.

Furthermore, given two homotopical categories C and C ′

(v) a functor C → C ′ will be called homotopical if it preserves weak
equivalences, i.e. sends the weak equivalences in C to weak equivalences
in C ′,

(vi) a natural transformation f → g between two functors f, g : C → C ′ will
be called a natural weak equivalence if it sends the objects of C to
weak equivalences in C ′, and

(vii) a homotopical functor f : C → C ′ will be called a homotopical equiva-
lence of homotopical categories if there exists a homotopical functor
f ′ : C ′ → C (called a homotopical inverse of f) such that the com-
positions f ′f and ff ′ are naturally weakly equivalent, i.e. can be
connected by a zigzag of natural weak equivalences, to the identity func-
tors 1C and 1C′ respectively.

We also note that functors between homotopical categories and the natural
transformations between them give rise to two kinds of

33.2. Homotopical diagram or functor categories. Given two categories
C and D (32.3), a C-diagram in D is just a functor C → D and one sometimes
refers to C as the indexing category of the diagram. Such diagrams and the
natural transformations between them form a category in the sense of 32.3 (as
these natural transformations can be considered as functions from the U+-set of
the objects of C to the U+-set of the maps of D and, in view of 32.1(viii), the set of
all such functions is also a U+-set). This category is called the functor category
or, especially when the category C plays a rather different role than the category
D, diagram category and will be denoted by

Fun(C,D) or DC .

If C and D are homotopical categories, then one can similarly form two kinds
of homotopical diagram or functor categories. The first of these is the ho-
motopical category of (ordinary) functors C →D which has

(i) as objects the (ordinary) functors C →D,
(ii) as maps the natural transformations between them, and
(iii) as weak equivalences the natural weak equivalences,
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for which we will use the same notation

Fun(C,D) or DC

as for the (ordinary) functor category, while the second will be the homotopical
category of homotopical functors C →D, i.e. its full homotopical subcategory
(33.1)

Funw(C,D) or
(
DC

)
w

spanned by the homotopical functors C →D.

Next we consider

33.3. The category of homotopical categories and homotopical func-
tors. The homotopical categories and the homotopical functors between them
(33.1) form a U+-category (32.1 and 32.2) which we will denote by CATw, and
which is related to the U+-category CAT of (ordinary) categories and functors
(32.3) by a sequence of five functors (two in one direction and three in the other)
which form four pairs of adjoint functors as indicated in the diagram

Ho←→ min←→ j ←→ max←→ jw ,

and we devote the remainder of this section to a brief discussion of these five
functors.

We start with

33.4. The forgetful functors j, jw : CATw → CAT. These are the functors
which send a homotopical category respectively to its underlying category and its
category of weak equivalences ((33.1)).

Closely related to both these functors is

33.5. The maximal structure functor max: CAT → CATw. This is the
functor which sends a category C to the maximal homotopical category with
C as its underlying category as well as its category of weak equivalences (33.1). It
obviously is (33.4)

(i) a left adjoint of the forgetful functor jw : CATw → CAT, and
(ii) a right adjoint of the forgetful functor j : CATw → CAT.

Of course there is also the other extreme of

33.6. The minimal structure functor min: CAT → CATw. This is the
functor which sends a category C to the minimal homotopical category which
has C as its underlying category, but in which the weak equivalences are only the
isomorphisms of C. It clearly is

∗ a left adjoint of the forgetful functor j : CATw → CAT (33.4).
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These last two results (33.5 and 33.6) suggest two ways of

33.7. Embedding CAT in CATw. Homotopical categories can be seen as a
generalization of categories by considering an (ordinary) category as either a mini-
mal or a maximal homotopical category, i.e. (33.6 and 33.5) a homotopical category
in which either only the isomorphisms or all the maps are weak equivalences. The
first of these approaches seems to be the more useful one and we therefore usually
will

(i) consider CAT as a full subcategory of CATw by considering each (ordi-
nary) category as a minimal homotopical one, and

(ii) mean, when we talk of a homotopical version of some categorical no-
tion or result, a notion or result which (for instance as in §37 and §38
below) on minimal homotopical categories reduces to the given categori-
cal one.

It thus remains to discuss the functor Ho: CATw → CAT which sends homo-
topical categories to their

33.8. Homotopy categories. Given a homotopical category C, its homo-
topy category will be the category Ho C obtained from C by “formally inverting”
the weak equivalences, i.e. the category defined as follows.

Given two objects X,Y ∈ C and an integer n ≥ 0, a zigzag in C from X to
Y of length n will be a sequence

X = C0
f1 // C1 · · · fn

Cn = Y

of maps in C, each of which is either forward (i.e. points to the right) or backward
(i.e. points to the left) and such a zigzag will be called restricted if all the backward
maps are weak equivalences. The homotopy category of C then will be the
category HoC which has the same objects as C, in which, for every two objects
X,Y ∈ C, the hom-set HoC(X,Y ) is the set of the equivalence classes of the
restricted zigzags in C from X to Y , where two such zigzags are in the same class
iff one can be transformed into the other by a finite sequence of operations of the
following three types and their inverses:

(i) omitting an identity map,
(ii) replacing two adjacent maps which go in the same direction by their

composition, and
(iii) omitting two adjacent maps when they are the same, but go in opposite

directions
and in which the compositions are induced by the compositions of the zigzags
involved.

It thus remains to verify that
(iv) the homotopy category Ho C so defined is indeed a category, i.e. (32.3) a

small U+-category
but this follows readily from the observation that the set of the maps of HoC is a
quotient of a subset of the finite ordered subsets of the set of the maps of C and
that, as (32.2(ii)′) the set of the maps of C is a U+-set, so is, in view of 32.1(viii),
the set of its finite ordered subsets.

We also note that the same argument with U instead of U+ yields that
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(v) the homotopy category of a small homotopical category (32.3) is also
small.

However the homotopy category of a locally small homotopical category (32.3) need
not be locally small.

33.9. The localization functor. Given a homotopical category C with cat-
egory of weak equivalences W , its homotopy category Ho C (33.8) comes with a
functor γ : C → Ho C which is the identity on the objects and which sends a map
f : X → Y ∈ C to the map γf : X → Y ∈ Ho C which contains the restricted
zigzag in C from X to Y which consists of only the map f . We will refer to it as
the localization functor of C as the definitions involved imply that

(i) the pair (HoC, γ) is a localization of C with respect to W in the sense
that this pair has the universal property that, for every category B and
functor b : C → B which sends the weak equivalences in C to isomor-
phisms in B, there is a unique functor bγ : HoC → B such that bγγ = b.

This universal property implies that

(ii) given two homotopical categories C and D with localization functors
γ : C → Ho C and γ′ : D → Ho D there is, for every homotopical functor
f : C → D a unique functor Ho f : HoC → Ho D such that (Ho f)γ =
γ′f and, for every natural transformation (resp. natural weak equiva-
lence) d : f1 → f2 between two homotopical functors f1, f2 : C → D, a
unique natural transformation (resp. natural isomorphism) Ho d : Ho f1 →
Ho f2 such that (Ho d)γ = γ′d,

(iii) the function Ho so defined is a functor Ho: CATw → CAT which is left
adjoint to the functor min: CAT→ CATw (33.6), and

(iv) this functor Ho sends naturally weakly equivalent homotopical functors
C → D (33.1(vii)) to naturally isomorphic functors Ho C → Ho D and
homotopical equivalences of homotopical categories C →D (33.1(vii)) to
equivalences of categories Ho C → Ho D.

Closely related to the localization functor is the rather useful (see §§42 and
47–49) notion of a saturated homotopical category, i.e. a homotopical category
W with localization functor γ : C → Ho C with the property that a map c ∈ C
is a weak equivalence iff the map γc ∈ Ho C is an isomorphism. This notion is
hereditary in the sense that

(v) if C is a saturated homotopical category, then so are, for every homo-
topical category D, the homotopical functor categories (33.2)

CD and (CD)w
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which follows readily from the observation that every object D ∈D gives rise to a
commutative diagram of the form

Ho(CD)

%%KKKKKKKKKK

CD

γ′
;;vvvvvvvvv

γD

//

��

(HoC)D

��

C γ
// Ho C

in which the vertical maps are “restrictions to D”, γ and γ′ are the localization
functors of C and CD and the map in the upper right hand corner is the unique
map (i) such that the triangle commutes.

We end this discussion of homotopy categories with an often convenient

33.10. Alternate description of the hom-sets. Given a homotopical cat-
egory C and objects X,Y ∈ C, the hom-set Ho C(X,Y ) (33.8) is the set of the
equivalence classes of the restricted zigzags in C from X to Y , where two such
zigzags are in the same class if one can be transformed into the other by a finite
sequence of operations of the following three types and their inverses:

(i) omitting an identity map,
(ii) replacing two adjacent maps which go in the same direction by their com-

position, and
(iii) in a commutative diagram in C of the form

X
f1

1=a0

��

·

a1

��

··· ·
an−1

��

fn

Y

an=1

��

X g1
· ··· ·

gn
Y

n ≥ 0

in which, for every integer i with 1 ≤ i ≤ n, the maps fi and gi go in the
same direction, replacing the top row by the bottom row.

Proof. As every weak equivalence c : C0 → C1 and every composable pair of
maps c1 : C1 → C2 and c2 : C2 → C3 ∈ C give rise to commutative diagrams

C0
c // C1 C0

coo

C0

1

OO

1
// C0

c

OO

C01
oo

1

OO

,

C1

1

��

C0
coo c //

c

��

C1

1

��

C1 C11
oo

1
// C1

and

C1
c1 //

1

��

C2
c2 //

c2

��

C3

1

��

C1
// C3 1

// C3

every two restricted zigzags in C which are in the same class in the sense of 33.8
are also in the same class in the sense of 33.10.

To show the converse one has to prove that, for every commutative diagram as
in 33.10(iii) and every integer i with 1 ≤ i ≤ n, the restricted zigzag

X
f1 · ··· ·

fi−1 · fi · ai // ·
gi+1 · ··· · gn

Y
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and

X
f1 · ··· ·

fi−1 ·
ai−1

// · gi ·
gi+1 · ··· · gn

Y

are in the same class in the sense of 33.8 and one does this by noting that, in the
case that fi and gi are forward maps, this follows from 33.8(ii) and the fact that
aifi = giai−1, and that, in the case that fi and gi are backward maps, this follows
from the observation that, in view of 33.8(ii), these two zigzags are respectively in
the same class, in the sense of 33.8, as the zigzags

X ··· ·
fi−1 · ·fioo

fi // ·
ai−1

// · gi ·
gi+1 · ··· Y

and

X ··· ·
fi−1 · fi · ai // · gi // · ·gioo

gi+1 · ··· Y

and that, in view of 33.8(ii) and the fact that ai−1fi = giai, these last two zigzags
are in the same class in the sense of 33.8.

34. A colimit description of the hom-sets of the homotopy category

In this section we deduce from the description of the hom-sets of the homotopy
category Ho C of a homotopical category C in which, for every two objects X,Y ∈
C, the hom-set Ho C(X,Y ) is described as a set of equivalence classes of restricted
zigzags in C from X to Y , where each such class contains zigzags of countably
many different types (i.e. numbers of forward and backward maps and the order in
which they appear), a description of Ho C(X,Y ) as a colimit of a diagram of sets,
indexed by the category T of these types, in which each set consists of equivalence
classes of zigzags of only one type.

To do this we start with giving a precise definition of

34.1. Types of Zigzags. The type of a zigzag in a category C from an object
X to an object Y (33.8)

X = C0
f1

C1 · · · fn
Cn = Y (n ≥ 0)

will be the pair T = (T+, T−) of complementary subsets of the set of integers
{1, . . . , n} such that i ∈ T+ whenever fi is forward and i ∈ T− otherwise.

These types can be considered as objects of a category of types T which has,
for every two types (T+, T−) and (T ′+, T

′
−) of length n and n′ respectively, as maps

t : (T+, T−)→ (T ′+, T
′
−) the weakly monotone functions t : {1, . . . , n} → {1, . . . , n′}

such that

t(T+) ⊂ T ′+ and t(T−) ⊂ T ′−.

With these types of zigzags one can associate

34.2. Arrow categories. Given a homotopical category C with category of
weak equivalences W , a pair of objects X,Y ∈ C and a type T of length n (34.1),
the associated n-arrow category will be the category which has as objects the
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restricted zigzags in C from X to Y (i.e. zigzags in which the backward maps
are in W ) of type T and has as maps the commutative diagrams in C of the form

X

1

��

· ···

��

·

��

Y

1

��

X · ··· · Y

in which the top row and the bottom row are restricted zigzags in C of type T and
the vertical maps are weak equivalences. This n-arrow category will be denoted by

(C,W−1)T (X,Y )

Next we note that from these arrow categories one can form

34.3. T -diagrams of arrow categories. Given a homotopical category C
with category of weak equivalences W and a pair of objects X,Y ∈ C, one can
form a T -diagram of arrow categories

(C,W−1)T (X,Y )

which assigns to every object T ∈ T (34.1) the category (34.2)

(C,W−1)T (X,Y )

and to every map t : T → T ′ ∈ T the functor

t∗ : (C,W−1)T (X,Y )→ (C,W−1)T
′
(X,Y )

which sends a zigzag of type T

X = C0
f1

C1 · · · · · fn
Cn = Y

to the zigzag of type T ′

X = C ′0
f ′1

C ′1 · · · · ·
f ′n

C ′n′ = Y

in which each f ′j (1 ≤ j ≤ n′) is the composition of the fi with ti = j or, if no such
i exists, the appropriate identity map.

Similarly, for every subcategory T ′ ⊂ T the restriction of the above T -diagram
to T ′ yields a T ′-diagram of arrow categories which we will denote by

(C,W−1)T ′
(X,Y )

We also need the notion of

34.4. Connected components of a category. A connected component
of a category D is a maximal subcategory D0 ⊂ D with the property that every
pair of objects in D0 can be connected by a zigzag of maps in D0. We will denote
by π0D the resulting set of the equivalence classes of the objects of D, where two
objects will be in the same class when they are in the same connected component,
and denote, for a functor c : D → E, by π0c : π0D → π0E the function induced by
c.
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Now we can finally formulate the promised

34.5. Colimit description of the hom-sets. Let C be a homotopical cate-
gory with category of weak equivalences W . Then, for every pair of objects X,Y ∈
C (34.3)

Ho C(X,Y ) = colimT π0(C,W−1)T (X,Y ) .

Proof. This follows from 33.8 and the observation that the functor π0 takes
care of the relations imposed by 33.8(iii) and that the functors between the arrow
categories take exactly care of the relations imposed by 33.8(i) and (ii).

35. A Grothendieck construction

As an application of the above colimit description of the hom-sets of the ho-
motopy category of a homotopical category C, we

(i) obtain, for every pair of objects X,Y ∈ C, from the T -diagram of ar-
row categories (C,W−1)T (X,Y ) a single category Gr(C,W−1)T (X,Y )
(called its Grothendieck construction) which has as its objects all the
restricted zigzags in C from X to Y and of which any two objects
are in the same connected component iff they represent the same map
X → Y ∈ Ho C,

(ii) combine all these Grothendieck constructions into a single category

Gr(C,W−1)T

which has the same objects as C and is enriched over CAT (32.3) and
which has the property that its “category of connected components” is
exactly the category Ho C, and

(iii) note that this enriched category is closely related to the (simplicial) ham-
mock localization of [DK80a].

We thus start with

35.1. Grothendieck construction. We recall from [Tho79] that, given a
homotopical category C with category of weak equivalences W and a pair of ob-
jects X,Y ∈ C, the Grothendieck construction on the T -diagram of categories
(C,W−1)T (X,Y ) (34.3) is the category

Gr(C,W−1)T (X,Y )

which has (34.2 and 34.3)
(i) as objects the restricted zigzags in C from X to Y , i.e. the pairs (T,Z)

consisting of the objects

T ∈ T and Z ∈ (C,W−1)T (X,Y )

and
(ii) for every two such objects (T ′, Z ′) and (T ′′, Z ′′), as maps (T ′, Z ′) →

(T ′′, Z ′′) the pairs (t, z) consisting of maps

t : T ′ → T ′′ ∈ T and z : t∗Z ′ → Z ′′ ∈ (C,W−1)T
′′
(X,Y )

and note that, by essentially the same argument as was used in the proof of 34.5,
this definition implies that
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35.2. Proposition. For every homotopical category C and pair of objects
X,Y ∈ C, (34.5)

Ho C(X,Y ) = colimT π0(C,W−1)T (X,Y ) = π0Gr(C,W−1)T (X,Y ) .

Next we note that these Grothendieck constructions give rise to what we will
call the

35.3. Grothendieck enrichment. Given a homotopical category C with
category of weak equivalences W , its Grothendieck enrichment will be the
category Gr(C,W−1)T enriched over CAT (32.3) which

(i) has the same objects as C,
(ii) has, for every two objects X,Y ∈ C, as its hom-category the category

Gr(C,W−1)T (X,Y ), and
(iii) has, for every three objectsX1, X2 andX3 ∈ C as its composition functor

Gr(C,W−1)T (X1, X2)×Gr(C,W−1)T (X2, X3) −→ Gr(C,W−1)T (X1, X3)

the functor induced by the compositions of the zigzags involved.

If π0Gr(C,W−1)T denotes the category obtained from Gr(C,W−1)T by ap-
plying the functor π0 (34.4) to each of its hom-categories, then 34.5 and 35.2 imply
the following

35.4. Grothendieck description of the homotopy category. If C is a
homotopical category with category of weak equivalences W , then

Ho C = π0Gr(C,W−1)T .

We end with a brief discussion of the connection between these Grothendieck
enrichments and simplicial localizations and for this we need a few

35.5. Simplicial preliminaries. We need the following definitions and re-
sults.

(i) a simplicial set will be a functor A : ∆op → SET, where SET denotes
the U+-category (32.1 and 32.2) of sets (32.3) and ∆op is the category
which has as its objects the categories [n] (n ≥ 0) (22.10) and as maps
all the functors between them, and the elements of the set A[n] (n ≥ 0)
will be referred to as the n-simplices of A,

(ii) every category X then gives, in a functorial manner, rise to a simplicial
set NX (called its nerve or classifying space) which is the functor
∆op → SET which sends [n] (n ≥ 0) to the set of the functors [n]→X,
and

(iii) the U+-category of simplicial sets SET∆op
admits a model structure (9.1)

(the details of which can be found in [GJ99], [Hir03] and [Hov99]) in
which

(iii)′ the cofibrations are the objectwise monomorphisms, and
(iii)′′ if f : X → Y is a functor which has a right inverse g : Y →X for which

there exists a natural transformation 1X → gf , then the induced map of
simplicial sets Nf : NX → NY is a weak equivalence.
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Now we can start dealing with

35.6. The connection with simplicial localizations. Given a homotopical
category C with category of weak equivalences W , its Grothendieck enrichment
(35.3) gives rise to a simplicial category, i.e. a category enriched over simplicial
sets (35.5)

NGr(C,W−1)T

which has the same objects as C and which, for every pair of objects X,Y ∈ C,
has the simplicial set

NGr(C,W−1)T (X,Y )
as its simplicial hom-set. This simplicial category is closely related to the (simplicial)
hammock localization of C, i.e. the simplicial category LHC which has the same
objects as C and in which, for every pair of objectsX,Y ∈ C, the simplicial hom-set
can be described as [DK80a, 5.5]

LHC(X,Y ) = colimT N(C,W−1)T (X,Y ) .

These two simplicial categories then are related by the following

35.7. Proposition. Let C be a homotopical category with category of weak
equivalences W . Then the map of simplicial categories (35.6)

p : NGr(C,W−1)T → LHC

which is the identity on the objects and which, for every pair of object X,Y ∈ C,
consists of the map

p(X,Y ) : NGr(C,W−1)T (X,Y ) −→ colimT N(C,W−1)T (X,Y )

which sends an n-simplex of NGr(C,W−1)T (X,Y ), i.e. a sequence of maps in
Gr(C,W−1)T (X,Y ) (35.1)

(T 0, Z0)
(t1,z1)−−−−→ (T 1, Z1) −→ · · · −→ (Tn−1, Zn−1)

(tn,zn)−−−−→ (Tn, Zn)

to the n-simplex of colimT N(C,W−1)T (X,Y ) which contains the sequence of maps
in (C,W−1)T

n(X,Y )

(tn · · · t1)∗Z0 (tn···t2)∗z1−−−−−−−→ (tn · · · t2)∗Z1 −→ · · · −→ tn∗Z
n−1 zn

−→ Zn

is a weak equivalence in the sense that, for every pair of objects (X,Y ) ∈ C, the
map p(X,Y ) is a weak equivalence of simplicial sets (35.5).

To prove this we need the following

35.8. Colimit description of the Grothendieck construction. Given a
homotopical category C with category of weak equivalences W and two objects
X,Y ∈ C, let

(C,W−1)(−↓T )(X,Y )
denote the T -diagram of categories which assigns to every object T ∈ T the category

(C,W−1)(−↓T )(X,Y )

which has
(i) as objects the pairs (t′, Z ′) consisting of a map t′ : T ′ → T ∈ T and an

object Z ′ ∈ (C,W−1)T
′
(X,Y ), and
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(i)′ as maps (t′, Z ′)→ (t′′, Z ′′), where

Z ′ ∈ (C,W−1)T
′
(X,Y ) and Z ′′ ∈ (C,W−1)T

′′
(X,Y )

the pairs (t, z) consisting of a map t : T ′ → T ′′ ∈ T such that t′′t = t′

and a map (35.1)

z : t∗Z ′ −→ Z ′′ ∈ (C,W−1)T
′′
(X,Y )

and which assigns to every map t̄ : T → T ∈ T the functor

(C,W−1)(−↓T )(X,Y ) −→ (C,W−1)(−↓T )(X,Y )

which sends
(ii) an object (t′, z′) to the object (t̄t′, Z ′), and
(ii)′ a map (t, z) : (t′, Z ′)→ (t′′, Z ′′) to the map (t, z) : (t̄t′, Z ′)→ (t̄g′′, Z ′′),

and let, for every object T ∈ T ,

(C,W−1)(−↓T )(X,Y ) −→ Gr(C,W−1)T (X,Y )

denote the functor which sends
(iii) an object (t′, Z ′), where Z ′ ∈ (C,W−1)T

′
(X,Y ), to the object (T ′, Z ′),

and
(iii)′ a map (t, z) : (t′, Z ′)→ (t′′, Z ′′), where

Z ′ ∈ (C,W−1)T
′
(X,Y ) and Z ′′ ∈ (C,W−1)T

′′
(X,Y ) ,

to the map (t, z) : (T ′, Z ′)→ (T ′′, Z ′′).
Then

(iv) these functors are natural in T , and
(v) the induced functor

colimT (C,W−1)(−↓T )(X,Y ) −→ Gr(C,W−1)T (X,Y )

is an isomorphism
and moreover

(vi) so is the induced (35.6) map of simplicial sets

colimT N(C,W−1)(−↓T )(X,Y ) −→ NGr(C,W−1)T (X,Y ) .

