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0.1 Introduction

Every Rn linear vector bundle over a compact polyhedra B can be replaced by its fiberwise
compactification - (Sn, ∗)- fiber bundle, i.e. Sn-bundle with a fixed section, and this bundle can
be triangulated [3]. Thus we obtain a natural locally finite combinatorial structure on vector
bundles and one can pose a question on local combinatorial formulas for characteristic classes
of vector bundles in terms of such a combinatorial structure. This question means following.

Triangulation of a (Sn, ∗)- fiber bundle (E, l)
p−→ B is a simplicial map (E, l)

p−→ B of a pair of
simplicial complexes (E, l) onto simplicial complex B together with fiberwise homeomorphism
|p| ≈ p, where |p| is a geometric realization of p. Let Nk be the face complex of simplex ∆k.
We suppose that Nk has a fixed orientation. Consider the set of combinatorial objects C(n, k).
Elements of C(n, k) are all "elementary (n, k) bundles", i.e. simplicial maps (K, k) −→ Nk which
geometric realization is a trivial (Sn, ∗)-fiber bundle on the oriented simplex ∆k (see Fig. 0.2).

Let A be some ring and let c be some A-valued k-dimensional characteristic class of Rn vector
bundles. Let σ ∈ Bk be an oriented k-simplex of B. Denote by pσ ∈ C(n, k) the subbundle of p

over σ. Denote by σ defined by oriented simplex σ basis element in the cellular cochain complex
of A-valued cochains on B . Local combinatorial formula for c is a way to describe a "universal
cocycle" – a function C(n, k)

ξc−→ A which changes sign under reorientation of base and such
that the element c(p) ∈ Hk(B,A) is always represented by cellular cochain Σσ∈Bk

ξc(pσ)σ. This
is a "universal cocycle" because a necessary condition for a function C(n, k)

ϕ−→ A to represent
a k-dimensional characteristic class of vector bundles is a cocycle condition: for any simplicial
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Figure 1: Elenentary bundle over 1-simplex

bundle (L, l)
t−→ Nk+1 ∈ C(n, k + 1) the function ϕ have to satisfy the following:

k+1∑
i=0

ϕ(tNk+1
i

) = 0 (1)

where tNk+1
i

is a subbundle of t over the i-th face of Nk+1 with induced orientation on the base.
So, the general problem is to describe combinatorial universal cocycles ξc.

There is a classical subject called "local formulas for characteristic classes of combinatorial
manifolds" (see [1] for a survey). Here formulas are expressed in terms of combinatorics of
stars. The structure of stars on a combinatorial manifold represents its tangent bundle. Both
combinatorial structures - triangulation of a (Sn, ∗)-bundle and combinatorics of stars of a
combinatorial manifold has canonically associated combinatorial vector bundle structures in a
sense of [4, 5]. Local formulas for combinatorial vector bundles produces local formulas in both
classical situations.

Our main observation is that the total space of cellular "prismatic fiber bundle" associated
to oriented combinatorial vector bundle in the sense of [4, 5] miraculously come with granted
canonical cellular Thom class. The Euler class of a vector bundle is an image of Thom class
in the base under the canonical isomorphism induced by bundle section and projection. We
apply a trick from elementary electric circuit physics to construct a universal cellular homology
section and thus got a formula for the rational local combinatorial value for the universal
Euler cochain. The result is easily computable in the terms of codifferentials and combinatorial
Laplace operators of total complex of elementary bundle, but the combinatorial meaning of the
formula is yet to be investigated.
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Figure 2: Assembly of ball complexes with marked balls and corresponding prizmatic bundle
with marked prizms and virtual sections

0.2 Combinatorics of vector bundles

We will reproduce basic definitions and constructions related to "combinatorial fiber bundles"
from [4]

0.2.1 Combinatorial assemblies of ball complexes

A PL geometrical ball complex structure Q on a compact Euclidean polyhedron X is a finite
cover Q of X by closed PL balls such that the relative interiors of the balls from Q form a
partition of X and the boundary of every ball from Q is the union of balls of smaller dimension.
The main example of a PL ball complex is a finite geometrical simplicial complex.

Combinatorial assembly of PL geometrical ball complex structures on X is a map of finite
sets balls Q1

ξ−→ Q2 such that there exist a PL homeomorphism X
F−→ X sending each ball from

q ∈ Q1 into the ball ξ(q) ∈ Q2, i.e. such that F (q) ⊆ ξ(q). Composition of combinatorial assem-
blies is a combinatorial assembly. With a polyhedron X is associated a small category R(X)
of combinatorial assemblies of PL ball complex structures on X. "Combinatorial assembly"
is a combinatorial abstraction of "geometric subdivision" (the direction is inverted to obtain
maps on sets of balls). We should mention that in R(X) one can have nontrivial isomorphisms
and there can be several different morphisms between two objects - it is possible that one can
assemble one complex from another in combinatorially different ways. We should mention that
as we will see, the natural constructions associates with simplicial manifolds and triangulated
bundles essentially nonsimplicial diagrams
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0.2.2 Oriented combinatorial vector bundle

Consider the category R+
n which objects are pairs (Q, q) of geometrical ball complexes Q on

the oriented sphere Sn with a marked n-dimensional ball q ∈ Q. Morphisms of R+
n are those

combinatorial assemblies from R(Sn) which preserves orientations and sends the marked ball
to the marked ball.