Proof. This is a lengthy but essentially straightforward calculation which will
be left to the reader.

It thus remains to give a

35.9. Proof of 35.7. To prove 35.7 one first notes that
(i) every object T ∈ T gives, for every pair of objects X,Y ∈ C, rise to a

functor

(C,W−1)(−↓T )(X,Y ) −→ (C,W−1)T (X,Y )

which sends an object (t′, Z ′) to the object (T, t′∗Z
′) and a map (t, z) : (t′, Z ′)→

(t′′, Z ′′) to the map

(T, t′∗Z
′) = (T, t′′∗t∗Z

′)
(1T ,t

′′
∗ z)−−−−−→ (T, t′′∗Z

′′)

and that
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(ii) the map p(X,Y ) admits a factorization

colimT N(C,W−1)(−↓T )(X,Y )

))RRRRRRRRRRRRR

NGr(C,W−1)T (X,Y )

66mmmmmmmmmmmm
p(X,Y )

// colimT N(C,W−1)T (X,Y )

in which the first map is the inverse of the isomorphism of 35.8(vi) and
the second map is induced by the maps of (i) above.

The desired result now follows from 22.7 and the observations that

(iii) the category T can be considered as a Reedy category with fibrant con-
stants (22.1 and 22.8) in which the required subcategories

−→
T and

←−
T

consist of the maps which are respectively 1-1 and onto,
(iv) the T -diagrams of simplicial sets

N(C,W−1)(−↓T )(X,Y ) and N(C,W−1)T (X,Y )

are, in view of 35.5(iii)′ both Reedy cofibrant diagrams (10.2, 22.2 and
22.6),

and the fact that,

(v) as one readily verifies that the functors considered in (i) above have
the property mentioned in 35.5(iii)′′, the nerves of these maps are weak
equivalences of simplicial sets.

36. 3-arrow calculi

Next we use the description (34.5) of the hom-sets of the homotopy category of
a homotopical category as a colimit of a diagram of sets, indexed by the category
of types T , in which each set consists of equivalence classes of restricted zigzags of
only one type, to show that

(i) if C admits a so-called 3-arrow calculus, then these hom-sets can be
described in terms of zigzags in C of type

· ·oo // · ·oo

only.

Moreover we deduce from this (for the first time using the full strength of the “two
out of six” property (33.1) and not merely the “two out of three” property) the
somewhat unexpected result that

(ii) if C admits a 3-arrow calculus, then C is saturated, i.e. (33.9) a map in
C is a weak equivalence iff its image in HoC is an isomorphism.

This last result turns out to be of use in chapters VII and VIII where we obtain
sufficient conditions for the composability of approximations (in §42) and of homo-
topy colimit and limit functors (in §47) and for the homotopical cocompleteness
and completeness of homotopical categories (in §49), which are considerably sim-
pler, and therefore easier to verify, when the homotopical categories involved are
saturated.
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We start (motivated by some of the properties of the subcategories of the
trivial cofibrations and the trivial fibrations in a model category (see chapter II))
with defining

36.1. 3-arrow calculi. Given a homotopical category C with category of
weak equivalences W (33.1), C is said to admit a 3-arrow calculus {U ,V } if
there exist subcategories U ,V ⊂W such that

(i) for every zigzag A′ u←− A f−→ B in C which u ∈ U , there exists a functorial

zigzag A′
f ′−→ B′

u′←− B in C with u′ ∈ U such that

u′f = f ′u and

u′ is an isomorphism whenever u is

(e.g. if C is closed under pushouts and every pushout of a map in U is
again in U),

(ii) for every zigzag X
g−→ Y

v←− Y ′ in C with v ∈ V , there exists a functorial

zigzag X v′←− X g′−→ Y in C with v′ ∈ V such that

gv′ = vg′ and

v′ is an isomorphism whenever v is

(e.g. if C is closed under pullbacks and every pullback of a map in V is
again in V ), and

(iii) every map w ∈W admits a functorial factorization w = vu with u ∈ U
and v ∈ V .

Note that (iii) implies that U and V contain all the objects of W and hence
of C.

Another immediate consequence of this definition is that
(iv) for every homotopical category D, the homotopical diagram categories

(33.2)
CD and

(
CD

)
w

inherit from C a 3-arrow calculus in which the desired subcategories con-
sist of the natural transformations which send the objects of D to maps
in U and V respectively.

Similarly one has

36.2. Proposition. Let C be a homotopical category with category of weak
equivalences W which admits a 3-arrow calculus {U ,V } (36.1). Then, for every
pair of objects X,Y ∈ C, the 3-arrow category (34.2)

(C,W−1)({2},{1,3})(X,Y )

and its full subcategory
(C,W−1)({2},{1,3}){U ,V } (X,Y )

spanned by the zigzags of the form

X · //voo · Y
uoo

in which u ∈ U and v ∈ V , when considered as maximal homotopical categories
(33.5), inherit from C a 3-arrow calculus of which
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(i) the desired subcategories consist of the commutative diagrams in C of the
form

X

1

��

·

��

//oo ·

��

Y

1

��

oo

X · //oo · Yoo

in which the vertical maps are respectively in U and in V , and
(ii) the functorial factorization consists of the commutative diagrams in C of

the form
X

1

��

·oo

��

// ·

��

Yoo

1

��

X

1

��

·p
oo

��

// ·

��

Y
q

oo

1

��

X ·oo // · Yoo

in which the squares in the middle are produced by the given functorial
factorization and the maps p and q are the unique ones which make the
other squares commutative.

Now we formulate the promised

36.3. 3-arrow description of the hom-sets. Let C be a homotopical cate-
gory with category of weak equivalences W , which admits a 3-arrow calculus {U ,V }
(36.1). Then, for every pair of objects X,Y ∈ C,

(i) the map (34.1–34.5)

π0(C,W−1)({2},{1,3})(X,Y ) incl.∗−−−→ colimT π0(C,W−1)T (X,Y ) = Ho C(X,Y )

induced by the inclusion ({2}, {1, 3}) ∈ T and the map

π0(C,W−1)({2},{1,3}){U ,V } (X,Y ) incl.∗−−−→ π0(C,W−1)({2},{1,3})(X,Y )

induced by the inclusion of 36.2, are both isomorphisms.
Moreover, in view of (i) and 36.2

(ii) two objects of (CW−1)({2}.{1,3})(X,Y ) are in the same connected com-
ponent iff they are the top row and the bottom row in a commutative
diagram in C of the form

X ·oo // · Yoo

X

1

OO

1

��

·v3oo

v1

OO

//

w1

��

·

v2

OO

w2

��

Y

1

OO

u3oo

1

��

X ·v4oo // · Y
u4oo

X

1

OO

·oo

u1

OO

// ·

u2

OO

Yoo

1

OO
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in which u1 and u2 are in U , v1 and v2 are in V and the w’s are in W ,
and

(iii) two objects of (C,W−1)({2},{1,3}){U ,V } (X,Y ) are in the same connected com-
ponent iff they are the top row and the bottom row in such a diagram in
which all the u’s are in U , all the v’s are in V and the w’s are in W .

Before proving this result we first use it to obtain the earlier mentioned

36.4. Saturation proposition. Let C be a homotopical category with local-
ization functor γ : C → Ho C (33.9), which admits a 3-arrow calculus (36.1). Then
C is saturated, i.e. (33.9) a map f ∈ C is a weak equivalence iff the map γf ∈ Ho C
is an isomorphism and moreover ( 33.9(v) or 36.1(iv)) so are, for every homotopical
category D, the homotopical functor categories (33.2)

Fun(D,C) and Funw(D,C).

Proof. Let {U ,V } be a 3-arrow calculus on C, let f : A → B ∈ C be a map
such that γf ∈ Ho C is an isomorphism and let (36.3(i))

B B′
voo

g
// A′ A

uoo

be a zigzag in C with u ∈ U and v ∈ V which represents (γf)−1. Then one can
form the commutative diagram

A
f

// B

·

v1

OO

f1

// B′

v

OO

g
// A′

f2

// ·

A

u

OO

f
// B

u2

OO

in which the squares are as in 36.1(ii) and (i). In this diagram the zigzags

· f
// · ·voo

g
// ·uoo and · ·voo

g
// · ·uoo

f
// ·

represent identity maps in Ho C and hence so do the zigzags

· ·v1oo
gf1 // · ·uoo and · ·voo

f2g // · ·u2oo

This implies, in view of 36.3(ii) and the “two out of three” property (33.1) that gf1
and f2g are weak equivalences and so are therefore in view of the “two out of six”
property (33.1), the maps g, f1 and f2 and another application of the two out of
three property now yields the desired result that f is a weak equivalence.
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It thus remains to give a

36.5. Proof of 36.3. That the second map in 36.3(i) is an isomorphism fol-
lows from the fact that (36.1) every restricted zigzag in C of the form X ← · →
· ← Y can, in a functorial manner, be embedded as the top row in a zigzag in
W−1CW−1(X,Y ) of the form

X

1

��

·oo

u1

��

// ·

��

Yoo

1

��

X ·v1oo // · Yoo

X

1

OO

·v4oo

v3

OO

// ·

v2

OO

Y
u2oo

1

OO

in which the u’s are in U and the v’s are in V and the squares in the middle are
as in 36.1(i) and (ii) respectively.

That the first map in 36.3(i) is also an isomorphism, we will show by proving
that, in the commutative diagram (34.3)

π0(C,W−1)({2},{1,3})(X,Y )

p

��

incl.∗ // colimT π0(C,W−1)T (X,Y )

r

��

q

ssggggggggggggggggggg

colimET π0(C,W−1)ET (X,Y )
incl.∗ // colimT π0(C,W−1)T (X,Y )

in which ET ⊂ T denotes the image of T in T under the functor E : T → T given
by the formula

E
(
{i1, · · · , ia}, {j1, · · · jb}

)
=

(
{i1 + 1, · · · , ia + 1}, {1, j1 + 1, · · · , jb + 1, a+ b+ 2}

)
and q is the map which sends, for every restricted zigzag in C from X to Y , the
element containing it to the element containing the zigzag obtained from it by
adding a backward identity map on both sides, the maps p and r (and hence the
other three maps) are isomorphisms.

That the map r is an isomorphism follows readily from 33.8(i), but in order to
be able to prove that the map p is also an isomorphism we first note that p admits
a factorization

π0(C,W−1)({2},{1,3})(X,Y )
p′−−−→ colimFET π0(C,W−1)FET (X,Y )

incl.∗−−−→ colimET π0(C,W−1)ET (X,Y )

in which FET ⊂ ET is the image of ET in ET under the functor F : ET → ET
given by the formula

F
(
{i1, · · · , ic}, {1, j1, · · · , jd, c+ d+ 2}

)
=

(
{2, · · · , c+ 1}, {1, c+ 2}

)
.

That the second of these maps is an isomorphism then follows from the ob-
servations that the functor F is the identity on FET and comes with a natu-
ral transformation f : F → 1ET which sends each object (T+, T−) ∈ ET to the
unique monomorphism F (T+, T−) → (T+, T−) ∈ ET and that, for every object
(T+, T−) ∈ ET the map (34.3)

π0

(
f(T+, T−)

)
∗ : π0(C,W−1)F (T+,T−)(X,Y ) −→ π0(C,W−1)(T+,T−)(X,Y )

Draft: May 14, 2004



110 VI. HOMOTOPICAL CATEGORIES AND HOMOTOPICAL FUNCTORS

is an isomorphism, which last observation can be verified by iterated application
of the fact that, in view of the presence of the 3-arrow calculus {U ,V } (36.1), one
can, in a functorial manner, embed every restricted zigzag in C of the form

· ·oo ··· · ·oo ··· · ·oo

in which each · · · indicates a possibly empty sequence of forward maps, in a com-
mutative diagram in C of the form

·

1

��

·oo

1

��

··· ·

1

��

·oo

u

��

··· ·

u′

��

·oo

1

��
· ·oo ··· · ·voo ··· · ·oo

·

1

OO

·oo

v′

OO

··· ·

v

OO

·
1

oo

1

OO

··· ·

1

OO

·oo

1

OO

in which u, u′ ∈ U , v, v′ ∈ V and u′ and v′ are obtained from u and v by iterated
applications of 36.1(i) and 36.1(ii) respectively.

To finally prove that the map p′ is also an isomorphism we note that, for every
restricted zigzag of the form

X ·w1oo z // · Y
w2oo

p′ sends the element containing it to the element containing the zigzag

X ·1oo ·w1oo z // · ·w2oo Y
1oo

which, in view of the commutativity of the diagram

X ·1oo ·w1oo z // · ·w2oo Y
1oo

X

1

��

1

OO

·w1oo

w1

OO

1

��

·1oo

1

OO

z //

1

��

·

1

OO

1

��

·w2oo

1

OO

w2

��

Y
1oo

1

OO

1

��

X ·
w1

oo ·
1

oo
z

// · ·
1

oo Yw2
oo

also contains its bottom row and hence the original zigzag

X ·w1oo z // · Y
w2oo

and that therefore the map p′ is exactly the map induced by the inclusion of
({2}, {1, 3}) in FET , and the desired result now follows immediately from the
observation that ({2}, {1, 3}) is the terminal object of FET .

37. Homotopical uniqueness

In classical category theory one often notes that certain objects in a category
are canonically isomorphic or unique up to a unique isomorphism in the sense that,
for any two of these objects X and Y , there is exactly one map X → Y in the
category and that this unique map is an isomorphism (for instance (see 37.3 and
37.4) because they have a common universal property) and our aim in this section
is to describe a homotopical version of this phenomenon.

We start with a slight reformulation of the above mentioned classical results.
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37.1. Categorical uniqueness. Given a category Y and a non-empty set I
(32.3), we will say that objects Yi ∈ Y (i ∈ I) are canonically isomorphic or
categorically unique if

(i) the full subcategory of Y spanned by these objects

or equivalently

(ii) the categorically full subcategory of Y spanned by these objects, i.e.
the full subcategory spanned by these objects and all isomorphic ones

is categorically contractible in the following sense.

37.2. Categorically contractible categories. A category G will be called
categorically contractible if

a) G is a non-empty groupoid in which there is exactly one isomorphism
between any two objects,

or equivalently

b) the unique functor G→ [0] (where [0] denotes the category which consists
of only one object 0 and its identity map) is an equivalence of categories.

One then readily verifies that this is equivalent to requiring that G be a non-empty
category which has one, and hence all, of the following properties:

(i) for one, and hence every, object G ∈ G, the identity functor 1G : G→ G
is naturally isomorphic to the constant functor cstG : G→ G which sends
every map of G to the identity map of the object G,

(ii) every object of G is an initial object, and
(iii) every object of G is a terminal object.

Also not difficult to show is that

(iv) if G is a categorically contractible category, then so is its opposite Gop,
(v) if G is a categorically contractible category then so is, for every category

D, the diagram category GD (33.2),

and last but not least

(vi) if Y is a category, then the full subcategory of Y spanned by the initial
(resp. terminal) objects is either empty or categorically contractible

which property is behind the notion of

37.3. Universal properties. In view of 37.2(vi) one can sometimes verify
the categorical uniqueness (37.1) of a non-empty set of objects in a category Y by
noting that these objects are initial (or terminal) objects of Y . This is for instance
what happens when one makes the somewhat imprecise statement that

(i) some objects in a category X are unique up to a unique isomorphism
because they have a certain initial (or terminal) universal property,

as what one really means by this statement is that

(ii) these objects together with some, often not explicitly mentioned, addi-
tional structure are initial (or terminal) objects in the category of all
objects of X with such additional structure.
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37.4. Examples. Let Y be a category and let A, B and C be objects of Y .
Then, if they exist,

(i) the coproducts of A and B, i.e. the pairs consisting of an objectQ ∈ Y and
an (often suppressed) diagram in Y of the form A→ Q← B which is an
initial object in the category of all such pairs, are canonically isomorphic,

(ii) dually the products of B and C, i.e. the pairs consisting of an object
P ∈ Y and an (often suppressed) diagram in Y of the form B ← P → C
which is a terminal object in the category of all such pairs, are canonically
isomorphic, and

(iii) somewhat less obviously, the coproducts of A with a product of B and
C, i.e. the quadruples consisting of a pair of objects P,R ∈ Y and an
(often suppressed) pair of diagrams in Y of the form A → R ← P and
B ← P → C such that
(iii)′ the pair consisting of P and B ← P → C is a product of B and C

(ii), and
(iii)′′ the pair consisting of R and A → R ← P is a coproduct of A and

P ,
are canonically isomorphic.

In this last case the quadruples satisfying (iii)′ and (iii)′′ are initial objects
in the category of the quadruples satisfying (iii)′′, but not in the category of all
quadruples.

The obvious homotopical analog of categorical uniqueness (37.1) is the following
notion of

37.5. Homotopical uniqueness. Given a homotopical category Y and a
non-empty set I, we will say that objects Yi ∈ Y (i ∈ I) are homotopically
unique or canonically weakly equivalent if the homotopically full subcat-
egory of Y spanned by these objects, i.e. the full subcategory spanned by these
objects and all weakly equivalent ones is homotopically contractible in the following
sense.

37.6. Homotopically contractible categories. A homotopical category G
(33.1) will be called homotopically contractible if

a) the unique functor G→ [0] (37.2) is a homotopical equivalence of homo-
topical categories (33.1)

or equivalently
b) there exists an object G ∈ G with the property that the identity functor

1G : G→ G is naturally weakly equivalent (33.1) to the constant functor
cstG : G→ G (37.2).

This is also equivalent to the requirement that
c) G is a non-empty category with the property that, for every object G ∈

G, the identity functor 1G : G→ G is naturally weakly equivalent to the
constant functor cstG : G→ G

in view of the fact that iterated application of the two out of three property yields
that

(i) if G is homotopically contractible then every map in G is a weak equiv-
alence.
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One also readily verifies that
(ii) if G is homotopically contractible, then the homotopy category Ho C of

C (33.8) is categorically contractible (37.2),
(iii) if every weak equivalence in G is an isomorphism, then G is homotopi-

cally contractible iff it is categorically contractible, and
(iv) if G is homotopically contractible, then so are its opposite Gop and, for

every homotopical category D, the homotopical diagram categories GD

and
(
GD

)
w

(33.2).
Moreover in the next section (in 38.2) we will define notions of homotopically

initial and homotopically terminal objects in a homotopical category with the prop-
erties that (as we will prove in 38.5)

(v) if G is a homotopically contractible category, then every object of G is
both homotopically initial and homotopically terminal

and, last but not least,
(vi) if Y is a homotopical category, then the full subcategory of Y spanned by

the homotopically initial (resp. homotopically terminal) objects is a ho-
motopically full subcategory (37.5) which is either empty or homotopically
contractible.

This last property then suggests the following formulation of

37.7. Homotopical universal properties. In view of 37.6(vi) one can some-
times verify the homotopical uniqueness (37.5) of a non-empty set of objects in a
homotopical category Y by noting that these objects are homotopically initial (or
terminal) objects of Y and, as in the categorical case (37.3), it is therefore some-
times convenient to make the somewhat imprecise statement that

(i) some objects in a homotopical category X are homotopically unique be-
cause they have a certain homotopically initial (or terminal) homotopi-
cally universal property

as a shorthand for saying that
(ii) these objects together with some, not necessarily explicitly mentioned,

additional structure are homotopically initial (or terminal) objects in the
category of all objects of X with such additional structure.

38. Homotopically initial and terminal objects

This last section is devoted to the homotopically initial and terminal objects
mentioned in 37.6 and 37.7.

As it is not immediately clear how to define homotopically initial and terminal
objects we start with some

38.1. Motivation. Our definition of homotopically initial and terminal ob-
jects is motivated by the following unorthodox characterization of initial and ter-
minal objects:

(i) Given a category Y , an object Y ∈ Y is initial (resp. terminal) iff there
exists a natural transformation (37.2)

f : cstY → 1Y (resp. f : 1Y → cstY )

such that the map fY : Y → Y ∈ Y is an isomorphism
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which one verifies by noting that every map m : Y ′ → Y ∈ Y gives rise to commu-
tative diagrams

Y

fY≈

��

Y

fY

≈

55lllllllll
≈

fY ))RRRRRRRRR

Y

and

Y

m

��

Y

fY
55kkkkkkkkk

fY ′ ))RRRRRRRRR

Y ′

of which the first implies that fY = 1Y , while the second, together with this
equality, yields that m = fY ′.

This suggests that, given a homotopical category Y (33.1), one considers ob-
jects Y ∈ Y for which there exists a zigzag of natural transformations between
homotopical functors

from cstY to 1Y (resp. from 1Y to cstY )

such that
(ii) the backward natural transformations are natural weak equivalences, and
(iii) each of the forward natural transformations sends Y to a weak equiva-

lence in Y .
Such objects clearly have the property mentioned in 37.6(v). However, in order to
be able to prove that they also have the property mentioned in 37.6(vi), we had to
require in addition to (ii) and (iii) that

(iv) all but (at most) one of the forward natural transformations are also
natural weak equivalences

unless Y admits a 3-arrow calculus (36.1) in which case this would be a consequence
of 36.3.

We therefore define as follows

38.2. Homotopically initial and terminal objects. Given a homotopical
category Y (33.1), an object Y ∈ Y will be called homotopically initial (resp.
terminal) if there exists a zigzag of natural transformations

cstY · · ·F0
f−→ F1 · · · 1Y (resp. 1Y · · ·F1

f−→ F0 · · · cstY )

in which
(i) the · · · ’s denote (possibly empty) zigzags of natural weak equivalences,

and
(ii) the map fY ∈ Y is a weak equivalence.

This definition then readily implies

38.3. Proposition. Let Y be a homotopical category and let Y ∈ Y be an
object. Then

(i) if Y is homotopically initial (resp. terminal), then so is every object of
Y which is weakly equivalent (33.2) to Y ,

(ii) if Y is homotopically initial (resp. terminal), then the object γY ∈ Ho Y
(33.9) is initial (resp. terminal),

(iii) if Y is initial (resp. terminal), then Y is homotopically initial (resp.
terminal), and

(iv) if every weak equivalence in Y is an isomorphism and Y is homotopically
initial (resp. terminal), then Y is initial (resp. terminal).
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One also has

38.4. Proposition. Given a homotopical category Y , two subcategories Y 1

and Y 2 ⊂ Y of which Y 1 (resp. Y 2) is categorically contractible (37.2) and two
objects Y1 ∈ Y 1 and Y2 ∈ Y 2,

(i) a map Y1 → Y2 ∈ Y is a homotopically initial (resp. terminal) object
(38.2) of the comma category (Y 1 ↓Y 2) iff

(ii) it is a homotopically initial (resp. terminal) object of its subcategory
(Y1 ↓Y 2) (resp. (Y 1 ↓Y2)).

Proof (of the initial case). This follows readily from the observation that, for
every object Y ′1 → Y2 ∈ (Y 1 ↓Y 2) there is a unique map Y1 → Y2 ∈ (Y1 ↓Y 2) and
a unique isomorphism Y ′1 ≈ Y1 such that the following diagram commutes

Y ′1

((QQQQQQQQQ

≈

��

Y2

Y1

55lllllllll

.

It thus remains to give a

38.5. Proof of 37.6(v) and (vi). Proposition 37.6(v) follows readily from
37.6(i) and in order to prove (the initial half of) 37.6(vi) it suffices, in view of
38.3(i), to show that, for every two homotopically initial objects Y, Y ′ ∈ Y and
natural transformations

f : F0 → F1 and f ′ : F ′0 → F ′1

as in 38.2, the map fY ′ ∈ Y is a weak equivalence. To do this consider the
commutative diagram in Y

F0F
′
0F0Y

′ fF ′0F0Y
′

//

F0f
′F0Y

′ ∼
��

F1F
′
0F0Y

′ F1F
′
0fY

′

∼
//

F1f
′F0Y

′

��

F1F
′
0F1Y

′

F1f
′F1Y

′ ∼
��

F0F
′
1F0Y

′ fF ′1F0Y
′

∼
// F1F

′
1F0Y

′ F1F
′
1fY

′
// F1F

′
1F1Y

′

A straightforward calculation which repeatedly uses the two out of three property
(33.1) then yields that

(i) as F0 is naturally weakly equivalent to cstY it sends every map and in
particular the map f ′F0Y

′ to a weak equivalence
(ii) as F0 is naturally weakly equivalent to cstY and F ′1 is naturally weakly

equivalent to 1Y , F ′1F0Y
′ is weakly equivalent to Y and hence fF ′1F0Y

′

is a weak equivalence
(iii) as F ′0 is naturally weakly equivalent to cstY ′ , F ′0fY

′ and therefore F1F
′
0fY

′

are weak equivalences,
(iv) as F1 is naturally weakly equivalent to 1Y , F1Y

′ is weakly equivalent to
Y ′ and hence f ′F1Y

′ and therefore F1f
′F1Y

′ are weak equivalences.
Thus the maps indicated ∼ are weak equivalences and the desired result now follows
from the observations that
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(v) in view of the two out of six property (33.1), the map F1F
′
1fY

′ is a weak
equivalence

and that
(vi) as F1 and F ′1 are both naturally weakly equivalent to 1Y , the map fY ′

is a weak equivalence iff the map F1F
′
1fY

′ is so.

As an application of homotopically initial and terminal objects, which, except
for a brief mention in 39.3, 41.1 and 41.5, we will only need in the second half of
chapter VIII, we end this section with a definition of

38.6. Homotopical Kan extensions. Given two (not necessarily homotopi-
cal) functors

p : R −→ P and q : R −→ Q

between homotopical categories, denote by

(−p ↓ q) (resp. (q ↓−p))
the homotopical category which has as objects the pairs (r, e) consisting of a (not
necessarily homotopical) functor r : P → Q and a natural transformation

e : rp −→ q (resp. e : q −→ rp)

and which has as maps and weak equivalences t : (r1, e1) → (r2, e2) the natural
transformations and natural weak equivalences t : r1 → r2 such that e2(tp) = e1
(resp. (tp)e1 = e2), and let

(−p ↓ q)w ⊂ (−p ↓ q) (resp. (q ↓−p)w ⊂ (q ↓−p))
denote the full subcategory spanned by the objects (r, e) for which r is a homotopical
functor. The Kan extensions of q along p then are defined as

(i) the terminal objects of (−p ↓ q), and
(ii) the initial objects of (q ↓−p).

The first of these, the terminal objects of (−p ↓ q) are the objects of (−p ↓ q) which
are “as far as possible to the right” and some authors therefore refer to these Kan
extensions as right Kan extensions (with the awkward consequence that left derived
functors and left adjoints become right Kan extensions), while other authors, noting
that these terminal objects of (−p ↓ q) are “closest to q from the left” call them left
Kan extensions. To avoid this confusion we will therefore use neither terminology,
but will refer to a Kan extension (r, e) as in (i) as a terminal Kan extension of
q along p with e as its counit and to a Kan extension (r, e) as in (ii) as an initial
Kan extension of q along p with e as its unit.

Of course the same terminological problem comes up when dealing with homo-
topical Kan extensions and we therefore define

(i)′ a homotopically terminal Kan extension of q along p as a homo-
topically terminal object (38.2) of (−p ↓ q)w, and

(ii)′ a homotopically initial Kan extension of q along p as a homotopically
initial object of (q ↓−p)w.

and note that
(iii) such homotopically terminal (resp. initial) Kan extensions of q along p,

if they exist, are homotopically unique (37.5).
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CHAPTER VII

Deformable Functors and Their Approximations

39. Introduction

39.1. Summary. In dealing with homotopical categories one often runs into
functors between such categories which are not homotopical, but which still have
“homotopical meaning” because they are homotopical on a so-called left (or right)
deformation retract of the domain category. Moreover such functors, which we
will call left (or right) deformable, frequently are part of deformable adjunc-
tions i.e. adjunctions of which the left adjoint is left deformable and the right
adjoint is right deformable. Our main aim in this chapter then is

(i) to show that such a left (or right) deformable functor f : X → Y has left
(or right) approximations, i.e. pairs (k, a) consisting of a homotopical
functor k : X → Y and a natural transformation

a : k −→ f (or a : f −→ k)

which are homotopically terminal (or initial) objects (38.2) in the homo-
topical category of all such pairs,

(ii) to show that, for such a deformable adjunction f : X ↔ Y : f ′, its
adjunction induces, for every left approximation (k, a) of f and right
approximation (k′, a′) of f ′, a derived adjunction (33.9)

Ho k : HoX ←→ Ho Y :Ho k′

and
(iii) investigate the behavior of these approximations and derived adjunctions

under composition.
In more detail:

39.2. Deformable functors and deformable adjunctions. Given a ho-
motopical category X,

(i) a left (or right) deformation of X will be a pair (r, s) which consists
of a homotopical functor r : X →X and a natural weak equivalence

s : r → 1X (or s : 1X → r)

and a left (or right) deformation retract of X will be a full subcat-
egory X0 ⊂ X for which there exists a left (or right) deformation (r, s)
such that X0 contains the image of r.

We then
(ii) call a not necessarily homotopical functor f : X → Y between homotopi-

cal categories left (or right) deformable if f is homotopical on a left
(or right) deformation retract of X, and
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(iii) call an adjunction f : X ↔ Y : f ′ between homotopical categories a
deformable adjunction if the left adjoint f is left deformable and the
right adjoint f ′ is right deformable.

A useful property of deformable functors is that they have

39.3. Approximations. A left (or right) approximation of a not neces-
sarily homotopical functor f : X → Y between homotopical categories will be a
homotopically terminal (or initial) Kan extension of f along 1X (38.6), i.e. a pair
(k, a) consisting of a homotopical functor k : X → Y and a natural transformation

a : k → f (or a : f → k)

which is a homotopically terminal (or initial) object (38.2) in the homotopical
category of all such pairs. Thus (37.6(vi))

(i) all such left (or right) approximations of f , they they exist, are canoni-
cally weakly equivalent (37.5).

Moreover
(ii) if (r, s) is a left (or right) deformation of X such that f is homotopical

on the full subcategory spanned by the image of r, then the pair (fr, fs)
is a left (or right) approximation of f , and hence

(iii) a sufficient condition for the existence of left (or right) approximations
of f is that f be left (or right) deformable (39.2).

To next deal with the question when, for two composable deformable functors,
their composition is also deformable and the compositions of their approximations
are approximations of their composition we introduce the notions of

39.4. Deformable and locally deformable composable pairs of func-
tors. Given two functors f1 : X → Y and f2 : Y → Z between homotopical cate-
gories, we call the pair (f1, f2) locally left (resp. right) deformable if there exist
left (or right) deformation retracts X0 ⊂X and Y 0 ⊂ Y (39.2) such that

(i) f1 is homotopical on X0,
(ii) f2 is homotopical on Y 0, and
(iii) f2f1 is homotopical on X0

and call the pair (f1, f2) left (or right) deformable if there exist such deformation
retracts for which in addition

(iv) f1 sends all of X0 into Y 0

(which last condition together with (i) and (ii) implies (iii)).

Now we can formulate the desired results on

39.5. Compositions of deformable functors. Given a composable pair
of left (or right) deformable functors f1 : X → Y and f2 : Y → Z, a sufficient
condition in order that

(i) their composition f2f1 : X → Z is also left (or right) deformable, and
(ii) all compositions of a left (or right) approximation of f1 with a similar

approximation of f2 is such an approximation of f2f1
is that

(iii) the pair (f1, f2) be left (or right) deformable (39.4).
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However not infrequently it suffices to verify only that the pair (f1, f2) is de-
formable (39.4), because the categories and functors involved have additional prop-
erties, which allow one to apply the following result on

39.6. Compositions of deformable adjunctions. Given two composable
deformable adjunctions (39.2)

f1 : X ←→ Y :f ′1 and f2 : X ←→ Y :f ′2
for which the pairs (f1f2) and (f ′2, f

′
1) are locally left and right deformable (39.4)

respectively, a sufficient condition in order that
(i) the pairs (f1, f2) and (f ′2, f

′
1) are left and right deformable (39.4) respec-

tively
is that either

(ii) the pair (f ′2, f
′
1) is right deformable and the homotopical category Z is

saturated (33.9)
or dually that

(iii) the pair (f1, f2) is left deformable and the homotopical category X is
saturated.

The proof of this involves

39.7. Derived adjunctions. Given a deformable adjunctions f : X ↔ Y : f ′

(39.2),
(i) its adjunction induces, for every left approximation (k, a) of f and right

approximation (k′, a′) of f ′ (39.3), a derived adjunction (33.9)

Ho k : HoX ←→ Ho Y :Ho k′

which is natural with respect to these approximations,
and given two composable deformable adjunctions

f1 : X ←→ Y :f ′1 and f2 : Y ←→ Z :f ′2
for which the pairs (f1, f2) and (f ′2, f

′
1) are respectively locally left and right de-

formable (39.4)
(ii) the compositions of their derived adjunctions and the derived adjunc-

tions of their composition are connected by a conjugate pair of natural
transformations.

The second of these results then is used to prove 39.6, while we use the first in
a brief discussion of

39.8. A Quillen condition. We end the chapter by showing that, given a
deformable adjunction f : X ↔ Y :f ′ (39.2),

(i) a sufficient condition in order that the left approximations of f and the
right approximations of f ′ (39.3) are homotopically inverse homotopical
equivalences of homotopical categories (33.1)

is that
(ii) the adjunction satisfies the Quillen condition that there exist a left

deformation retract X0 ⊂ X on which f is homotopical (39.2) and a
right deformation retract Y 0 ⊂ Y on which f ′ is homotopical such that,
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for every pair of objects X0 ∈ X0 and Y0 ∈ Y 0, a map fX0 → Y0 ∈ Y
is a weak equivalence iff its adjunct X0 → f ′Y0 ∈X is so

and that
(iii) if the homotopical categories X and Y are saturated (33.9), then this

condition is also necessary.

39.9. Organization of the chapter. After recalling, in the remainder of this
section, some results on adjoint functors which we will need in the last three sections
of this chapter as well as in the next chapter, we introduce deformable functors
(in§40) and their approximations (in §41) and discuss their compositions (in §42).
The next two sections (§43 and §44) are devoted to the derived adjunctions which
we mention in 39.7 and the last section deals with the Quillen condition (39.8).

It thus remains to review some results involving

39.10. Adjunctions [Mac71, Ch. IV]. The unit and counit of an adjunc-
tion f : X ↔ Y :f ′ are the natural transformations

η : 1X −→ f ′f and ε : ff ′ −→ 1Y

which assign to an object X ∈ X and Y ∈ Y the adjuncts of the identity maps of
the objects fX ∈ Y and f ′Y ∈X respectively. Some of their properties are:

(i) the compositions

f
fη−→ ff ′f

εf−→ f and f ′
ηf ′−−→ f ′ff ′

f ′ε−−→ f ′

are identity natural transformations of f and f ′ respectively,
(ii) η and ε are both natural isomorphisms iff one (and hence both) of the

functors f and f ′ are equivalences of categories,
(iii) given two adjunctions

f1 : X ←→ Y :f ′1 and f2 : Y ←→ Z :f ′2
with units η1 and η2 and counits ε1 and ε2, the unit and the counit of
their composition f2f1 : X ↔ Z :f ′1f

′
2 are the compositions

1X
η1−→ f ′1f1

η2−→ f ′1f
′
2f2f1 and f2f1f

′
1f
′
2
ε1−→ f2f

′
2
ε2−→ 1Z ,

and
(iv) given two functors

f : X −→ Y and f ′ : Y −→X

and a natural transformation

e : 1X −→ f ′f (resp. e : ff ′ −→ 1Y ),

there is at most one adjunction f : X ↔ Y :f ′ with e as its unit (resp.
counit).

Given two adjunctions

f : X ←→ Y :f ′ and g : X ←→ Y :g′

two natural transformations

h : f −→ g and h′ : g′ −→ f ′
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are called conjugate (with respect to the given adjunctions) if, for every pair of
objects X ∈X and Y ∈ Y , the following diagram

Y (gX, Y ) ≈

h∗

��

X(X, g′Y )

h′∗
��

Y (fX, Y ) ≈ X(X, f ′Y )

in which the horizontal isomorphisms are the adjunction isomorphisms, commutes,
which is the case iff any one of the following four diagrams, in which ε1 and ε2 and
η1 and η2 denote the counits and the units of these adjunctions, commutes

f
h //

η2

��

g

fg′g
h′ // ff ′g

ε1

OO g′
h′ //

η1

��

f ′

f ′fg′
h // f ′gg′

ε2

OO

fg′
h′ //

h

��

ff ′

ε1

��

gg′
ε2 // 1Y

1X
η1 //

η2

��

f ′f

h

��

g′g
h′ // f ′g

Some of their properties are:

(v) given two adjunctions

f : X ←→ Y :f ′ and g : X ←→ Y :g′

every natural transformation f → g (resp. g′ → f ′) has a unique con-
jugate and the conjugate of a natural isomorphism is also a natural iso-
morphism, and

(vi) given an adjunction f : X ↔ Y :f ′, a pair of functors

g : X −→ Y and g′ : Y −→X

and a pair of natural isomorphisms

h : f −→ g and h′ : g′ −→ f ′ ,

there is a unique adjunction g : X ↔ Y : g′ such that h and h′ are
conjugate with respect to the adjunctions

f : X ←→ Y :f ′ and g : X ←→ Y :g′ .

40. Deformable functors

In this section we introduce left and right deformable functors and discuss some
immediate consequences of their definition.

We start with the auxiliary notions of
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40.1. Left and right deformations and deformation retracts. A left
(resp. a right) deformation of a homotopical category X (33.1) will be a pair
(r, s) consisting of

(i) a homotopical functor r : X →X, and
(ii) a natural weak equivalence

s : r → 1X (resp. s : 1X → r)

and a left (resp. a right) deformation retract of X will be a full subcategory
X0 ⊂ X for which there exists a left (resp. a right) deformation (r, s) of X into
X0, i.e. such that fX ∈X0 for every object X ∈X.

An immediate consequence of this definition is that
(iii) if X0 is a left or right deformation retract of X, then so is every full

subcategory of X which contains X0.
Now we can define

40.2. Left and right deformable functors. A (not necessarily homotopi-
cal) functor f : X → Y between homotopical categories will be called left (resp.
right) deformable if

(i) there exists a left (resp. a right) f-deformation retract, i.e. a left
(resp. a right) deformation retract X0 ⊂ X (40.1) on which f is homo-
topical.

It is sometimes convenient to have a somewhat more explicit description of such
deformability and we therefore also consider the notion of a left (resp. a right) f-
deformation, i.e. a left (resp. a right) deformation (r, s) of X (40.1) such that

(ii) f is homotopical on the full subcategory spanned by the image of the
functor r

or equivalently
(ii)′ the functor fr is a homotopical functor and the natural transformation

fsr is a natural weak equivalence,
so that

(iii) a functor f : X → Y is left (resp. right) deformable iff there exists a left
(resp. a right) f-deformation.

Moreover clearly
(iv) every homotopical functor is both left and right deformable, and
(v) if f1, f2 : X → Y are functors between homotopical categories which are

naturally weakly equivalent (33.1), and one of them is left or right de-
formable, then so is the other.

Next we note that following “f -deformation retract version” of 40.1(iii).

40.3. Proposition. Let f : X → Y be a left (resp. a right) deformable func-
tor, let X0 ⊂ X be a left (resp. a right) f-deformation retract (40.2) and let
X1 ⊂X be a full subcategory containing X0. Then X1 is a left (resp. a right) f-
deformation retract iff, for every object Xp ∈X1, there exists an object Xp,0 ∈X0

and a weak equivalence

bp : Xp,0 → Xp (resp. bp : Xp → Xp,0)

such that the map fbp ∈ Y is also a weak equivalence.
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Proof (of the left half). The “only if” part of the proposition is obvious and to
prove the “if” part one has to show that, for every pair of objects Xp, Xq ∈X1 and
weak equivalences a : Xp → Xq ∈ X, the map fa ∈ Y is also a weak equivalence.
To do this one chooses a left deformation (r, s) of X into X0 and notes that all the
other outside maps in the commutative diagram

frXp,0
frbp

//

fsXp,0

��

frXp
fra

//

fsXp

��

frXq

fsXq

��

frXq,0
frbq

oo

fsXq,0

��

fXp,0
fbp

// fXp
fa

// fXq fXq,0
fbq

oo

are weak equivalences and applies the two out of three property (33.1).

Somewhat less obvious is the existence of a unique maximal left or right defor-
mation retract, i.e.

40.4. Proposition. Let f : X → Y be a left (resp. a right) deformable func-
tor. Then

(i) the full subcategory of X spanned by the left (resp. the right) f-deformation
retracts is itself a left (resp. a right) f-deformation retract, and

(ii) if X0 ⊂X is any left (resp. right) f-deformation retract then this unique
maximal left (resp. right) f-deformation retract (see (i)) is the full sub-
category of X spanned by the objects Xp ∈ X for which there exists an
object Xp,0 ∈X0 and a weak equivalence

bp : Xp,0 → Xp (resp. bp : Xp → Xp,0)

such that the map fbp ∈ Y is also a weak equivalence.

Proof (of the left half). Part (ii) is an immediate consequence of 40.3 and
part (i) and to prove (i) it suffices to show that, for every two left f -deformation
retracts X1 and X2 and every weak equivalence w : X1 → X2 ∈X with X1 ∈X1

and X2 ∈ X2, the map fw : fX1 → fX2 ∈ Y is also a weak equivalence. To
do this one chooses left f -deformations (r1, s1) and (r2, s2) of X into X1 and X2

respectively (40.1) and notes that in the commutative diagram in Y

fr1r2X1
fs1r2X1 //

fr1s2X1 ∼
��

fr2X1
fr2w

∼
//

fs2X1

��

fr2X2

fs2X2 ∼
��

fr1X1
fs1X1

∼
// fX1

fw
// fX2

the maps indicated ∼ are weak equivalences. The desired result then is an imme-
diate consequence of the two out of six property (33.1).

A somewhat similar result for f -deformations is
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40.5. Proposition. Let f : X → Y be a left (resp. a right) deformable functor
and let X0 ⊂ X be a left (resp. a right) f-deformation retract (40.2). Then the
homotopical category which has

(i) as objects the left (resp. the right) deformations of X into X0, and
(ii) for every two such deformations (r1, s1) and (r2, s2), as maps and weak

equivalences (r1, s1) → (r2, s2) the natural transformations and natural
weak equivalences t : r1 → r2 such that s2t = s1 (resp. ts1 = s2)

is homotopically contractible (37.6).

Proof (of the left half). This follows readily from the observation that every
two left deformations (r1, s1) and (r2, s2) give rise to a zigzag

(r1, s1) (r1r2, s1s2)
r1s2oo

s1r2 // (r2, s2)

in which s1s2 denotes the diagonal of the commutative diagram

r1r2
s1 //

s2

��

r2

s2

��
r1

s1 // 1

which is natural in both (r1, s1) and (r2, s2).

40.6. Corollary. Let f : X → Y be a left (resp. a right) deformable func-
tor. Then the category of all left (resp. right) f-deformations (40.4 and 40.5) is
homotopically contractible (37.6).

We end with a brief mention of the notion of

40.7. Left and right deformable natural transformations. Given two
homotopical categories X and Y , a natural transformation h : f → g between
(not necessarily homotopical) functors X → Y will be called left (resp. right)
deformable if there exists a left (resp. a right) h-deformation retract, i.e. a left
(resp. a right) deformation retract X0 ⊂X on which both f and g are homotopical,
and we similarly will call a left (resp. a right) deformation (r, s) of X a left (resp.
a right) h-deformation if (r, s) is both a left (resp. a right) f -deformation and
g-deformation.

Note that, if h is a natural weak equivalence, then the following three statements
are equivalent:

(i) (r, s) is a left (resp. a right) f -deformation,
(ii) (r, s) is a left (resp. a right) g-deformation and
(iii) (r, s) is a left (resp. a right) h-deformation.

41. Approximations

Next we consider, for a (not necessarily homotopical) functor f : X → Y be-
tween homotopical categories, its left and right approximations, i.e. homotopical
functors X → Y which, in a homotopical sense, are closest to f from the left or
from the right, and note in particular that

(i) if they exist, then such left or right approximations of f are homotopically
unique (37.5), and
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(ii) a sufficient condition for their existence is that the functor f : X → Y
be left or right deformable (40.2), and

(iii) if f is left or right deformable, then its left or right approximations are
a kind of “not in the homotopy category” version of Quillen’s total left
and right derived functors.

We thus start with defining

41.1. Left and right approximations. Let f : X → Y be a (not neces-
sarily homotopical) functor between homotopical categories, i.e. an object of the
homotopical functor category Fun(X,Y ) (33.2). A left (resp. a right) approxi-
mation of f then will be a homotopically terminal (resp. initial) Kan extension of
f along 1X , i.e. (38.6) a homotopically terminal (resp. initial) (38.2) object of the
“homotopical category of homotopical functors X → Y over (resp. under) f”, i.e.
the homotopical category(

Funw(X,Y ) ↓ f
)

(resp.
(
f ↓Funw(X,Y )

)
)

which has
(i) as objects the pairs (k, a) consisting of a homotopical functor k : X → Y

(i.e. an object of the homotopical functor category Funw(X,Y ) (33.2))
and a natural transformation

a : k → f (resp. a : f → k)

and
(ii) for every pair of objects (k1, a1) and (k2, a2) as maps and weak equiva-

lences (k1, a1) → (k2, a2) the natural transformations and natural weak
equivalences t : k1 → k2 such that a2t = a1 (resp. ta1 = a2).

Thus (37.5 and 37.6(vi))
(iii) such a left (resp. right) approximation of f , if it exists, is homotopically

unique (37.5).

We now prove the promised existence of

41.2. Approximations of deformable functors. Let f : X → Y be a left
(resp. a right) deformable functor (40.2). Then

(i) the functor f has left (resp. right) approximations.
In fact, if (40.2) (r, s) is a left (resp. a right) f-deformation of X then

(ii) the pair (fr, fs) is a left (resp. a right) approximation of f .

Proof (of the left half). Every object (k, a) ∈ (Funw(X,Y ) ↓ f) gives rise to a
zigzag

(k, a) (kr, as)ksoo ar // (fr, fs)

in which ar denotes the diagonal of the commutative diagram

kr
ar //

ks

��

fr

fs

��

k
a // f

which is natural in (k, a) and in which
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(i) the map ks is a weak equivalence, and
(ii) the map ar is so whenever (k, a) = (fr, fs), in which case ar = fsr

and (40.2(ii)′) this readily implies (ii).

A special case is provided by

41.3. Approximations of homotopical functors. If f : X → Y is a ho-
motopical functor, then clearly

(i) the pair (f, 1f ) consisting of f and its identity natural transformation is
both a left and a right approximation of f ,

and more generally (37.6)
(ii) a pair (k, a) consisting of a homotopical functor k : X → Y and a nat-

ural transformation a : k → f (resp. a : f → k) is a left (resp. a right)
approximation of f iff the natural transformation a is a natural weak
equivalence.

In particular
(iii) for every homotopical category X, the left (resp. the right) approxima-

tions of the identity functor 1X : X → X are exactly the left (resp. the
right) deformations (40.1) of X.

Another immediate consequence of 41.2 is

41.4. Proposition. Let f : X → Y be a left (resp. a right) deformable functor
(40.2), let γ′ : Y → Ho Y denote the localization functor of Y (33.9) and consider
Ho Y as a minimal homotopical category (33.6). Then

(i) the composition γ′f : X → Ho Y is left (resp. right) deformable.
In fact,

(ii) every left (resp. right) f-deformation (40.2) is also a left (resp. a right)
γ′f-deformation and hence (37.6 and 41.2)

(iii) for every left (resp. right) approximation (k, a) of f (41.1), the pair
(γ′k, γ′a) is a left (resp. a right) approximation of γ′f .

And from this in turn we deduce the following

41.5. Relation to Quillen’s total derived functors. Let f : X → Y be a
left (resp. a right) deformable functor (40.2), let γ : X → Ho X and γ′ : Y → Ho Y
be the localization functors of X and Y (33.9) and let (k, a) be a left (resp. a
right) approximation of f (41.1). Then the pair (Ho k, γ′a) consisting of the functor
Ho k : HoX → Ho Y and the natural transformation

γ′a : (Ho k)γ = γ′k −→ γ′f (resp. γ′a : γ′f −→ γ′k = (Ho k)γ)

is a total left (resp. right) derived functor of f in the sense of Quillen [Qui67]
(or, in the terminology of 38.6 , a terminal (resp. an initial) Kan extension of
γ′f along γ), i.e. the pair

(
(Ho k)γ, γ′a

)
is a terminal (resp. an initial) object of

the category(
Fun(Ho X,Ho Y ) ↓ γ′f

)
(resp.

(
γ′f ↓Fun(Ho X,Ho Y )

)
)

which has as objects the pairs (n, c) which consist of a functor n : HoX → Ho Y
and a natural transformation

c : nγ −→ γ′f (resp. c : γ′f −→ nγ)
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and as maps (n1, c1) → (n2, c2) the natural transformations t : n1 → n2 such that
c2(tγ) = c1 (resp. (tγ)c1 = c2).

Proofs of (the left half of) 41.5.
This follows from 41.4 and the observation that

(i)
(
Funw(X,Ho Y ) ↓ γ′f

)
is a minimal homotopical category (33.6) and

hence (38.3) its homotopically terminal objects are its terminal objects,
and that (33.9(ii))

(ii) composition with γ induces an isomorphism(
Fun(Ho X,Ho Y ) ↓ γ′f

)
≈

(
Funw(X,Ho Y ) ↓ γ′f

)
.

We end with a mention of

41.6. Left and right approximations of natural transformations. Given
two homotopical categories X and Y and a natural transformation h : f → g be-
tween (not necessarily homotopical) functors X → Y , let(

Natw(X,Y ) ↓h
)

(resp.
(
h ↓Natw(X,Y )

)
)

denote “the homotopical category of the natural transformations between homo-
topical functors X → Y over (resp. under) h”, i.e. the homotopical category which
has

(i) as objects the commutative diagrams of the form

k1
a1 //

k

��

f

h

��

k2
a2 // g

(resp.

f
a1 //

h

��

k1

k

��
g

a2 // k2

)

in which k1 and k2 are homotopical functors X → Y (and which we will
denote by k : (k1, a1)→ (k2, a2)),

(ii) as maps
(
k : (k1, a1) → (k2, a2)

)
→

(
k̄ : (k̄1, ā1) → (k̄2, ā2)

)
the commu-

tative diagrams of the form

k1
t1 //

a1

��
>>

>>
>>

>>

k

��

k̄1

ā1

����
��

��
��

k̄

��

f

h

��
g

k2 t2
//

a2

??��������
k̄2

ā2

__???????

(resp.

k1
t1 //

k

��

k̄1

k̄

��

f

a1

^^>>>>>>>>

ā1

@@��������

h

��
g

a2
����

��
��

��

ā2 ��
??

??
??

?

k2 t2
// k̄2

)

and
(iii) as weak equivalences the diagrams as in (ii) in which t1 and t2 are natural

weak equivalences.
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A left (resp. a right) approximation of h then will be an object k : (k1, a1) →
(k2, a2) of (

Natw(X,Y ) ↓h
)

(resp.
(
h ↓Natw(X,Y )

)
)

(iv) which is homotopically terminal (resp. initial)
and for which

(v) the pairs (k1, a1) and (k2, a2) are left (resp. right) approximations of f
and g (41.1) respectively.

One then readily verifies that
(vi) such a left (resp. right) approximation of h, if it exists, is homotopically

unique (37.5).
Moreover

(vii) a sufficient condition for its existence is that h be left (resp. right) de-
formable (40.7)

as the argument used in the proof of 41.2 yields that
(viii) for every left (resp. right) h-deformation (r, s) (40.7)

hr : (fr, fs) −→ (gr, gs)

is a left (resp. a right) approximation of h.

42. Compositions

Our aim in this section is to find sufficient conditions on a composable pair of
left (or right) deformable functors (40.2) in order that

(i) their composition is also left (or right) deformable, and
(ii) every composition of their left (or right) approximation is a left (or right)

approximation of their composition.
To do this we start with defining

42.1. Compositions of approximations. Let f1 : X → Y and f2 : Y → Z
be (not necessarily homotopical) functors between homotopical categories. The
functors and natural transformations involved in the definition of approximations
then give rise to homotopical composition functors (41.1)(

Funw(X,Y ) ↓ f1
)
×

(
Funw(Y ,Z) ↓ f2

)
−→

(
Funw(X,Z) ↓ f2f1

)
and (

f1 ↓Funw(X,Y )
)
×

(
f2 ↓Funw(Y ,Z)

)
−→

(
f2f1 ↓Funw(X,Z)

)
which sends an object

(
(k1, a1), (k2, a2)

)
to the object (k2k1, a2a1) in which a2a1

denotes the diagonals of

k2k1
a2 //

a1

��

f2k1

a1

��

k2f1
a2 // f2f1

and

f2f1
a2 //

a1

��

k2f1

a1

��

f2k1
a2 // k2k1

respectively.
The application of these functors to a pair of approximations does, in general,

not produce an approximation. However one has the following
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42.2. All or none proposition. If, given a composable pair f1 : X → Y
and f2 : Y → Z of (not necessarily homotopical) functors between homotopical
categories, there exist a left (resp. a right) approximation of f1 and a left (resp. a
right) approximation of f2 whose composition is a left (resp. a right) approximation
of f2f1, then every composition of a left (resp. a right) approximation of f1 with a
similar approximation of f2 is such an approximation of f2f1.

Proof. This follows readily from the definition of approximations (41.1) and
the fact that, in view of 37.6(i) and (vi) and 38.3(i), every homotopical functor
C →D sends either all or none of the homotopically terminal or initial objects of
C to similar objects of D.

The desired sufficient conditions involve the following notions of

42.3. Deformable and locally deformable composable pairs of func-
tors. Given a composable pair f1 : X → Y and f2 : Y → Z of (not necessarily
homotopical) functors between homotopical categories, merely assuming that the
functors f1, f2 and f2f1 are all three left (resp. right) deformable does not seem
to be very useful and we therefore call the pair (f1, f2) locally left (resp. right)
deformable if it has the slightly stronger property that there exist left (resp. right)
deformation retract X0 ⊂X and Y 0 ⊂ Y (40.1) such that

(i) f1 is homotopical on X0 (and hence f1 is left (resp. right) deformable
(40.2)),

(ii) f2 is homotopical on Y 0 (and hence f2 is left (resp. right) deformable),
and

(iii) f2f1 is homotopical on X0 (and hence f2f1 is left (resp. right) de-
formable)

and call the pair (f1, f2) left (resp. right) deformable if it has the even stronger
property that in addition

(iv) f1 sends all of X0 into Y 0,

which together with (i) and (ii) implies (iii).
One then readily verifies that such left (resp. right) deformability is equivalent

to the requirement that

(v) there exists a left (resp. a right) f1-deformation (r1, s1) (40.2) and a left
(resp. a right) f2-deformation (r2, s2) such that the natural transforma-
tion

f2s2f1r1 : f2r2f1r1 −→ f2f1r1 (resp. f2s2f1r1 : f2f1r1 −→ f2r2f1r1)

is a natural weak equivalence,

as in that case, in view of 40.3, f2 is homotopical on the full subcategory of Y
spanned by the images of r2 and f1r1.

In view of 42.2 this last observation (42.3(v)) together with 41.2(ii) implies the
desired
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42.4. Sufficient condition. Let f1 : X → Y and f2 : Y → Z be (not nec-
essarily homotopical) functors between homotopical categories such that the pair
(f1, f2) is left (resp. right) deformable (42.3). Then

(i) the composition f2f1 : X → Z is left (resp. right) deformable, and
(ii) every composition (42.1) of a left (resp. a right) approximation of f1 with

a similar approximation of f2 is such an approximation of f2f1.

Furthermore it follows from 37.6(i) that

42.5. Proposition. Let f1 : X → Y and f2 : Y → Z be (not necessarily
homotopical) functors between homotopical categories such that the pair (f1, f2) is
locally left (resp. right) deformable (42.3). Then

(i) the pair (f1, f2) is left (resp. right) deformable (42.3) iff
(ii) every composition (42.1) of a left (resp. a right) approximation of f1 with

a similar approximation of f2 is such an approximation of f2f1.

We end with noting that, if one wants to prove the deformability of a compos-
able pair of deformable functors (i.e. the existence of deformation retracts satisfying
42.3(i)–(iv)) and these functors have the property that

(i) they are each one of an adjoint pair of deformable functors of which the
left adjoint is left deformable and the right adjoint is right deformable,

(ii) the pair consisting of their adjoints are known to be (or easily verified to
be) deformable, and

(iii) the codomain of their composition is saturated (33.9),

then the following proposition implies that it suffices to merely verify the local
deformability of the pair (i.e. the existence of deformation retracts satisfying 42.3(i)–
(iii)).

42.6. Proposition. Given two composable adjunctions

f1 : X ←→ Y :f ′1 and f2 : Y ←→ Z :f ′2

of functors between homotopical categories such that the pair (f1, f2) is locally left
deformable (42.3) and the pair (f ′2, f

′
1) is locally right deformable,

(i) if the category Z is saturated (33.9) and the pair (f ′2, f
′
1) is right de-

formable (42.3), then the pair (f1, f2) is left deformable,

and dually

(ii) if the category X is saturated and the pair (f1, f2) is left deformable, then
the pair (f ′2, f

′
1) is right deformable

and hence

(iii) if the categories X and Z are both saturated then the pair (f1, f2) is left
deformable iff the pair (f ′2, f

′
1) is right deformable.

Proof. In view of 33.9, 42.3(v) and 42.5 this follows readily from the following
technical result.
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42.7. Proposition. Let

f1 : X ←→ Y :f ′1 and f2 : Y ←→ Z :f ′2
be adjoint pairs of functors for which the pairs (f1, f2) and (f ′2, f

′
1) are locally left

and right deformable (42.3) respectively and let

(r1, s1), (r2, s2), (r′1, s
′
1) and (r′2, s

′
2)

respectively be a left f1- as well as a left f2f1-deformation, a left f2-deformation,
a right f ′1-deformation and a right f ′2- as well as a right f ′1f

′
2-deformation (40.2).

Then the natural transformations

Ho(f2s2f1r1) : Ho(f2r2f1r1) −→ Ho(f2f1r1) and

Ho(f ′1s
′
1f
′
2r
′
2) : Ho(f ′1f

′
2r
′
2) −→ Ho(f ′1r

′
1f
′
2r
′
2)

have the property that, if one of them is a natural isomorphism, then so is the
other.

Proof. This follows from 39.10(v) and the special case of 44.4 below considered
in its proof.

43. Induced partial adjunctions

In preparation for the next section, where in 44.4 we complete the proof of 42.7,
we first

(i) observe that, for every adjoint pair of deformable functors between ho-
motopical categories (of which the left adjoint is left deformable and the
right adjoint is right deformable), its adjunction induces a “partial” ad-
junction between the homotopy categories, and

(ii) discuss the behavior of these partial adjunctions under composition.
In more detail:

43.1. Deformable adjunctions. An adjunction f : X ↔ Y : f ′ between
homotopical categories will be called a deformable adjunction if the left adjoint
f is left deformable (40.2) and the right adjoint f ′ is right deformable.

Similarly (40.7) given two deformable adjunctions f : X ↔ Y :f ′ and g : X ↔
Y : g′, a conjugate pair of natural transformations h : f → g and h′ : g′ → f ′

between them (39.10) will be called a conjugate pair of deformable natural
transformations if the natural transformation h : f → g between the left adjoints
is left deformable (40.7) and the natural transformation h′ : g′ → f ′ between the
right adjoints is right deformable.

The following result then implicitly defines

43.2. Induced partial adjunctions. Let X and Y be homotopical categories
with localization functors γ : X → Ho X and γ′ : Y → Ho Y , and let f : X ↔ Y :
f ′ be a deformable adjunction (43.1). Then

(i) for every left f- and right f ′-deformation retract X0 ⊂ X and Y 0 ⊂ Y
(40.2),there exist, for every pair of objects X ∈ X and Y0 ∈ Y 0 and
every pair of objects X0 ∈ X0 and Y ∈ Y , unique partial adjunction
functions

Ho Y (fX, Y0)
φ−→ Ho X(X, f ′Y0) and Ho X(X0, f

′Y )
ψ−→ Ho Y (fX0, Y )
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which are natural in both variables and which are compatible with the
given adjunction in the sense that the diagrams

Y (fX, Y0)
≈ //

γ′

��

X(X, f ′Y0)

γ

��

Ho Y (fX, Y0)
φ

// Ho X(X, f ′Y0)

and

X(X0, f
′Y ) ≈ //

γ

��

Y (fX0, Y )

γ′

��

Ho X(X0, f
′Y )

ψ
// Ho Y (fX0, Y )

in which the top maps are the adjunction isomorphisms of the given ad-
junction, commute,

This terminology is justified by the fact that

(ii) for every pair of objects X0 ∈X0 and Y0 ∈ Y 0, the functions

Ho Y (fX0, Y0)
φ−→ Ho X(X0, f

′Y0) and Ho X(X0, f
′Y0)

ψ−→ Ho Y (fX0, Y0)

are inverse partial adjunction isomorphisms

while the uniqueness of these partial adjunction functions associated with X0 and
Y 0 implies that

(iii) these functions are the restriction to X ×Y 0 and X0 ×Y of the partial
adjunction functions associated with the unique (40.4) maximal left f-
and right f ′-deformation retracts Xf and Y f ′ .

Moreover these partial adjunctions are also natural in the given adjunction in the
sense that

(iii) if f : X ↔ Y : f ′ and g : X ↔ Y : g′ are deformable adjunctions,
h : f → g and h′ : g′ → f ′ are a conjugate pair of deformable natural
transformations between them (43.1) and Xh ⊂X and Y h′ ⊂ Y denote
be left h and right h′-deformation retracts (40.7), then, for every pair of
objects X ∈ X and Y0 ∈ Y h′ and every pair of objects X0 ∈ Xh and
Y ∈ Y , the diagrams

Ho Y (gX, Y0)
φ

//

h∗

��

Ho X(X, g′Y0)

h′∗
��

Ho Y (fX, Y0)
φ

// Ho X(X, f ′Y0)

and

Ho X(X0, g
′Y )

ψ
//

h′∗
��

Ho Y (gX0, Y )

h∗

��

Ho X(X0, f
′Y )

ψ
// Ho Y (fX0, Y )

commute.

We also consider their

43.3. Compositions. Let

f1 : X ←→ Y :f ′1 and f2 : Y ←→ Z :f ′2

be two composable deformable adjunctions (43.1) such that the pairs (f1, f2) and
(f ′2, f

′
1) are left and right deformable (42.3) respectively and let X0 ⊂X and Z0 ⊂

Z be left and right deformation retracts on which respectively f1 and f2f1 and f ′2
and f ′1f

′
2 are homotopical. Then, for every pair of objects X0 ∈ X0 and Z0 ∈ Z0,
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the following diagrams commute

Ho Z(f2f1X0, Z0)
φ

≈
//

φ
##GG

GG
GG

GG
G

Ho X(X0, f
′
1f
′
2Z0)

ψ
{{ww

ww
ww

ww
w

Ho Y (f1X0, f
′
2Z0)

and

Ho X(X0, f
′
1f
′
2Z0)

ψ

≈
//

ψ
##GG

GG
GG

GG
G

Ho Z(f2f1X0, Z0)

φ
{{wwwwwwww

Ho Y (f1X0, f
′
2Z0)

The remainder of this section will be devoted to a proof of these two proposi-
tions, starting with a

43.4. Proof of 43.2. Let η and ε denote the unit and the counit (39.10) of
the given adjunction and let (r, s) and (r′, s′) respectively be a left deformation of
X into X0 and a right deformation of Y into Y 0 (40.1). Then it follows readily
from 33.10 and 39.10 that the functions which, for every pair of objects X ∈ X
and Y0 ∈ Y 0, and every pair of objects X0 ∈ X0 and Y ∈ Y , assign to restricted
zigzags (34.2) of the form

fX · · · Y0 in Y and X0 · · · f ′Y in X

the restricted zigzags

X
s′η

// f ′r′fX · · · f ′r′Y0 f ′Y0
s′oo in X, and

fX0 frX0
soo · · · frf ′Y

εs // Y in Y ,

induce functions

φ : HoY (fX, Y0) −→ Ho X(X, f ′Y0) and ψ : HoX(X0, f
′Y ) −→ Ho Y (fX0, Y )

which do not depend on the choice of the deformations (r, s) and (r′, s′) and which
are

(i) natural in both variables, and
(ii) compatible with the given adjunction, in the sense of 43.2(i).

To prove 43.2(i) it thus remains to prove the uniqueness of φ (and hence by duality
of ψ), i.e. we have to show that

(iii) if φ′ is a function which, to every pair of objects X ∈ X and Y0 ∈ Y 0,
assigns a function φ′ : HoY (fX, Y0)→ Ho X(X, f ′Y0) satisfying (i) and
(ii) above, then φ′ = φ.

To prove (iii) we first show that if, for a homotopical category Z and restricted
zigzag Z0 · · · Zn in Z (n ≥ 0), we denote by [ Z0 · · · Zn ] the element of
Ho Z(Z0, Zn) “containing” it (33.10), then

(iv) for every restricted zigzag in Y of the form fX // Y1 · · · Yn (n ≥ 1)
with Y1, · · · , Yn ∈ Y 0, the assumptions of (iii) imply that

φ′[ fX // Y1 · · · Yn ] = [ X // f ′Y1 · · · f ′Yn ]
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where the map X → f ′Y1 is the adjunct of the map fX → Y1 and the
zigzag f ′Y1 · · · f ′Yn is obtained by applying the functor f ′ to the

zigzag Y1 · · · Yn

by noting that

(v) in view of (ii) above, (iv) holds for n = 1, and
(vi) if, for some integer k > 0, (iv) holds for all integers n ≤ k, then (i)

above implies that, for every such zigzag fX // Y1 · · · Yk and map
Yk → Yk+1 ∈ Y 0,

φ′[ fX // Y1 · · · Yk // Yk+1 ] = [ X // f ′Y1 · · · f ′Yk // f ′Yk+1 ]

and that, for every such zigzag fX // Y1 · · · Yk and weak equiva-
lence w : Yk+1 → Yk ∈ Y f ′ , the map

[ X // f ′Y1 · · · f ′Yk ] = φ′[ fX // Y1 · · · Yk ]

= φ′[ fX // Y1 · · · Yk Yk+1
woo w // Yk ]

is the composition of φ[ fX // Y1 · · · Yk Yk+1
woo ] with the isomor-

phism Ho f ′w which implies that

φ′[ fX // Y1 · · · Yk Yk+1
woo ] = [ X // f ′Y1 · · · f ′Yk f ′Yk+1

f ′w
oo ] .

The desired result, i.e. (iii), now readily follows from the observation that, for every
restricted zigzag of the form fX · · · Y0 with Y0 ∈ Y 0, the existence of the
associated commutative diagram

fX

s′

��

· · · Y0

s′

��

r′fX · · · r′Y0

implies that

[ fX · · · Y0 ] = [ fX s′ // r′fX · · · r′Y0 Y0
s′oo ] .

Next we prove 43.2(ii) by noting that, for every pair of objects X0 ∈ X0 and
Y0 ∈ Y 0, the function ψφ sends, for every restricted zigzag in Y of the form
fX0 · · · Y0 , the corresponding element of Ho Y (fX0, Y0) to the element cor-
responding to the top row, and hence the bottom row, of the following commutative
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diagram (39.10) in which all three rows are restricted zigzags

fX0

f
��

@@
@@

@@
@@

frX0
soo

η
//

s

��

frf ′fX0
s′ //

s

��

frf ′r′fX0

εs

��

· · · frf ′r′Y0

εs

��

frf ′Y0

εs

��

s′oo εs // Y0

1

����
��
��
��
��
��
��
�

fX0
η

//

1
""FF

FF
FF

FF
F ff ′fX0

ε

��

fX0
s′ // r′fX0 · · · r′Y0 Y0

s′oo

fX0

1

eeKKKKKKKKKK
s′

OO

· · · Y0

s′

OO

1

;;wwwwwwwwww

and that a dual assertion holds for the function φψ.
It thus remains to prove 43.2(iv). But this now follows from the observation

that, in view of the commutative diagram which we mentioned just before 39.10(v),
every reduced zigzag in Y of the form gX · · · Y0 gives rise to a commutative
diagram in X of the form

X
η2 //

1

����
��
��
��
��
��
��
�

g′gX
s′ //

h′

��

g′r′gX

h′

��

· · · g′r′Y0

h′

��

g′Y0
s′oo h′ //

h′

��

f ′Y0

1

����
��
��
��
��
��
��
�

f ′gX

h
||zz

zz
zz

zz

s′ ""FFFFFFFF

X η1
// f ′fX

s′
// f ′r′fX

h
// f ′r′gX · · · f ′r′Y0 f ′Y0

s′
oo

in which η1 and η2 denote the units of the two adjunctions.

43.5. Proof of 43.3. The commutativity of the first triangle readily follows
from the fact that (39.10) every restricted zigzag in Z of the form f2f1X0 · · · Z0
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gives rise to a commutative diagram in Y of the form

f1X0

1
!!CC

CC
CC

CC
f1r1X0

s1oo
η1 //

s1

��

f1r1f
′
1f1X0

η2 //

s1

��

f1r1f
′
1f
′
2f2f1X0

s′2 //

s1

��

f1r1f
′
1f
′
2r
′
2f2f1X0

s1

��

· · ·

f1X0
η1 //

1
$$III

III
III

I f1f
′
1f1X0

η2 //

ε1

��

f1f
′
1f
′
2f2f1X0

s′2 //

ε1

��

f1f
′
1f
′
2r
′
2f2f1X0

ε1

��

· · ·

f1X0
η2 // f ′2f2f1X0

s′2 // f ′2r
′
2f2f1X0 · · ·

· · · f1r1f
′
1f
′
2r
′
2Z0

s1

��

f1r1f
′
1f
′
2Z0

s′2

oo
s1 //

s1

��

f1f
′
1f
′
2Z0

ε1 //

1
yyttttttttt

f ′2Z

1

{{wwwwwwwwwwwwwwwwwwwwww

· · · f1f
′
1f
′
2r
′
2Z0

ε1

��

f1f
′
1f
′
2Z0

s′2

oo

ε1

��

· · · f ′2r
′
2Z0 f ′2Z0

s′2

oo

in which η1 and ε1 denote the unit and the counit of the first adjunction and η2
denotes the unit of the second.

The commutativity of the second triangle follows immediately from the com-
mutativity of the first triangle and 43.2(ii).

44. Derived adjunctions

We now use the results of the preceding section on partial adjunctions to show
that

(i) for every deformable adjunction f : X ↔ Y : f ′ (43.1), its adjunction
induces, for every left approximation (k, a) of f and every right approxi-
mation (k′, a′) of f ′, a derived adjunction

Ho k : Ho X ←→ Ho Y :Ho k′

which is natural with respect to these approximations,
(ii) for every two deformable adjunctions

f : X ←→ Y :f ′ and g : X ←→ Y :g′,

every conjugate pair of deformable natural transformations between them
(43.1) induces conjugate pairs of natural transformations between their
derived adjunctions, and

(iii) for every two composable deformable adjunctions

f1 : X ←→ Y :f ′2 and f2 : Y ←→ Z :f ′2

for which the pairs (f1, f2) and (f ′2, f
′
1) are respectively locally left and

right deformable (42.3), the compositions of their derived adjunctions and
the derived adjunctions of their composition are connected by conjugate
pairs of natural transformations.

Draft: May 14, 2004



44. DERIVED ADJUNCTIONS 137

We start with noting the existence of certain auxiliary

44.1. Derived natural transformations. Let f : X → Y be a left (resp. a
right) deformable functor (40.2). Then there exists a unique function u (resp. u′)
which assigns to every pair

(
(m, b), (k, a)

)
of objects in(

Funw(X,Y ) ↓ f
)

(resp.
(
f ↓Funw(X,Y )

)
)

of which (k, a) is a left (resp. a right) approximation of f (41.1), a derived natural
transformation

u(m, k) : Hom −→ Ho k (resp. u′(k,m) : Ho k −→ Hom)

such that

(i) if (m, b) is also a left (resp. a right) approximation of f , then u(m, k)
(resp. u′(k,m)) is a natural isomorphism,

(ii) the function u (resp. u′) is natural in both variables, and
(iii) for every map

t : (m, b) −→ (k, a) ∈
(
Funw(X,Y ) ↓ f

)
(resp. t′ : (k, a) −→ (m, b) ∈

(
f ↓Funw(X,Y )

)
)

one has

u(m, k) = Ho t (resp. u′(k,m) = Ho t′).

Proof (of the left half). The composition(
Funw(X,Y ) ↓ f

) j
// Funw(X,Y ) Ho // Fun(Ho X,Ho Y )

in which j denotes the forgetful functor and Ho is as in 33.9, sends weak equivalences
to isomorphisms and hence (33.9) admits a unique factorization(

Funw(X,Y ) ↓ f
) γ′

// Ho
(
Funw(X,Y ) ↓ f

)
// Fun(Ho X,Ho Y )

in which γ′ denotes the localization functor and one now readily verifies that the
function which sends a pair

(
(m, b), (k, a)

)
to the image in Fun(Ho X,Ho Y ) of the

(in view of 38.3(ii)) unique map

γ′(m, b) −→ γ′(k, a) ∈ Ho
(
Funw(X,Y ) ↓ f

)
has the desired properties.

Using these derived natural transformations we now implicitly define

44.2. Derived adjunctions. Given a deformable adjunction (43.1) f : X ↔
Y :f ′, there is a unique function which assigns to every pair consisting of a left
approximation (k, a) of f (41.1) and a right approximation (k′, a′) of f ′, a derived
adjunction

Ho k : HoX ←→ Ho Y :Ho k′

such that
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(i) for every two left approximations (k1, a1) and (k2, a2) of f and right ap-
proximations (k′1, a

′
1) and (k′2, a

′
2) of f ′, the derived natural isomorphisms

(44.1)

u(k1, k2) : Ho k1 −→ Ho k2 and u′(k′2, k
′
1) : Ho k′2 −→ Ho k′1

are conjugate (39.10) with respect to the derived adjunctions

Ho k1 : HoX ←→ Ho Y :Ho k′1 and Ho k2 : HoX ←→ Ho Y :Ho k′2
and,

(ii) for every left f-deformation (r, s) (40.2) and right f ′-deformation (r′, s′),
the adjunction isomorphism of the derived adjunction

Ho(fr): Ho X ←→ Ho Y :Ho(f ′r′)

associated with the pair
(
(fr, fs), (f ′r′, f ′s′)

)
(41.2) assigns to every pair

of objects X ∈X and Y ∈ Y the composition

Ho Y (frX, Y ) ≈ Ho Y (frX, r′Y )
φ
≈ Ho X(rX, f ′r′Y ) ≈ Ho X(X, f ′r′Y )

in which φ is the partial adjunction isomorphism (43.2) and the other
isomorphisms are induced by s′ and s.

Proof. In view of 39.10(vi) it suffices to show that, for every two left f -deformations
(r1, s1) and (r2, s2) and right f -deformations (r′1, s

′
1) and (f ′2, s

′
2), the unique nat-

ural isomorphisms (44.1)

u(fr1, fr2) : Ho(fr1) −→ Ho(fr2) and u′(f ′r′2, f
′r′1) : Ho(f ′r′2) −→ Ho(f ′r′1)

are conjugate with respect to the adjunctions

Ho(fr1): Ho X ←→ Ho Y :Ho(f ′r′1) and Ho(fr2): Ho X ←→ Ho Y :Ho(f ′r′2)

defined in (ii), but as (40.2, 41.3(iii) and 42.1) the compositions

(r2r1, s2s1) and (r′2r
′
1, s
′
2s
′
1)

of respectively (r1, s1) and (r2, s2) and r′1, s
′
1 and (r′2, s

′
2) (in which s2s1 and s′2s

′
1

denote the diagonals of the commutative diagrams

r2r1
s2r1 //

r2s1

��

r1

s1

��
r2

s2 // 1

and

1
s′2 //

s′1
��

r′2

r′2s
′
1

��

r′1
s′2r

′
1

// r′2r
′
1

)

are a left f -deformation and a right f ′-deformation, this follows readily from the
commutativity of the diagram

Ho Y (fr2X,Y ) ≈

(fr2s1)
∗

��

· · · ≈
φ · · · ≈ Ho X(X, f ′r′2Y )

(f ′r′2s
′
1)∗

��

Ho Y (fr2r1X,Y ) ≈ · · · ≈
φ · · · ≈ Ho X(X, f ′r′2r

′
1Y )

Ho Y (fr1X,Y ) ≈

(fs2r1)
∗

OO

· · · ≈
φ · · · ≈ Ho X(X, f ′r′1Y )

(f ′s′2r
′
1)∗

OO

Draft: May 14, 2004



44. DERIVED ADJUNCTIONS 139

in which the horizontal sequences are as in (ii), and the observation that (44.1)

Ho(fr2s1) Ho(fs2r1)−1 = u(fr1, fr2)

and
Ho(f ′s′2r

′
1)
−1 Ho(f ′r′2s

′
1) = u′(f ′r′2, f

′r′1) .

Next we consider

44.3. Conjugations between derived adjunctions. Let

f : X ←→ Y :f ′ and g : X ←→ Y :g′

be deformable adjunctions, let

h : f −→ g and h′ : g′ −→ f ′

be a conjugate pair of deformable natural transformations between them (43.1), and
let

k : (k1, a1) −→ (k2, a2) and k′ : (k′2, a
′
2) −→ (k′2, a

′
1)

respectively be a left approximation of h and a right approximation of h′ (41.6).
Then the natural transformations

Ho k : Ho k1 −→ Ho k2 and Ho k′ : Ho k′2 −→ Ho k′1

are conjugate with respect to the derived adjunction (44.2)

Ho k1 : HoX ←→ Ho Y :Ho k′1 and Ho k2 : HoX ←→ Ho Y :Ho k′2 .

Proof. This follows from 39.10(vi), 44.2(i) and the observation that, in view of
43.2(iii), for every left h-deformation (r, s) and right h′-deformation (r′, s′) (40.7)
and every pair of objects X ∈X and Y ∈ Y , the diagram

Ho Y (grX, Y ) ≈

h∗

��

Ho Y (grX, r′Y )
φ
≈

h∗

��

Ho X(rX, g′r′Y ) ≈

h′∗
��

Ho X(X, g′r′Y )

h′∗
��

Ho Y (frX, Y ) ≈ Ho Y (frX, r′Y )
φ
≈ Ho X(rX, f ′r′Y ) ≈ Ho X(X, f ′r′Y )

in which the horizontal sequences are as in 44.2(ii), commutes.

Finally we discuss

44.4. Compositions of derived adjunctions. Let

f1 : X ←→ Y :f ′1 and f2 : Y ←→ Z :f ′2

be deformable adjunctions (43.1) for which the pairs (f1, f2) and (f ′2, f
′
1) are respec-

tively locally left and right deformable (42.3). Then
(i) their composition

f2f1 : X ←→ Z :f ′1f
′
2

is also a deformable adjunction.
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Moreover, if

(k1, a1), (k2, a2) and (k21, a21)

are left approximations of f1, f2 and f2f1 and

(k′1, a
′
1), (k′2, a

′
2) and (k′12, a

′
12)

are right approximations of f ′1, f
′
2 and f ′1f

′
2 respectively (41.1), then

(ii) the derived natural transformations (44.1)

u(k2k1, k21) : Ho(k2k1) −→ Ho k21 and u′(k′12, k
′
1k
′
2) : Ho k′12 −→ Ho(k′1k

′
2)

associated with the composition (42.1) (k2k1,a2a1) of (k1, a1) and (k2, a2)
and the left approximation (k21, a21) and with the composition (k′1k

′
2, a
′
1a
′
2)

of (k′2, a
′
2) and (k′1, a

′
1) and the right approximation (k′12, a

′
12), are conju-

gate with respect to the derived adjunction (44.2)

Ho(k2k1): Ho X ←→ Ho Z :Ho(k′1k
′
2)

and the composition of the derived adjunctions

Ho k1 : HoX ←→ Ho Y :Ho k′1 and Ho k2 : Ho Y ←→ Ho Z :Ho k′2 .

44.5. Corollary. Let

f1 : X ←→ Y :f ′1 and f2 : Y ←→ Z :f ′2

be deformable adjunctions for which the pairs (f1, f2) and (f ′2, f
′
1) are respectively

left and right deformable (42.3). Then every composition of a derived adjunction of
the first adjunction with a derived adjunction of the second adjunction is a derived
adjunction of their composition.

Proof. In view of 39.10(vi), 44.1 and 44.2 it suffices to prove that if

(r1, s1), (r2, s2), (r′1, s
′
1) and (r′2, s

′
2)

respectively are a left f1- as well as a left f2f1-deformation, a left f2-deformation,
a right f ′1-deformation and a right f ′2- as well as a right f ′1f

′
2-deformation, then the

natural transformations

Ho(f2s2f1r1) : Ho(f2r2f1r1) −→ Ho(f2f1r1) and

Ho(f ′1s
′
1f
′
2r
′
2) : Ho(f ′1f

′
2r
′
2) −→ Ho(f ′1r

′
1f
′
2r
′
2)

are conjugate with respect to the derived adjunction

Ho(f2f1r): Ho X ←→ Ho Z :Ho(f ′1f
′
2r
′
2)

and the composition of the derived adjunctions

Ho(f1r1): Ho X ←→ Ho Y :Ho(f ′1r
′
1) and Ho(f2r2): Ho Y ←→ Ho Z :Ho(f ′2r

′
2) .

But this follows readily from the observation that, in view of 43.3 and the naturality
of the partial adjunction functions φ and ψ (43.2(i)) and of the maps induced by s1,
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s2, s′1 and s′2, for every pair of objects X ∈ X and Z ∈ Z, the following diagram
commutes

Ho Z(f2r2f1r1X,Z) ≈
(s′2)∗ // Ho Z(f2r2f1r1X, r′2Z)

φ

≈ ,,YYYYYYYY

Ho Y (r2f1r1X, f ′2r
′
2Z)

Ho Z(f2f1r1X,Z) ≈
(s′2)∗ //

s∗2

OO

Ho Z(f2f1r1X, r′2Z)

s∗2

OO

φ
,,YYYYYYYY

≈φ

��

Ho Y (f1r1X, f ′2r
′
2Z)

≈ s∗2

OO

≈ (s′1)∗

��

Ho X(X, f ′1f
′
2r
′
2Z) ≈

s∗1

//

(s′1)∗

��

Ho X(r1X, f ′1f
′
2r
′
2Z)

ψ

22eeeeeeee

(s′1)∗

��

Ho Y (f1r1X, r′1f
′
2r
′
2Z)

Ho X(X, f ′1r
′
1f
′
2r
′
2Z) ≈

s∗1

// Ho X(r1X, f ′1r
′
1f
′
2r
′
2Z)

≈
ψ

22eeeeeeee

45. The Quillen condition

As another application of the results of 44.2 we show in this last section of the
chapter

(i) that a sufficient condition on a deformable adjunction (43.1) in order
that the left approximations of the left adjoints (41.1) and the right ap-
proximations of the right adjoint are homotopically inverse homotopical
equivalences of homotopical categories (33.1) is that the adjoint pair sat-
isfies a so-called Quillen condition, and

(ii) that, if the homotopical categories in question are saturated (33.9), then
this condition is also necessary.

In more detail

45.1. The Quillen condition. A deformable adjunction (43.1) f : X ↔ Y :
f ′ will be said to satisfy the Quillen condition if

(i) for some left f -deformation retract X0 ⊂X (40.2) and right f ′-deforma-
tion retract Y 0 ⊂ Y and every pair of objects X0 ∈X0 and Y0 ∈ Y 0, a
map fX0 → Y0 ∈ Y is a weak equivalence iff its adjoint X0 → f ′Y0 ∈X
is so.

which one readily verifies (using 40.3) is equivalent to the seemingly stronger re-
quirement that

(ii) for every left f -deformation retract X0 ⊂ X and right f ′-deformation
retract Y 0 ⊂ Y and every pair of objects X0 ∈X0 and Y0 ∈ Y 0, a map
fX0 → Y0 ∈ Y is a weak equivalence iff its adjunct X0 → f ′Y0 ∈ X is
so.

The usefulness of this condition is due to
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45.2. Proposition. Given a deformable adjunctions (43.1) f : X ↔ Y :f ′,
a left approximation (k, a) of f and a right approximation (k′, a′) of f ′ (41.1),
consider the following statements:

(i) the adjunction satisfies the Quillen condition (45.1),
(ii) the functors k and k′ are homotopically inverse homotopical equivalences

of homotopical categories (33.1),
(ii)′ the functor k is a homotopical equivalence of homotopical categories (33.1),
(ii)′′ the functor k′ is a homotopical equivalence of homotopical categories,
(iii) the functors Ho k and Ho k′ are inverse equivalences of categories,
(iii)′ the functor Ho k is a equivalence of categories, and
(iii)′′ the functor Ho k′ is an equivalence of categories.

Then

(iv) the following implications hold

(ii)′ +3 (iii)′2:
rz nnnnnn

(i) +3 (ii)
3;oooo oooo +3
#+OOO

OOO (iii) dl
$,PPPPPP

(ii)′′ +3 (iii)′′

Moreover

(v) if X and Y are saturated (33.8), then each of (iii), (iii)′ and (iii)′′ implies
(i), and hence each of the seven statements (i)–(iii)′′ implies all the others.

Proof. In view of the homotopical uniqueness of approximations (41.1), this
result follows readily from 44.2 and

45.3. Proposition. Given a deformable adjunction (43.1) f : X ↔ Y : f ′,
a left f-deformation (r, s) (40.2) and a right f ′-deformation (r′, s′), consider the
following three statements:

(i) for every pair of objects X0 ∈ X and Y0 ∈ Y which are in the images
of r and r′ respectively, a map X0 → f ′Y0 ∈ X is a weak equivalence if
(resp. only if) its adjunct fX0 → Y0 ∈ Y is so,

(ii) the zigzag of natural transformations

1X r
soo // f ′r′fr (resp. frf ′r′ // r′ 1Y

s′oo )

in which the unnamed map is the adjunct of the natural weak equivalence

fr
s′fr // r′fr (resp. rf ′r′

sf ′r′ // f ′r′ )

is a zigzag of natural weak equivalences, and
(iii) the unit (resp. the counit) (39.10)

1Ho X −→ Ho(f ′r′) Ho(fr) (resp. Ho(fr) Ho(f ′r′) −→ 1Ho Y )

of the derived adjunction Ho(fr) : Ho X ↔ Ho Y :Ho(f ′r′) (44.2) is a
natural isomorphism.

Then (i) implies (ii) and (ii) implies (iii). Moreover, if the homotopical category X
(resp. Y ) is saturated (33.9), then (iii) implies (i) and hence (i), (ii) and (iii) are
equivalent statements.
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Proof (of the first half). Clearly (i) implies (ii) and a straightforward calculation
using 43.2(i) and 44.2 yields that the image in Ho X of the zigzag 1X

s←− r → f ′r′fr
is exactly the unit 1Ho X → Ho(f ′r) Ho(fr), so that (ii) implies (iii).

It thus remains to show that, if X is saturated, then (iii) implies (i) and we do
this by successively noting that if p : X0 → f ′Y0 ∈X is a map such that its adjunct
q : fX0 → Y0 ∈ Y is a weak equivalence, then

(i) the map q(fsX0) : frX0 → Y0 ∈ Y is also a weak equivalence and hence
its image γ′

(
q(fsX0)

)
∈ Ho Y under the localization functor γ′ : Y →

Ho Y is an isomorphism,
(ii) in view of 43.2(i) and 44.2 the adjunct of γ′

(
q(fsX0)

)
is the image

γ
(
(f ′s′Y0)p

)
∈ Ho X of the map (f ′s′Y0)p : X0 → f ′r′Y0 ∈ X under

the localization functor γ : X → Ho X,
(iii) this adjunct γ

(
(f ′s′Y0)p

)
is the composition of the unit (which is assumed

to be an isomorphism) with the image of γ′
(
q(fsX0)

)
under the functor

Ho(f ′r′) and hence is also an isomorphism, and
(iv) in view of the saturation of X, the map (f ′s′Y0)p is thus a weak equiv-

alence and so is therefore, because of the two out of three property, the
original map p : X0 → fY0 ∈X.
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CHAPTER VIII

Homotopy Colimit and Limit Functors and
Homotopical Ones

46. Introduction

46.1. Summary. This last chapter consists of two parts.
In the first part (i.e. §§47–49), motivated by the homotopy colimit and limit

functors on model categories (see chapter IV), we define homotopy colimit and limit
functors on arbitrary cocomplete and complete homotopical categories and obtain
sufficient conditions for their existence and composability as well as sufficient con-
ditions for the homotopical cocompleteness and completeness of such homotopical
categories, in a sense which is much stronger than one would expect.

In the second part (i.e. §§50 and 51) we define, on not necessarily cocomplete
and complete homotopical categories, homotopical colimit and limit functors which,
in the cocomplete and complete case, turn out to be essentially the same as the
above homotopy colimit and limit functors, and note that there are corresponding
notions of homotopical cocompleteness and completeness which, in the cocomplete
and complete case, reduce to the ones mentioned above.

46.2. Some of the tools. To deal with homotopy colimit and limit functors
we need the results of chapter VII on the approximations of (not necessarily homo-
topical) functors between homotopical categories and of composable pairs of such
functors, but in order to be able to deal with the associated notions of homotopical
cocompleteness and completeness we first have to generalize these results on com-
posable pairs of such functors to diagram-like collections of homotopical categories
and such functors between them, indexed by a category C, which we will call left
and right C-systems and which are functions F which assign

(i) to every object D ∈ C a homotopical category FD,
(ii) to every map u : A → B ∈ C a (not necessarily homotopical) functor

Fu : FA→ FB, and
(iii) to every composable pair of maps u : A → B and v : B → D ∈ C, a

natural weak equivalence

F (v, u) : (Fv)(Fu) −→ F (vu) or F (v, u) : F (vu) −→ (Fv)(Fu)

which is associative in the obvious sense.

The treatment of homotopical colimit and limit functors and the associated
notions of homotopical cocompleteness and completeness requires in addition a
discussion of Kan extensions and homotopical Kan extensions of the identity functor
along a (not necessarily homotopical) functor between homotopical categories and
of the more general Kan extensions and homotopical Kan extensions along a system.
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46.3. Organization of the chapter. After a warning on the use of the term
adjoint (in 46.4), we discuss homotopy colimit and limit functors (in §47), introduce
left and right systems (in §48) and use these to describe the associated notions of
homotopical cocompleteness and completeness (in §49). Next we investigate Kan
extensions and homotopical Kan extensions of identity functors and use these to
deal with homotopical colimit and limit functors (in §50). And in the last section
we introduce the Kan extensions and homotopical Kan extensions along systems
which we need to deal with the more general notions of homotopical cocompleteness
and completeness.

We thus end with a

46.4. Warning on the term adjoint. Given a functor f : X → Y , we will
call a functor g : Y →X a left (or a right) adjoint of f if there is given an adjunction

g : Y ←→X :f (or f : X ←→ Y :g)

and not, as is done by some authors, if there only exists such an adjunction.

47. Homotopy colimit and limit functors

In this section, assuming the existence of colimit and limit functors, we
(i) define homotopy colimit and limit functors on a homotopical category

respectively as left and right approximations of an arbitrary but fixed
such colimit or limit functor, and

(ii) describe sufficient conditions for their existence, composability and ho-
motopical compatibility with deformable adjoints.

We thus start with defining

47.1. Homotopy colimit and limit functors. Given a homotopical cate-
gory X and a category D, we

(i) define a D-colimit (resp. D-limit) functor on X as a left (resp. a right)
adjoint (46.4) XD → X of the constant diagram functor c∗ : X →
XD (which sends every object of X to the corresponding constant D-
diagram), and

(ii) if such a D-colimit (resp. D-limit) functor on X exists, denote by

colimD (resp. limD)

an arbitrary but fixed such D-colimit (resp. D-limit) functor, and define
a homotopy D-colimit (resp. D-limit) functor on X as a left (resp.
a right) approximation (41.1) of colimD (resp. limD),

and more generally, given a functor u : A→ B, we
(i)′ define a u-colimit (resp. u-limit) functor on X as a left (resp. a right)

adjoint XA →XB of the induced diagram functor

Xu = u∗ : XB −→XA

(which sends every functor B →X to its composition with u), and
(ii)′ if such a u-colimit (resp. u-limit) functor on X exists, denote by

colimu (resp. limu)
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an arbitrary but fixed such u-colimit (resp. u-limit) functor, and define
a homotopy u-colimit (resp. u-limit) functor on X as a left (resp. a
right) approximation of colimu (resp. limu).

Then

47.2. Proposition. For every homotopical category X and functor u : A →
B

(i) such homotopy u-colimit (resp. u-limit) functors on X, if they exist, are
homotopically unique (37.5), and

(ii) a sufficient condition for their existence is that the functor colimu (resp.
limu) exist (47.1) and be left (resp. right) deformable (40.2).

Moreover in that case
(iii) every homotopy u-colimit (resp. u-limit) functor on X, i.e. left (resp.

right) approximation (k, a) of colimu (resp. limu), comes with a derived
adjunction (44.2)

Ho k : Ho XA ←→ Ho XB :Hou∗ (resp. Hou∗ : HoXB ←→ Ho XA :Ho k)

associated with the approximations(
(k, a), (u∗, 1u∗)

)
(resp.

(
(u∗, 1u∗), (k, a)

)
)

which has as its counit (resp. unit) the natural transformation

Ho
(
e(au∗)

)
: (Ho k)(Hou∗) −→ 1Ho XB (resp. Ho

(
(au∗)e

)
: 1Ho XB −→ (Ho k)(Hou∗))

where

e : colimu u∗ −→ 1XB (resp. e : 1XB −→ limu u∗)

denotes the counit (resp. the unit) of the adjunction

colimu : XA ←→XB :u∗ (resp. u∗ : XB ←→XA :limu) .

Proof. Parts (i) and (ii) follow from 41.1(iii) and 41.2(ii), while the colimit half
of part (iii) follows from 44.2 and the observation that if (r, s) is a left colimu-
deformation (40.2), then the resulting commutative diagram

(kr)u∗
(ks)u∗

//

(ar)u∗

��

ku∗

e(au∗)

((PPPPPPPPPPPPPP

au∗

��

(colimu r)u∗
(colimu s)u∗

// colimu u∗
e // 1XB

gives rise to the commutative diagram

(Ho kr)(Hou∗) //

��

(Ho k)(Hou∗)

Ho(e(au∗))

��

(Ho colimu r)(Hou∗) // 1Ho XB

and the first part of the proposition now follows from the observation that, in view
of 44.1 and 44.2, the natural transformation (Ho k)(Hou∗) → 1Ho XB obtained by
going counter clockwise around this diagram is exactly the desired counit.
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47.3. Compositions. Given a homotopical category X and two composable
functors u : A → B and v : B → D for which there exist u- and v-colimit (resp.
u- and v-limit) functors on X, the composition of a homotopy u-colimit (resp.
u-limit) functor on X with a homotopy v-colimit (resp. v-limit) functor will be a
slight modification (by a natural isomorphism) of the composition of approximations
which we considered in §42. More precisely, for every homotopy u-colimit (resp.
u-limit) functor (ku, au) and homotopy v-colimit (resp. v-limit) functor (kv, av) on
X, their “composition” will be the pair

(kvku, colim(v,u) avau) ∈
(
Funw(XA,XD) ↓ colimvu

)
(resp. (kvku, lim(v,u) avau) ∈

(
limvu ↓Funw(XA,XD)

)
)

where avau denotes the diagonal of the commutative diagram

kvku
av //

au

��

colimv ku

au

��

ku colimv
av

// colimv colimu

(resp.

limv limu av //

au

��

kv limu

au

��

limv ku av

// kvku

)

and

colim(v,u) : colimv colimu −→ colimvu (resp. lim(v,u) : limvu −→ limv limu)

is the natural isomorphism which is the conjugate of the identity natural transfor-
mation of the functor

(vu)∗ = u∗v∗ : XD −→XA .

One then has the following

47.4. Sufficient conditions for composability. A sufficient condition in
order that, given a homotopical category X and two composable functors u : A→ B
and v : B →D for which there exist u- and v-colimit (resp. u- and v-limit) functors
on X, for every homotopy u-colimit (resp. u-limit) functor (ku, au) and v-colimit
(resp. v-limit) functor (kv, av) on X, their (47.3) “composition” is a homotopy
vu-colimit (resp. vu-limit) functor on X is that

(i) the pair

(colimu, colimv) (resp. (limu, limv))

exists and is left (resp. right) deformable (42.3)

which in particular is the case if

(ii) X is saturated (33.9) and the pair

(colimu, colimv) (resp. (limu, limv))

exists and is locally left (resp. right) deformable (42.3).

Moreover, if (i) holds, then

(iii) the composition of the derived adjunctions (47.2) of (ku, au) and (kv, av)
is exactly the derived adjunction of their “composition” (47.3).
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Proof. Part (i) follows readily from 42.4 and the fact that colim(v,u) (resp.
limv,u) is a natural isomorphism, while (ii) follows from 33.9(v) and 42.6 and the
observation that, as u∗ and v∗ are both homotopical functors, the pair (v∗, u∗) is
right (resp. left) deformable (42.3).

To prove the colimit half of (iii) one notes that in the commutative diagram

kvkuu
∗v∗

au //

1

��

kv colimu u∗v∗
eu //

av

��

kvv
∗ av //

av

��

colimv v∗
ev // 1MB

1

��

colimv colimu u∗v∗
eu //

colim(v,u)

��

colimv v∗
ev // 1MB

1

��

kvku(vu)∗ // colimvu(vu)∗
evu // 1MB

in which eu, ev and evu are (induced by) the relevant counits, the top row, in view
of 39.10(iii) and 47.2, is the counit of the composition of the derived adjunction
of (ku, au) and (kv, av), while (47.2) the bottom row is the counit of the derived
adjunction of their “composition”.

It thus remains to discuss

47.5. Homotopical compatibility with deformable adjoints. This will
be a homotopical version of the following categorical notion.

Given an adjunction f : X ↔ Y :g and a functor u : A → B, we will say that
f (resp. g) is compatible with u-colimit (resp. u-limit) functors if

(i) there exist u-colimit (resp. u-limit) functors (47.1) on both X and Y

as in that case

(ii) for every pair of u-colimit (resp. u-limit) functors s on X and t on Y ,
the compositions

fBs and tfA : XA −→ Y B (resp. gBt and sgA : Y A −→XB)

are left (resp. right) adjoints of the composition

XugB = gAY u : Y B −→XA (resp. Y ufB = fAXu : XB −→ Y A)

and hence canonically naturally isomorphic (37.1).

Similarly, given a deformable adjunction (43.1) and a functor u : A → B, we
will therefore say that f (resp. g) is homotopically compatible with homotopy
u-colimit (resp. u-limit) functors if

(i)′ there exist u-colimit (resp. u-limit) and homotopy u-colimit (resp. u-
limit) functors on X and Y , and

(ii)′ the compositions (42.1) of a homotopy u-colimit (resp. u-limit) functor
on X (resp. Y ) with a left (resp. a right) approximation of fB (resp.
gB) and of a left (resp. a right) approximation of fA (resp. gA) with
a homotopy u-colimit (resp. u-limit) functor on Y (resp. X) are left
(resp. right) approximations of the canonically (naturally) isomorphic
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(ii) compositions

XA colimu

−−−−→XB fB

−−→ Y B and XA fA

−−→ Y A colimu

−−−−→ Y B

(resp. Y A limu

−−−→ Y B gB

−−→XB and Y A gA

−−→XA limu

−−−→XB )

respectively, and hence (38.4) are canonically weakly equivalent (37.5).
Then one has the following

47.6. Sufficient conditions for homotopical compatibility. Given a de-
formable adjunction f : X ↔ Y :g (43.1) and a functor u : A → B, a sufficient
condition in order that f (resp. g) is homotopically compatible (47.5) with homo-
topy u-colimit (resp. u-limit) functors is that there exist u-colimit (resp. u-limit)
functors on X and Y , and

(i) the pairs

(colimu : XA →XB, fB) and (fA, colimu : Y A → Y B)

(resp. the pairs (limu : Y A → Y B, gB) and (gA, limu : XA →XB) )

are left (resp. right) deformable (42.3)
which in particular is the case if

(ii) X and Y are saturated (33.9) and the above pairs are locally left (resp.
right) deformable (42.3).

Proof. Part (i) is a consequence of 42.4, while part (ii) follows from 33.9(v) and
42.6 and the observation that it readily follows from the fact that the functors Xu

and Y u are homotopical and that g (resp. f) is right (resp. left) deformable (40.2),
that the pairs

(Xu, gB) and (gA,Y u) (resp. (Y u, fB) and (fA,Xu))

are right (resp. left) deformable (42.3).

48. Left and right systems

In order to be able to deal with the notions of homotopical cocompleteness and
completeness (in §49), we first have to generalize the results of §42 and §44 on
composable pairs of (not necessarily homotopical) functors between homotopical
categories to diagram-like collections of such categories and functors which we will
call left and right systems.

We thus start with defining these

48.1. Left and right systems. Given a category C, a left (resp. a right)
C-system will be a function F which assigns

(i) to every object D ∈ C a homotopical category FD
(ii) to every map u : A → B ∈ C a (not necessarily homotopical) functor

Fu : FA→ FB, and
(iii) to every composable pair of maps u : A → B and v : B → D ∈ C, a

natural weak equivalence (called composer)

F (v, u) : (Fv)(Fu)→ F (vu) (resp. F (v, u) : F (vu)→ (Fv)(Fu))
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which is associative in the sense that, for every three composable maps u : A→ B,
v : B → D and x : D → E ∈ C, the following diagram commutes

(Fx)(Fv)(Fu)
(Fx)F (v,u)

//

F (x,v)(Fu)

��

(Fx)F (vu)

F (x,vu)

��

F (xv)(Fu)
F (xv,u)

// F (xvu)

(Fx)F (vu)
(Fx)F (v,u)

// (Fx)(Fv)(Fu)

F (xvu)

F (x,vu)(resp.
OO

F (xv,u)
// F (xv)(Fu)

F (x,v)(Fu) )
OO

and such a C-system will be called

(iv) homotopical if, for every map u : A→ B ∈ C, the functor Fu is homo-
topical, and

(v) saturated if, for every object D ∈ C, FD is saturated, i.e. (33.9) a map
in FD is a weak equivalence iff its image in HoFD is an isomorphism.

Similarly there are

48.2. Maps and weak equivalences between systems. We only consider
maps and weak equivalences between two left or right systems F and G when
FD = GD for every object D ∈ C and we then define a map F → G between two
such left (resp. right) C-systems F and G as a function h which assigns to every
map u : A → B ∈ C a natural transformation hu : Fu → Gu, which is compatible
with the composers in the sense that, for every composable pair of maps u : A→ B
and v : B → D ∈ C, the following diagram commutes

(Fv)(Fu)
F (v,u)

//

(hv)(hu)

��

F (vu)

h(vu)

��

(Gv)(Gu)
G(v,u)

// G(vu)

F (vu)
F (v,u)

//

(resp. h(vu)

��

(Fv)(Fu)

(hv)(hu) )
��

G(vu)
G(v,u)

// (Gv)(Gu)

and call such a map a weak equivalence whenever, for every map u ∈ C, the
natural transformation hu is a natural weak equivalence.

We denote the resulting homotopical category of left (resp. right) C-systems
by

CL-syst (resp. CR-syst)

and its full subcategory spanned by the homotopical C-systems (48.1) by

CL-systw (resp. CR-systw).

48.3. Example. If H is a C-diagram of homotopical categories and (not nec-
essarily homotopical) functors between them, then H gives rise to a left C-system
HL and a right C-system HR which assigns to the objects and the maps of C the
same homotopical categories and functors as H and in which, for every composable
pair of maps u : A → B and v : B → D ∈ C, the composers (48.1) HL(v, u) and
HR(v, u) are the identity natural transformations of the functor

H(vu) = (Hv)(Hu) : HA→ HD.
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48.4. Example. For a homotopical left (resp. right) C-system K (48.1) one
can consider its homotopy system, i.e. the function HoK which assigns (33.9)

(i) to every object D ∈ C, the homotopy category HoKD, considered as a
minimal homotopical category (33.6)

(ii) to every map u : A → B ∈ C, the induced functor HoKu : HoKA →
HoKB, and

(iii) to every composable pair of maps u : A → B and v : B → D ∈ C, the
induced natural isomorphism HoK(v, u),

and note that (33.9)
(iv) HoK is a left (resp. a right) C-system.

Next we define

48.5. Left and right approximations. Given a category C and a left or
right C-system F (48.1), left or right approximations of F will, roughly speaking,
be homotopical C-systems which

(i) consist of left or right approximations of the functors of F , and
(ii) in a homotopical sense, are closest to F from the left or the right.

More precisely, a left (resp. a right) approximation of a left (resp. a right)
C-system F will be a pair (K, a) consisting of an object (48.2)

K ∈ CL-systw (resp. K ∈ CR-systw)

and a map (48.2)

a : K → F ∈ CL-syst (resp. a : F → K ∈ CR-syst)

such that
(iii) for every map u ∈ C, the pair (Ku, au) is a left (resp. a right) approxi-

mation of Fu (41.1), and
(iv) (K, a) is a homotopically terminal (resp. initial) object of “the homo-

topical category of homotopical left (resp. right) C-systems over (resp.
under) F”, i.e. the homotopical category

(CL-systw ↓F ) (resp. (F ↓CR-systw))

which has as objects the above pairs (K, a) and, for every two such pairs
(K1, a1) and (K2, a2) as maps and weak equivalences (K1, a1)→ (K2, a2)
the maps and the weak equivalences t : K1 → K2 such that a2t = a1 (resp.
ta1 = a2).

It then follows readily from 37.6(vi), 38.3(i) and 48.2 that
(v) if one object of (CL-systw ↓F ) (resp. (F ↓CR-systw)) satisfies (iii) and

(iv), then every object that satisfies one of (iii) and (iv) also satisfies the
other

so that (37.6(vi))
(vi) the left (resp. right) approximations of F , if they exist, are homotopically

unique (37.5).
In order to obtain sufficient conditions for the existence of such left and right

approximations we generalize the notions of deformable and locally deformable com-
posable pairs of functors of 42.3 to those of
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48.6. Deformable and locally deformable systems. Given a category C,
we call a left (resp. a right) C-system F locally left (resp. right) deformable if

(i) there exists a function F0 which associates with every object D ∈ C a
left (resp. a right) deformation retract F0D ⊂ FD (40.1) such that, for
every map u : A → B ∈ C, the functor Fu : FA → FB is homotopical
on F0A

which (40.2)(ii)′ is equivalent to requiring that
(i)′ there exists a local left (resp. a right) F -deformation, i.e. a function

(r, s) which assigns to every object D ∈ C a left (resp. a right) deforma-
tion (rS , sD) of FD (40.1) such that, for every map u : A→ B ∈ C, the
functor (Fu)rA is homotopical and the natural transformation (Fu)sArA
is a natural weak equivalence,

and we call F left (resp. right) deformable if
(ii) there exists a function F0 as in (i) with the additional property that, for

every map u : A→ B ∈ C, the functor Fu : FA→ FB sends all of F0A
into F0B,

which (as in 42.3(v)) is equivalent to requiring that
(ii)′ there exists a left (resp. right) F -deformation, i.e. a local left (resp.

right) F -deformation (r, s) (i)′ such that, for every composable pair of
maps u : A → B and v : B → D ∈ C, the natural transformation
(Fv)sB(Fu)rA is a natural weak equivalence

as for such a left (resp. right) F -deformation (r, s), the function F0 which assigns to
every object D ∈ C, the full subcategory F0D ⊂ FD spanned by the union, taken
over all objects A ∈ C and finite sequences of maps

A
u1−→ · · · un−−→ D in C (n ≥ 0)

of the images of the functors

(Fun) · · · (Fu1)rA : FA −→ FD (n ≥ 0),

has the property that, for every map v : D → E ∈ C, the functor Fv : FD → FE
sends all of F0D into F0E and, in view of 40.3 and the observation that the iterated
composer (48.1)

(Fun) · · · (Fu1) −→ · · · −→ F (un · · ·uk+1)(Fuk) · · · (Fu1) −→ · · · −→ F (un · · ·u1)

is a natural weak equivalence, is homotopical on F0D.

Now we can state

48.7. Proposition. Given a category C, a sufficient condition in order that
a left (resp. a right) C-system F (48.1) has left (resp. right) approximations (48.5)
is that F is left (resp. right) deformable (48.6(ii)).

Proof (of the left half). Given a left C-system F and a left F -deformation (r, s)
(48.6(ii)′) denote, for every left C-system K such that KD = FD for every object
D ∈ C, by Kr the function which assigns

(i) to every object D ∈ C, the homotopical category (Kr)D = KD,
(ii) to every map u : A→ B ∈ C, the functor (Kr)u = (Ku)rA, and
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(iii) to every composable pair of maps u : A → B and v : B → D ∈ C, the
composition (Kr)(v, u) of the natural transformation

(Kr)v(Kr)u = (Kv)rB(Ku)rA
(Kv)sB(Ku)rA−−−−−−−−−−→ (Kv)(Ku)rA

with the natural weak equivalence

(Kv)(Ku)rA
K(v,u)rA−−−−−−→ K(vu)rA = (Kr)(vu)

and denote by Ks the function which assigns

(iv) to every map u : A→ B ∈ C, the natural transformation

(Ks)u = (Ku)sA.

A sufficient condition in order thatKr so defined is a left C-system is that, for every
composable pair of maps u : A→ B and v : B → D ∈ C, the natural transformation
(Kv)sB(Ku)rA is a natural weak equivalence and it follows that

(v) if K is a homotopical left C-system ( 48.1(iv)), then so is Kr and the
function Ks is a weak equivalence Kr → K ∈ CL-systw (48.5), and

(vi) Fr is a homotopical left C-system and the function Fs is a map Fr →
F ∈ CL-syst (48.5),

and that consequently, in view of the naturality in K of the functions Kr and Ks,

(vii) every object (K, a) ∈ (CL-systw ↓F ) (48.5) gives rise to a zigzag in
(CL-systw ↓F )

(K, a) Ks←−− (Kr, as) ar−→ (Fr, Fs)

in which as denotes the diagonal of the commutative diagram

Kr
ar //

Ks

��

Fr

Fs

��

K
a // F

which is natural in (K, a) and in which ar : Kr → Fr is the map given
by (ar)u = (au)rA for every map u : A→ B ∈ C,

The desired result now follows from 38.2 and 48.6(i)′ and the observation that, as
for every map u : A→ B ∈ C, the natural transformation(

(Fs)r
)
u = (Fs)urA = (Fu)sArA

is a natural weak equivalence, the map (Fs)r : (Fr)r → Fr ∈ CL-systw is a weak
equivalence.

It remains to generalize to systems the rather useful sufficient condition (42.6) in
order that a composable pair of functors between saturated homotopical categories
be deformable (42.3), namely that the pair is locally deformable (42.3) and has a
deformable pair of adjoints.

To do this we thus first have to define
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48.8. Adjunctions between left and right systems. Given a category C,
a left C-system F and a right Cop-system F ′, F is said to be a left adjoint of F ′

and F ′ is said to be a right adjoint of F , if FD = F ′D for every object D ∈ C
and there is given an adjunction F ↔ F ′, i.e. there are given adjunctions

Fu: FA←→ F ′B :F ′uop,

one for every map u : A → B ∈ C, such that, for every composable pair of maps
u : A → B and v : B → D ∈ C, the composers F (v, u) and F ′(uop, vop) are conju-
gate (39.10) with respect to the adjunction

F (vu): FA←→ F ′D :F ′(uopvop)

and the composition of the adjunctions

Fu: FA←→ F ′B :F ′uop and Fv : FB ←→ F ′D :F ′vop .

The functions ε and η which assign to every map u : A → B ∈ C the counit and
the unit

εu : (Fu)(F ′uop) −→ 1FB and ηuop : 1FA −→ (F ′uop)(Fu)

of the adjunction Fu : FA ↔ FB :F ′uop, will be called the counit and the unit
of the adjunction F ↔ F ′.

One then readily verifies that (39.10)
(i) if a left (resp. a right) C-system has a right (resp. a left) adjoint, then

all such adjoints are canonically isomorphic (37.1),
(ii) if F is a left (resp. a right) C-system of which the composers are natural

isomorphisms, then F has a right (resp. a left) adjoint iff, for every map
u : A → B ∈ C, the functor Fu : FA → FB has a right (resp. a left)
adjoint.

We also define

48.9. Deformable and locally deformable adjunctions of systems. Given
a category C, an adjunction F ↔ F ′ (48.8) between a left C-system F and a right
Cop-system F ′ will be called

(i) locally deformable, if F and F ′ are locally left and right deformable
(48.6(i)) respectively, and

(ii) deformable if F and F ′ are left and right deformable (48.6(ii)).

Now we can state

48.10. Proposition. Let C be a category and F ↔ F ′ a locally deformable
adjunction (48.8 and 48.9) between a saturated left C-system F ( 48.1(v)) and a
saturated right Cop-system F ′. Then F is left deformable ( 48.8(ii)) iff F ′ is right
deformable.

Proof (of the “if” part). If (r, s) and (r′, s′) are a local left F -deformation
(48.6(i)′) and a right F ′-deformation (48.6(ii)′) then, for every composable pair of
maps u : A→ B and v : G→ D ∈ C, the natural transformation (F ′uop)s′B(F ′vop)r′D
is a natural weak equivalence and hence, in view of the saturation of FD and 42.7,
so is the natural transformation (Fv)sB(Fu)rA, which implies that (r, s) is actually
a left F -deformation.
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We end with noting that deformable adjunctions of systems have

48.11. Derived adjunctions. Let C be a category and let F ↔ F ′ be a de-
formable adjunction (48.8 and 48.9) between a left C-system F (48.1) and a right
C-system F ′ Then the adjunction F ↔ F ′ induces, for every left approximation
(K, a) of F and every right approximations (K ′, a′) of F ′ (48.5) a derived ad-
junction (48.4)

HoK ←→ HoK ′

which ( 48.8(ii)), for every map u : A → B ∈ C, consists of the derived adjunction
(44.2)

HoKu: HoFA←→ HoF ′B :HoK ′uop

associated with the left approximation (Ku, au) of Fu and the right approximation
(K ′uop, a′uop) of F ′uop.

Proof. It follows from 44.4 that, for every composable pair of maps u : A→ B
and v : B → D ∈ C, the composition

Ho(Kv)(Ku): Ho XA ←→ Ho XD :Ho(K ′uop)(K ′vop)

of the derived adjunctions (44.2)

HoKu: Ho XA ←→ Ho XB :HoK ′uop

and HoKv : HoXB ←→ Ho XD :HoK ′vop

associated with the approximations

Ku
au−→ Fu, F ′uop a′uop

−−−→ K ′uop, Kv
av−→ Fv and F ′vop a′vop−−−→ K ′vop

is the derived adjunction associated with the approximations

(Kv)(Ku)
(av)(au)−−−−−→ (Fv)(Fu) and (F ′uop)(F ′vop)

(a′uop)(a′vop)−−−−−−−−−→ (K ′uop)(K ′vop) .

We then have to show that the natural isomorphisms

HoK(v, u) and HoK ′(uop, vop)

are conjugate with respect to this composite derived adjunction and the derived
adjunction

HoK(vu): Ho XA ←→ Ho XD :HoK ′(uopvop)

associated with the approximations

K(vu)
a(vu)−−−→ F (vu) and F ′(uopvop)

a′(uopvop)−−−−−−−→ K ′(uopvop)
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and do this by noting that this follows from 44.3 and the observation that the
commutative diagrams

(Kv)(Ku)
(av)(au)

//

K(v,u)

��

(Fv)(Fu)

F (vu)

��

K(vu)
a(vu)

// F (vu)

and

(F ′uop)(F ′vop)
(a′uop)(a′vop)

// (K ′uop)(K ′vop)

F ′(uopvop)
a′(uopvop)

//

F ′(uop,vop)

OO

K ′(uopvop)

K′(uop,vop)

OO

are (41.6) left and right approximations respectively of the conjugate natural trans-
formations (43.1)

F (v, u) and F (uop, vop) .

49. Homotopical cocompleteness and completeness (special case)

We now use the results of the preceding two sections to obtain, for homotopical
categories which are cocomplete and complete, notions of homotopical cocomplete-
ness and completeness which are considerably stronger than requiring the existence
of homotopy D-colimit or D-limit functors for every small category D, or even of
homotopy u-colimit or u-limit functors for every functor u : A→ B between small
categories.

We start with a brief discussion of the categorical notions of

49.1. Cocompleteness and completeness. Let cat denote the category
of the small categories (32.3) and for every homotopical category X, let X(cat)

denote the catop-diagram which associates with every object D ∈ cat the diagram
category XD and with every map u : A → B ∈ cat the induced diagram functor
Xu : XB → XA (47.1(i)′). Then X is called cocomplete (resp. complete) if,
for every object D ∈ cat, there exists a D-colimit (resp. D-limit) functor on X
(47.1(i)) and such cocompleteness (resp. completeness) implies that

(i) for every map u : A → B ∈ cat there exist u-colimit (resp. u-limit)
functors on X (for instance the functor which sends an object T ∈ XA

to the functor B →X which associates with each object B ∈ B the object
( 47.1(ii)′)

colim(u↓B) j∗T (resp. lim(B↓u) j∗T )

where

j : (u ↓B) −→ A (resp. j : (B ↓u) −→ A)

denotes the forgetful functor), and
(ii) for every composable pair of maps u : A → B and v : B → D ∈ cat,

every composition of a u-colimit (resp. u-limit) functor on X with a v-
colimit (resp. v-limit) functor is a vu-colimit (resp. vu-limit) functor,
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and even though in general it is not possible to choose, for every map u ∈ cat
a u-colimit (resp. u-limit) functor on X such that these functors form a diagram
indexed by cat,

(iii) there exists what we will call a colimit(resp. a limit) system on X, i.e.
a left (resp. a right) adjoint of the right (resp. left) catop-system X

(cat)
R

(resp. X
(cat)
L ) (48.3 and 48.8).

Clearly (48.8(i) and (ii))
(iv) such a colimit (resp. limit) system on a category X, if it exists, is cate-

gorically unique (37.1), and
(v) such a colimit (resp. limit) system on a category X exists iff X is co-

complete (resp. complete).
Moreover

(vi) if X is cocomplete (resp. complete), then the function

colim(cat) (resp. lim(cat))

given by the formulas (47.1 and 47.3)

colim(cat) u = colimu (resp. lim(cat) u = limu)

and

colim(cat)(v, u) = colim(v,u) (resp. lim(cat)(v, u) = lim(v,u))

is such a colimit (resp. limit) system on X.
Now we turn to

49.2. Homotopical cocompleteness and completeness. If X is a homo-
topical category, then

(i) the existence of homotopy D-colimit (or D-limit) functors on X for every
small category D, i.e. object D ∈ cat (32.3)

need not imply
(ii) the existence of homotopy u-colimit (or a u-limit) functors on X for every

map u ∈ cat,
nor need (ii) imply that

(iii) for every composable pair of maps u : A → B and v : B → D ∈ cat,
the compositions of homotopy u-colimit (or u-limit) functors on X with
homotopy v-colimit (or v-limit) functors on X are homotopy vu-colimit
(or vu-limit) functors on X.

In view of 49.1(v) we therefore will call a homotopical category X homotopically
cocomplete (resp. complete) if

(iv) X is cocomplete (resp. complete) and
(v) there exists a homotopy colimit (resp. limit) system on X,

which we will define as a left (resp. a right) approximation (48.5) of the colimit
(resp. the limit) system colim(cat) (resp. lim(cat)).

Clearly (48.5(vi))
(vi) such homotopy colimit (resp. limit) systems on X, if they exist, are ho-

motopically unique (37.5).
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Moreover one has, in view of 48.6, 48.7 and 48.10, the following sufficient con-
ditions for their existence, i.e.

49.3. Sufficient conditions for homotopical cocompleteness and com-
pleteness. Sufficient conditions for the homotopical cocompleteness (resp. com-
pleteness) of a homotopical category X are that

(i) X is cocomplete (resp. complete) and the colimit (resp. the limit) system
colim(cat) (resp. lim(cat)) on X is left (resp. right) deformable, i.e. there
exists a function F0 which assigns to every object D ∈ cat a left (resp.
a right) deformation retract F0D ⊂XD (40.1) such that, for every map
u : A → B ∈ cat, the functor colimu : XA → XB (resp. limu : XA →
XB

(i)′ is homotopical on F0A, and
(i)′′ sends all of F0A into F0B

which, in view of the right (resp. the left) deformability of X
(cat)
R (resp. X

(cat)
L )

(48.3 and 49.1), is in particular the case if
(ii) X is cocomplete (resp. complete) and saturated (33.9 and 48.1(v)) and

the colimit (resp. the limit) system colim(cat) (resp. lim(cat)) on X is
locally left (resp. right) deformable, i.e. there exists a function F0 which
assigns to every object D ∈ cat a left (resp. a right) deformation retract
F0D ⊂ XD such that, for every map u : A → B ∈ cat, the functor
colimu : XA → XB (resp. limu : XA → XB) satisfies (i)′ but not nec-
essarily (i)′′ (in which case there exists a possibly different such function
which satisfies both (i)′) and (i)′′.

We end with noting that 48.11 implies that, under the assumptions made in
49.3, homotopy colimit and limit systems come with

49.4. Derived adjunctions. Let X be a homotopical category which satisfies
49.3(i). Then every homotopy colimit (resp. limit) system (K, a) on X comes with
the derived adjunction

HoK ←→ Ho X
(cat)
R (resp. Ho X

(cat)
L ←→ HoK)

associated with (K, a) and the pair consisting of X
(cat)
R (resp. X

(cat)
L ) and its iden-

tity map.

50. Homotopical colimit and limit functors

The homotopy colimit and limit functors which we considered in the preceding
sections assume the existence of colimit or limit functors and choice of an arbitrary
but fixed such functor, and even though it seems, for the moment at least, that this
is the only situation in which one is really interested, we will now discuss a notion
of what we will call homotopical colimit and limit functors which in the following
sense “generalize” the homotopy colimit and limit functors:

Given a homotopical category X and a functor u : A→ B, we define a homo-
topical u-colimit (or u-limit) functor on X as a homotopically terminal (or initial)
Kan extension (38.6) of the identity functor along the induced diagram functor
Xu : XB →XA, and note that as [Mac71, Ch. X, §7]
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(i) the left (or right) adjoints of Xu (i.e. the u-colimit (or u-limit) functors
on X) are exactly the same as the terminal (or initial) Kan extensions
of the identity functor along Xu,

and as
(ii) for every terminal (or initial) Kan extension f of the identity functor

of XB along Xu, the left (or right) approximations of f (41.1) are the
f-presentations of the homotopically terminal (or initial) Kan extensions
of the identity functor along Xu, in the sense that they are the approx-
imations associated with these homotopical Kan extensions under a 1-1
correspondence which is induced by the counit (or unit) of the Kan ex-
tension f ,

it follows that
(iii) the homotopy u-colimit (or u-limit) functors on X are exactly the colimu-

(or limu-)presentations of the homotopical u-colimit (or u-limit) functors
on X.

We start with discussing

50.1. Kan extensions of the identity. Given a functor g : Y → X, we
recall from 38.6 that a terminal (resp. an initial) Kan extension of the identity
(i.e. 1Y ) along g is a functor f : X → Y , together with an often suppressed natural
transformation

e : fg −→ 1Y (resp. e : 1Y −→ fg),
called counit (resp. unit) such that the pair (f, e) is a terminal (resp. an initial)
object of the category (38.6)

(−g ↓ 1Y ) (resp. (1Y ↓−g)) .

Thus (37.2(vi))
(i) such Kan extensions of the identity, if they exist, are categorically unique

(37.1).
Moreover [Mac71, Ch. X, §7]

(ii) for every functor g : Y →X which has left (resp. right) adjoints (46.4),
the pairs (f, e) consisting of a terminal (resp. an initial) Kan extension
of the identity along g and its counit (resp. unit) are exactly the same
as the pairs (f, e) consisting of a left (resp. a right) adjoint of g and the
counit (resp. the unit) of its adjunction

and hence
(iii) given a functor g : Y → X, a sufficient condition for the existence of a

terminal (resp. an initial) Kan extension of the identity along g is the
existence of a left (resp. a right) adjoint of g.

Next we consider

50.2. Homotopical Kan extensions of the identity. Given a (not neces-
sarily homotopical) functor g : Y → X between homotopical categories, we recall
from 38.6 that a homotopically terminal (resp. initial) Kan extension of the
identity (i.e. 1Y ) along g is a homotopical functor k : X → Y , together with an
often suppressed natural transformation

d : kg −→ 1Y (resp. d : 1Y −→ kg)
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such that the pair (k, d) is a homotopically terminal (resp. initial) object (38.2) of
the category (38.6)

(−g ↓ 1Y )w (resp. (1Y ↓−g)w) .
Thus (37.6(vi))

(i) such homotopical Kan extensions of the identity, if they exist, are homo-
topically unique (37.5).

Moreover one readily verifies that
(ii) for every (not necessarily homotopical) functor g : Y → X between ho-

motopical categories, every terminal (resp. initial) Kan extension f of
the identity along g gives rise to a 1-1 correspondence between the left
(resp. the right) approximations of f (41.1) and the homotopically termi-
nal (resp. initial) Kan extensions of the identity along g, which is induced
by the isomorphism (41.1)(

Funw(X,Y ) ↓ f
)
≈ (−g ↓ 1Y )w (resp.

(
f ↓Funw(X,Y )

)
≈ (1Y ↓ − g)w)

which sends an object (k, a) to the pair (k, d) in which, if e denotes the
counit (resp. the unit) of f (50.1), the natural transformation d is the
composition

kg
ag−→ fg

e−→ 1Y (resp. 1Y
e−→ fg

ag−→ kg).

and this, together with 41.2 implies that
(iii) given a functor g : Y → X, a sufficient condition for the existence of a

homotopically terminal (resp. initial) Kan extension of the identity along
g is the existence of a left (resp. right) deformable (40.2) terminal (resp.
initial) Kan extension of the identity along g.

We also note that, in view of (ii), it is convenient
(iv) given a functor g : Y → X, a terminal (resp. initial) Kan extension f of

the identity along g, and a pair consisting of a left (resp. a right) approxi-
mation (k, a) of f (41.1) and the corresponding (as in (ii)) homotopically
terminal (resp. initial) Kan extension (k, d) of the identity along g, to say
that (k, a) is the f-presentation of (k, d).

50.3. Compositions. For every composable pair of (not necessarily homo-
topical) functors

g2 : Z −→ Y and g1 : Y −→X

between homotopical categories one can consider the homotopical composition
functors

(−g1 ↓ 1Y )× (−g2 ↓ 1Z) −→ (−g1g2 ↓ 1Z)

(resp. (1Y ↓−g1)× (1Z ↓−g2) −→ (1Z ↓−g1g2))
and

(−g1 ↓ 1Y )w × (−g2 ↓ 1Z)w −→ (−g1g2 ↓ 1Z)w
(resp. (1Y ↓−g1)w × (1Z ↓−g2)w −→ (1Z ↓−g1g2)w)

which send an object
(
(f1, e1), (f2, e2)

)
to the pair (f2f1, e2e1) (resp. (f2f1, e1e2))

where e2e1 (resp. e1e2) denotes the composite natural transformation

f2f1g1g2
e1−→ f2g2

e2−→ 1Z (resp. 1Z
e2−→ f2g2

e1−→ f2f1g1g2).
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It then follows from 39.10(iii), 46.4 and 50.1(ii) that
(i) a sufficient condition in order that, for two terminal (resp. initial) Kan

extensions of the identity f1 and f2 along g1 and g2 respectively, their
composition f2f1 is similar Kan extension along g1g2, is that g1 and g2
both have left (resp. right) adjoints, in which case ( 50.1(ii)) f1 and f2
are such adjoints and their composition as Kan extensions coincides with
their composition as adjoints ( 39.10(iii)).

Furthermore, it follows from 50.2(ii) that
(ii) for every two terminal (resp. initial) Kan extensions of the identity f1

and f2 along g1 and g2 respectively for which the composition f2f1 is a
similar Kan extension along g1g2, the diagram(

Funw(X,Y ) ↓ f1
)
×

(
Funw(Y ,Z) ↓ f2

)
//

≈
��

(
Funw(X,Z) ↓ f2f1

)
≈

��

(−g1 ↓ 1Y )w × (−g2 ↓ 1Z)w // (−g1g2 ↓ 1Z)w

(resp.

(
f1 ↓Funw(X,Y )

)
×

(
f2 ↓Funw(Y ,Z)

)
//

≈
��

(
f2f1 ↓Funw(X,Z)

)
≈

��

(1Y ↓−g1)w × (1Z ↓−g2)w // (1Z ↓−g1g2)w

)

in which the horizontal maps are the composition functors and the vertical
ones are as in 50.2(i), commutes.

and this, together with 42.4, implies that
(iii) if f1 and f2 are terminal (resp. initial) Kan extensions of the identity

along g1 and g2 respectively for which the composition f2f1 is a similar
Kan extension along g1g2, then a sufficient condition in order that every
composition of a homotopically terminal (resp. initial) Kan extension of
the identity along g1 with one along g2 is one along g2g2 is that

(iii)′ the pair (f1, f2) is left (resp. right) deformable (42.3)

Now we are ready to deal with

50.4. Homotopical colimit and limit functors. Given a homotopical cat-
egory X and a functor u : A → B, a homotopical u-colimit (resp. u-limit)
functor on X will be a homotopically terminal (resp. initial) Kan extension of the
identity (50.2) along the induced diagram functor Xu : XB →XA (47.1). It then
follows from 50.2(i), 50.2(iii) and 50.3(iii) that

(i) such homotopical colimit and limit functors, if they exist, are homotopi-
cally unique (37.5),

(ii) a sufficient condition for the existence of such a homotopical u-colimit
(resp. u-limit) functor on X is the existence of a left (resp. a right)
deformable (40.2) terminal (resp. initial) Kan extension of the identity
along the induced diagram functor Xu, and

(iii) given two composable functors u : A → B and v : B → D, a suffi-
cient condition in order that every composition of a homotopical u-colimit
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(resp. u-limit) functor on X with a homotopical v-colimit (resp. v-limit)
functor on X is a homotopical vu-colimit (resp. vu-limit) functor on X
is that

(iii)′ there exist terminal (resp. initial) Kan extensions of the identity f1 and
f2 along Xu and Xv respectively for which the composition f2f1 is a
similar Kan extension along Xvu, and

(iii)′′ the pair (f1, f2) is left (resp. right) deformable (42.3).

We end with two propositions which formalize the statement that, in the case
where there exist colimit and limit functors, the above homotopical colimit and limit
functors are “essentially the same” as the homotopy colimit and limit functors which
we considered in §47.

50.5. Proposition. Let X be a homotopical category and let u : A→ B be a
functor for which there exist u-colimit (resp. u-limit) functors on X. Then

(i) there exist homotopical u-colimit (resp. u-limit) functors on X (50.4)

iff

(ii) there exist homotopy u-colimit (resp. u-limit) functors on X (47.1)

and

(iii) if (i) and (ii) hold, then the homotopy u-colimit (resp. u-limit) functors
on X are exactly the colimu- (resp. limu-) presentations ( 50.2(iv)) of the
homotopical u-colimit (resp. u-limit) functors on X.

Proof. This follows from 50.1(iii) and 50.2(ii).

50.6. Proposition. Let X be a homotopical category and let u : A→ B and
v : B →D be functors for which there exist u- and v-colimit (resp. u- and v-limit)
functors on X. Then

(i) every composition of a homotopical u-colimit (resp. u-limit) functor on X
with a homotopical v-colimit (resp. v-limit) functor on X is a homotopical
vu-colimit (resp. vu-limit) functor on X

iff

(ii) every “composition” (47.3) of a homotopy u-colimit (resp. u-limit) func-
tor on X (47.1) with a homotopy v-colimit (resp. v-limit) functor on X
is a homotopy vu-colimit (resp. vu-limit) functor on X

and

(iii) if (i) and (ii) hold, then, for every pair consisting of a homotopical u-
colimit (resp. u-limit) functor (ku, du) on X with (ku, au) as its colimu-
(resp. limu-) presentation (50.5) and homotopical v-colimit (resp. v-limit)
functor (kv, dv) on X with (kv, av) as its colimv- (resp. limv-) presen-
tation, the “composition” (47.3) of (ku, au) with (kv, av) is the colimvu-
(resp. limvu-) presentation ( 50.2(iv)) of the composition of (ku, du) and
(kv, dv) (50.3).
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Proof (of the colimit half). This follows from 50.3(ii) and the commutativity
of the diagram(

Funw(XA,XD) ↓ colimv colimu
) colim(v,u)

∗

≈
//

≈
))SSSSSSSSSSSSSS

(
Funw(XA,XD) ↓ colimvu

)
≈

vvmmmmmmmmmmmmm

(−XuXv ↓ 1XD )w

in which the slanted maps are as in 50.2(ii).

51. Homotopical cocompleteness and completeness (general case)

In this last section we describe, for arbitrary homotopical categories, notions
of homotopical cocompleteness and completeness which, for categories which are
cocomplete or complete, reduce to the one we considered in §49, by calling a ho-
motopical category X homotopically cocomplete if there exist what we will call
homotopical colimit systems on X which we define as “homotopically terminal Kan
extensions along the right catop-system X

(cat)
R (49.1)”.

To do this we have to generalize the results of §50 on Kan extensions and
homotopical Kan extensions of the identity to systems (§48) and as systems consist
not only of categories and functors, but also natural transformations we first have
to consider

51.1. A notion of conjugation for Kan extensions. Given two functors
g1, g2 : Y → X, a natural transformation v : g2 → g1 and terminal (resp. initial)
Kan extensions of the identity f1 and f2 along g1 and g2 respectively we

(i) will refer to the unique natural transformation u : f1 → f2 for which the
diagram

f1g2
v //

u

��

f1g1

e1

��

f2g2 e2
// 1Y

(resp.

1Y
e1 //

e2

��

f1g1

u

��

f2g2 v
// f2g1

)

commutes as the conjugate of v with respect to these Kan extensions
and note that it follows from the diagram preceding 39.10(v) and 50.1(ii) that

(ii) if g1 and g2 both have left (resp. right) adjoints, this conjugate of v with
respect to these Kan extensions is also the conjugate of v with respect o
the associated ( 50.1(ii)) adjunctions.

Next we also note that the counit and the unit of an adjunction F ↔ F ′

between a left C-system F and a right Cop-system F ′ (48.8) are compatible with
the composers of F and F ′ in the sense that they are what we will call

51.2. Dinatural transformations. Given a category C, a left C-system F
and a right Cop-system F ′ (48.1) such that FD = F ′D for every object D ∈ C, a
dinatural transformation

e : FF ′ −→ 1 (resp. e : 1 −→ F ′F )
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will be a function e which assigns to every map u : A→ B ∈ C a natural transfor-
mation

eu : (Fu)(F ′uop) −→ 1FB (resp. euop : 1FA −→ (F ′uop)(Fu))

which is compatible with the composers of F and F ′ in the sense that for every
composable pair of maps u : A→ B and v : B → D ∈ C, the diagram

(Fv)(Fu)F ′(uopvop)
F (v,u)

//

F ′(uop,vop)

��

F (vu)F ′(vu)op

e(vu)

��

(Fv)(Fu)(F ′uop)(F ′vop)
(ev)(eu)

// 1FD

(resp.

1FA
(evop)(euop)

//

e(vu)op

��

(F ′uop)(F ′vop)(Fv)(Fu)

F (v,u)

��

F ′(vu)opF (vu)
F ′(uop,vop)

// (F ′uop)(F ′vop)F (vu)

)

commutes. Using 39.10(iii) and the diagrams preceding 39.10(v) one then can show
that

(i) for every adjunction F ↔ F ′ between a left C-system F and a right
Cop-system F ′ (48.8) its counit and unit are dinatural transformations

FF ′ −→ 1 and 1 −→ F ′F

and
(ii) for every left C-system F , right Cop-system F ′ and dinatural transfor-

mation
e : FF ′ −→ 1 (resp. e : 1 −→ F ′F )

there is at most one adjunction F ↔ F ′ with e as its counit (resp. unit).

Now we are ready to deal with

51.3. Kan extensions along systems. Given a category C and a right
(resp. a left) Cop-system G, let

(−G ↓ 1) (resp. (1 ↓−G))

denote the homotopical category which has as objects the pairs (F, e) consisting of
a left (resp. a right) C-system F and a dinatural transformation (51.2)

e : FG −→ 1 (resp. e : 1 −→ FG)

and as maps and weak equivalences (F1, e1)→ (F2, e2) the maps and weak equiva-
lences t : F1 → F2 (48.2) such that, for every map u : A→ B ∈ C, the diagram

(F1u)(Guop)
e1u

**TTTTTTT

tu

��

1

(F2u)(Guop)
e2u

44jjjjjjj
(resp.

(F1u)(Guop)

tu

��

1
e1u 44jjjjjjj

e2u **TTTTTTT

(F2u)(Guop)

)

commutes, and let

(−G ↓ 1)w ⊂ (−G ↓ 1) (resp. (1 ↓−G)w ⊂ (1 ↓−G))
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denote the full subcategory spanned by the pairs (F, e) for which F is homotopical
(48.1).

We then define
(i) a terminal (resp. an initial) Kan extension along G as a terminal

(resp. an initial) object

(F, e) ∈ (−G ↓ 1) (resp. (F, e) ∈ (1 ↓−G))

such that, for every map u : A→ B ∈ C, the pair (Fu, eu) is a terminal
(resp. an initial) Kan extension of the identity along Guop (47.1), and

(ii) a homotopically terminal (resp. initial) Kan extension along G as
a homotopically terminal (resp. initial) object

(K, d) ∈ (−G ↓ 1)w (resp. (K, d) ∈ (1 ↓−G)w)

such that, for every map u : A→ B ∈ C, the pair (Ku, du) is a homotopi-
cally terminal (resp. initial) Kan extension of the identity along Guop

(50.2)
and note that (37.2(vi) and 37.6(vi))

(iii) such Kan extensions and homotopical Kan extensions, if they exist, are
respectively categorically unique (37.1) and homotopically unique (37.5).

Moreover it follows from 50.1(ii) and 51.1(ii) that
(iv) for every right (resp. left) Cop-system G which has left (resp. right) ad-

joints (48.8), a pair (F, e) is a terminal (resp. an initial) Kan extension
along G iff there exists an adjunction F ↔ G (resp. G ↔ F ) with e as
its counit (resp. unit),

so that
(iv)′ a sufficient condition for the existence of a terminal (resp. an initial)

Kan extension along G is the existence of a left (resp. a right) adjoint of
G.

Similarly it follows from 50.2(ii) that
(v) for every right (resp. left) Cop-system G, every terminal (resp. initial)

Kan extension (F, e) along G gives rise to a 1-1 correspondence between
the left (resp. the right) approximations of F (48.5) and the homotopically
terminal (resp. initial) Kan extensions along G, which is induced by the
isomorphism (48.2)

(CL-systw ↓F ) ≈ (−G ↓ 1)w (resp. (F ↓CR-systw) ≈ (1 ↓−G)w)

which sends an object (K, a) to the pair (K, d) in which d denotes the
dinatural transformation (51.2)

(Ku)(Guop) au−→ (Fu)(Guop) eu−→ 1GB (resp. 1GB
eu−→ (Fu)(Guop) au−→ (Ku)(Guop))

which together with (iv)′ and 48.7 implies that
(vi) a sufficient condition for the existence of a homotopically terminal (resp.

initial) Kan extension along G
is that

(vi)′ there exists a terminal (resp. initial) Kan extension along G which is left
(resp. right) deformable (48.6)

We will also, as in 50.2(iv)
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(vii) given a a right (resp. a left) Cop-system G, a terminal (resp. an initial)
Kan extension (F, e) along G and a pair consisting of a left (resp. a
right) approximation (K, a) of F and the corresponding (see (v) above)
homotopically terminal (resp. initial) Kan extension (K, d) along G, say
that (K, a) is the F -presentation of (K, d).

Finally we are ready to discuss

51.4. Homotopical cocompleteness and completeness. Given a homo-
topical category X, we will say that X is homotopically cocomplete (resp.
complete) if there exists a homotopical colimit (resp. limit) system on X,
which we define as a homotopically terminal (resp. initial) Kan extension (51.3(ii))
along the right (resp. the left) catop-system X

(cat)
R (resp. X

(cat)
L ) (49.1). Then

(51.3(iii))
(i) such homotopical colimit (resp. limit) systems on X, if they exist, are

homotopically unique (37.5)
while 49.1 and 51.3(vi) imply that

(ii) a sufficient condition for the homotopical cocompleteness (resp. complete-
ness) of X, i.e. the existence of homotopical colimit (resp. limit) systems
on X,

is that
(ii)′ there exists a terminal (resp. initial) Kan extension along X

(cat)
R (resp.

X
(cat)
L ) which is left (resp. right) deformable (48.6)

Moreover it follows from 49.1 and 51.3(iv) and (vii) that, if X is cocomplete (resp.
complete), then

(iii) there exist homotopical colimit (resp. limit) systems on X

iff
(iii)′ there exist homotopy colimit (resp. limit) systems on X (49.2)

and
(iii)′′ if (iii) and (iii)′ hold then the homotopy colimit (resp. limit) systems on

X are exactly the colim(cat)- (resp. lim(cat)-) presentations ( 51.3(vii))
of the homotopical colimit (resp. limit) systems on X

so that
(iv) for cocomplete (resp. complete) homotopical categories the above notion of

homotopical cocompleteness (resp. completeness) coincides with the one
we considered in §49.
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homotopically unique objects, 37, 112
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3-arrow description of, 107

classical, 29

colimit description of, 101

description of, 96–110

explicit description of, 133–136

Grothendieck description of, 102
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3-arrow description of, 29
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54, 57, 57–60, 70, 83–85, 146–150

and homotopical colimit functors, 163

compositions of, 148

derived adjunctions of, 57

homotopical compatibility with left deformable

left adjoints, 149–150

homotopical compatibility with left Quillen
functors, 54, 58

homotopical uniqueness, 57

sufficient conditions for composability, 148

homotopy colimit systems, 61, 61–63, 71,
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and homotopical colimit systems, 167

derived adjunctions of, 159

homotopical uniqueness of, 61, 158

homotopy D-colimit functors, 57, 146

homotopy D-limit functors, 57, 146

homotopy equivalence, 28

homotopy inverses, 28

homotopy limit functors, 15–16, 57, 57–60,

70, 146–150
and homotopical limit functors, 163

compositions of, 148

derived adjunctions of, 57
homotopical compatibility with right de-

formable right adjoints, 149–150

homotopical compatibility with right Quillen
functors, 58

homotopical uniqueness of, 57

sufficient conditions for composability, 148
homotopy limit systems, 61, 61–63, 71, 158

and homotopical limit systems, 167

derived adjunctions of, 159
homotopical uniqueness of, 61, 158

homotopy relations, 28–30
homotopy systems

of homotopical left systems, 152

of homotopical right systems, 152
homotopy u-colimit functors, 57, 70, 146

derived adjunctions of, 147

homotopical uniqueness of, 70, 147
sufficient conditions for existence, 147

homotopy u-limit functors, 57, 70, 146

derived adjunctions of, 147
homotopical uniqueness of, 70, 147

sufficient conditions for existence, 147

indexing categories, 94

induced diagram functors, 55, 146

initial Kan extensions, 116, 126, 160
along left systems, 166

homotopically, 160

units of, 116, 160
initial Kan extensions along left systems

sufficient conditions for existence, 166

initial objects
categorical uniqueness of, 36, 111

homotopically, 13, 37, 37–38, 114, 113–
116

initial projection functors, 66, 66–70

initial universal properties, 36, 111
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homotopical, 22, 94

homotopy, 28
invertibility property

weak, 21, 94

Kan extensions, 116, 126, 160
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homotopically initial, 116, 160
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Kan extensions along systems
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categorical uniqueness of, 166

Ken Brown’s lemma, 39
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latching objects, 64

left adjoints

compatibility with colimit functors, 149
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categorical uniqueness of, 155
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120, 125, 124–128

and total left derived functors, 126

compositions of, 118–119, 128–131

homotopical uniqueness of, 40, 49, 125,
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of left deformable functors, 49, 125
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and homotopically terminal Kan exten-
sions, 161
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left cat-systems, 60, 60–63, 71
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homotopical, 60

maps between, 60
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left deformable functors, 13–15, 49, 49–52,
122, 117–124

compositions of, 50–51, 129–131

left approximations of, 49, 125

left deformable left adjoints

homotopical compatibility with homotopy

colimit functors, 149–150

left deformable natural transformations, 124

left deformable pairs of functors, 50, 129

left deformable systems, 153

left deformation retracts, 22, 122

and model categories, 28

left deformations, 22, 122

left F -deformation, 153

left f -deformation, 122

left f -deformation retracts, 122

maximal, 123

left f -deformations

homotopical uniqueness of, 124

left h-deformation, 124

left h-deformation retracts, 124

left homotopic maps, 28

left lifting property, 24

left Quillen equivalences, 34–35, 47, 46–48

left Quillen functors, 33, 38, 38–52

compositions of left approximations, 42

existence of left approximations, 40

homotopical compatibility with homotopy
colimit functors, 54, 58

left approximations of, 40

left systems, 150

homotopical, 151

homotopically initial Kan extensions along,

166

initial Kan extensions along, 166

left adjoints of, 155

left approximations of, 152

maps between, 151

saturated, 151

sufficient conditions for existence of left
approximations, 153

sufficient conditions for left deformability,
155

weak equivalences between, 151

length

of a zigzag, 96

lifting axiom, 24

limD , 146

limu, 146

limit axiom, 23

limit functors, 55, 55–56

compatibility with right adjoints, 149

D-, 55, 146

homotopical, 162–163

homotopy, 15–16, 57, 57–60, 70, 146–150

u-, 55, 146

limit systems, 56, 158

and completeness, 56, 158

categorical uniqueness of, 158

homotopical, 167

homotopy, 61, 61–63, 71, 158

local left F -deformation, 153

local right F -deformation, 153

localization

simplicial, 103

localization functor, 97

localization functors, 22, 27

locally left deformable pairs of functors, 50,

129

locally left deformable systems, 153

locally right deformable pairs of functors,

50, 129

locally right deformable systems, 153

locally small categories, 21, 92

locally small homotopical categories, 94

maps

between cat-systems, 60

between left systems, 151

between right systems, 151

homotopic, 28

left homotopic, 28

right homotopic, 28

matching objects, 64

maximal homotopical categories, 95
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maximal model structures, 26
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minimal homotopical categories, 95
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minimal structure functor, 95
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and left deformation retracts, 28

and right deformation retracts, 28

closed, 24–26

closure properties, 25–26

homotopical cocompleteness of, 61

homotopical completeness of, 61
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Ken Brown’s lemma, 39

Reedy, 63–70

saturation of, 29

3-arrow calculi of, 32

weak equivalences, 23

weak equivalences in, 18
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maximal, 26

minimal, 26

Reedy, 63, 63–66

n-arrow categories, 99

natural transformations
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conjugate, 121, 121, 164

conjugate deformable, 131

derived, 137, 137–140

di-, 164, 164–166

left approximations of, 127, 127–128
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right approximations of, 127, 127–128

right deformable, 124
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naturally weakly equivalent functors, 22, 94

nerve, 102
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canonically isomorphic, 36, 111

canonically weakly equivalent, 37, 112

categorically unique, 36, 111

cofibrant, 27

cofibrant fibrant, 28
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homotopically initial, 13, 37, 37–38, 114,
113–116

homotopically terminal, 13, 37, 37–38, 114,

113–116

homotopically unique, 37, 112

latching, 64

matching, 64
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pairs of functors
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locally left deformable, 50, 129

locally right deformable, 50, 129
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sufficient conditions for left deformability,
50, 130

sufficient conditions for right deformabil-

ity, 50, 130

partial adjunction functors, 131

partial adjunction isomorphisms, 42, 51, 132,

138–141

partial adjunctions, 42, 51, 131, 131–136

compositions of, 132

naturality of, 132

presentation
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presentations

F -, 167

of homotopical Kan extensions, 161

of homotopical Kan extensions along sys-
tems, 167

projection functors, 66, 66–70

initial, 66, 66–70

terminal, 66, 66–70

Quillen adjunctions, 38

and Reedy model structures, 64

compositions of derived adjunctions, 44

Quillen condition for, 47

Quillen condition, 119, 141, 141–143

consequences of, 142

equivalent statements, 142

for deformable adjunctions, 52

for Quillen adjunctions, 35, 47

Quillen equivalences, 34–35, 47, 46–48
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right, 34–35, 47, 46–48

Quillen functors, 33, 38, 38–52

approximations of, 40
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key property of, 39

left, 33, 38, 38–52

right, 33, 38, 38–52

Reedy categories, 63

Reedy cofibrations, 63

Reedy fibrations, 63

Reedy model categories, 63–70

Reedy model structures, 63, 63–66

and Quillen adjunctions, 64

explicit description of, 64

Reedy weak equivalences, 63

restricted diagrams, 67, 67–70

restricted zigzag, 96

restricted zigzags, 100

retract axiom, 17–18, 24

right adjoints

compatibility with limit functors, 149

right adjoints of right systems, 155

categorical uniqueness of, 155
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of natural transformations, 127, 127–128
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along systems, 166

right cat-systems, 60, 60–63, 71

composers of, 60

homotopical, 60

maps between, 60

weak equivalences between, 60

right deformable functors, 13–15, 49, 49–52,

122, 117–124

compositions of, 50–51, 129–131

right approximations of, 49, 125

right deformable natural transformations, 124

right deformable pairs of functors, 50, 129

right deformable right adjoints

homotopical compatibility with homotopy

limit functors, 149–150

right deformable systems, 153

right deformation retracts, 22, 122

and model categories, 28

right deformations, 22, 122

right F -deformation, 153

right f -deformation, 122

right f -deformation retracts, 122

maximal, 123

right f -deformations

homotopical uniqueness of, 124

right h-deformation, 124

right h-deformation retracts, 124

right homotopic maps, 28

right lifting property, 24

right Quillen equivalences, 34–35, 47, 46–48

right Quillen functors, 33, 38, 38–52

compositions of right approximations, 42

existence of right approximations, 40

homotopical compatibility with homotopy

limit functors, 58

right approximations of, 40

right systems, 150

homotopical, 151

homotopically terminal Kan extensions along,

166

maps between, 151

right adjoints of, 155

right approximations of, 152

saturated, 151

sufficient conditions for existence of right
approximations, 153

sufficient conditions for right deformabil-
ity, 155

terminal Kan extensions along, 166

weak equivalences between, 151

saturated homotopical categories, 23, 97

saturated left systems, 151

saturated right systems, 151

saturation, 23, 97

and homotopical diagram categories, 23

and homotopical functor categories, 23

and 3-arrow calculi, 31, 108

of homotopical diagram categories, 97

of homotopical functor categories, 97

of model categories, 29

sets, 21, 93

simplicial, 102

small, 21, 93

U-, 20, 91

simplicial localizations, 103

and Grothendieck construction, 103

simplicial sets, 102

small categories, 21, 92

locally, 21
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small sets, 21, 93

small U-categories, 20, 92, 92–93

structures

homotopical, 21, 94

model, 23

Reedy model, 63, 63–66
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categorically full, 36, 111

homotopical, 94

homotopically full, 37, 112

successor universes, 20, 92

sufficient conditions for

homotopical cocompleteness, 159, 167

homotopical completeness, 159, 167

left deformability of left systems, 155

left deformability of pairs of functors, 50

right deformability of pairs of functors, 50

right deformability of right systems, 155
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homotopical Kan extensions, 162
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homotopy colimit functors, 148

homotopy limit functors, 148
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right approximations, 50, 130
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locally right deformable, 153
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on homotopical functor categories, 106
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and left approximations, 126

total right derived functors, 126

and right approximations, 126

trivial cofibrations, 24

characterization of, 25–26

trivial fibrations, 24

characterization of, 25–26

two out of six axiom, 23

two out of six property, 10–11, 21, 93, 108,
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two out of three axiom, 17–18

two out of three property, 21, 94

types
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types of zigzags, 99
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u-colimit functors, 55, 146

homotopical, 162

homotopy, 57, 70, 146
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initial, 36, 111
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higher, 92

successor, 20, 92
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weak equivalences
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between left systems, 151
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in model categories, 18, 23

natural, 21, 94

Reedy, 63
weak invertibility property, 21, 94
weakly equivalent objects, 21, 94
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length, 96
restricted, 96
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Birkhäuser Verlag, Basel, 1999.
[Hir03] P. S. Hirschhorn, Model categories and their localizations, Mathematical Surveys and

Monographs, vol. 99, American Mathematical Society, Providence, RI, 2003.

[Hov99] M. Hovey, Model categories, Mathematical Surveys and Monographs, vol. 63, Amer.
Math. Soc., Providence, RI, 1999.

[Mac71] S. MacLane, Categories for the working mathematician, Grad. Texts in Math., vol. 5,
Springer-Verlag, 1971.

[Qui67] D. G. Quillen, Homotopical algebra, Lect. Notes in Math., vol. 43, Springer-Verlag, Berlin,
1967.

[Qui69] , Rational homotopy theory, Ann. Math. 90 (1969), 205–295.

[Ree74] C. L. Reedy, Homotopy theory of model categories, Available at the Hopf Topol-
ogy Archive as ftp://hopf.math.purdue.edu/pub/Reedy/reedy.dvi, 1974, Unpublished

manuscript.
[Sch72] H. Schubert, Categories, Springer-Verlag, 1972.
[Tho79] R. W. Thomason, Homotopy colimits in the category of small categories, Math. Proc.

Cambridge Philos. Soc. 85 (1979), no. 1, 91–109.

179 Draft: May 14, 2004


	Preface
	Part I.  Model Categories
	Chapter I. An overview
	1. Introduction
	2. Slightly unconventional terminology
	3. Problems involving the homotopy category
	4. Problem involving the homotopy colimit functors
	5. The emergence of the current monograph
	6. A preview of part II

	Chapter II. Model categories and their homotopy categories
	7. Introduction
	8. Categorical and homotopical preliminaries
	9. Model categories
	10. The homotopy category
	11. Homotopical comments

	Chapter III. Quillen functors
	12. Introduction
	13. Homotopical uniqueness
	14. Quillen functors
	15. Approximations
	16. Derived adjunctions
	17. Quillen equivalences
	18. Homotopical comments

	Chapter IV. Homotopical cocompleteness and completeness of model categories
	19. Introduction
	20. Homotopy colimit and limit functors
	21. Homotopical cocompleteness and completeness
	22. Reedy model categories
	23. Virtually cofibrant and fibrant diagrams
	24. Homotopical comments


	Part II.  Homotopical Categories
	Chapter V. Summary of part II
	25. Introduction
	26. Homotopical categories
	27. The hom-sets of the homotopy categories
	28. Homotopical uniqueness
	29. Deformable functors
	30. Homotopy colimit and limit functors and homotopical ones

	Chapter VI. Homotopical Categories and Homotopical Functors
	31. Introduction
	32. Universes and categories
	33. Homotopical categories
	34. A colimit description of the hom-sets of the homotopy category
	35. A Grothendieck construction
	36. 3-arrow calculi
	37. Homotopical uniqueness
	38. Homotopically initial and terminal objects

	Chapter VII. Deformable Functors and Their Approximations
	39. Introduction
	40. Deformable functors
	41. Approximations
	42. Compositions
	43. Induced partial adjunctions
	44. Derived adjunctions
	45. The Quillen condition

	Chapter VIII. Homotopy Colimit and Limit Functors and Homotopical Ones
	46. Introduction
	47. Homotopy colimit and limit functors
	48. Left and right systems
	49. Homotopical cocompleteness and completeness (special case)
	50. Homotopical colimit and limit functors
	51. Homotopical cocompleteness and completeness (general case)

	Index
	Bibliography