From main results of [4] it follows that the classifying space BR+
n of the category R+

n

classifies oriented Rn vector bundles with a structure group - simplicial group PL+(Rn) of
orientation-preserving PL-homeomorphisms of Rn. Here we will not use directly this result, but
it explains the naturality of the following definition.

Oriented combinatorial vector bundle on a simplicial complex K is a decoration of vertices
of K by objects of R+

n and 1-dimensional simplices of K by morphisms of R+
n – combinatorial

assemblies of the complexes at the ends in such a way that all the resulting from 2-simplices
of K triangles are commutative. If 1-skeleton of K we consider as a graph, then our bundle is a
map of graphs K1

Q−→ ΓR+
n (where ΓR+

n is a graph of the category) such that for any 2-simplex
σ ∈ R2 the restriction Q|∂σ⊂K1 is a commutative triangle in R+

n .

0.2.3 Prismatic fiber bundle associated with oriented combinatorial vector bundle

With n-dimensional combinatorial bundle K1
Q−→ ΓR+

n on a simplicial complex K we can asso-
ciate in a canonical way "Prismatic fiber bundle". Prismatic bundle is a pair (e(Q), t(Q)) where

e(Q) is a cellular Sn fiber bundle T (Q)
e(Q)−−→ K and t(Q) : K −→ (T (Q)) a map assigning to

every simplex of K a ball of maximal dimension in the total ball complex of the subbundle over
σ.

Assume for simplicity that the diagram Q is such that commutative triangles Q|∂σ⊂K1 are
acyclic for all σ ∈ R2. We can always achieve it by inverting direction of some isomorphisms
and the results of our constructions are invariant under this operation.

We will first build prismatic bundles for combinatorial vector bundles over simplices, and
then we’ll past from such a trivializations a construction of prismatic bundle for general com-
binatorial vector bundle.

Take the boundary complex of k-simplex Nk, take some acyclic decoration Nk
1

P−→ ΓR+
n .

We’ll describe elementary cellular bundle T (P)
e(P)−−→ Nk. The total space T (P) is ball complex

on the polyhedron ∆k × Sn, e(P) is a coordinate projection ∆k × Sn π1−→ ∆k which induces
cellular morphism.

Acyclic decoration P creates a total order v0, ..., vk on the vertices of Nk: i < j if the
morphism P([vi, vj]) has P(vi) as a source P(vj) and as a target. Let a be a subset of {1, ..., k}.
Denote by max(a) the maximal element of a. The polyhedron of the ball complex T (P) is
∆k×Sn, T (P) = {b(a,s)} is a collection of embedded closed balls in ∆k×Sn which are numbered
by pairs (a ⊆ {1, ..., k}, s ∈ P(max(a)). The dimension of the ball b(a,s) is #a−1+dim(s) (here
"#" stands for "cardinality"); b(a1,s1) ⊆ b(a2,s2) iff a1 ⊆ a2 and P[max a1,max a2](s1) = s2.

Now we will describe the embeddings. Choose some homeomorphisms Fi,i+1 representing
P([vi, vi+1]). If i ∈ {1, ...k} Then put P(vi) = (Pi, pi), pi ∈ Pi. So, by definition for 1-simplex
[vi, vj] morphism P[vi,vj ] is a combinatorial assembly morphism Pi −→ Pj such that P[vi,vj ](pi) =
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pj Define Fi,j as a composit

Sn Fi,i+1−−−→ Sn Fi+1,i+2−−−−−→ ...
Fj−1,j−−−→ Sn

then F[i,j] represents P([vi, vj]) Denote by ∂a∆
k ⊆ ∆k the face of ∆k with vertices {vi}i∈a. Now

define an imbedded (#a− 1 + dim(s))-dimensional ball

b(a,s) = ∂a∆
k × F[max a,k](s) ⊂ ∆k × Sn

Projection ∆k × Sn π1−→ ∆k projects the ball b(a,s) onto the face ∂a∆
k of the base simplex, so

the cellular bundle e(P) is defined. The remaining part of structure - the map t(P) assigns to
the face ∂aNk the ball bmax(a),pmax(a)

.

Now for arbitrary acyclic decoration K1
Q−→ ΓR+

n of a simplicial complex K we can build as
was described the individual trivial bundles ("trivializations") over the simplices and past them

together into the cellular fiber bundle T (Q)
e(Q)−−→ K using fibred Alexander trick. The resulting

bundle is defined by Q uniquely up to isomorphism of the bundles. The "section" t(Q) is
composed from local sections over simplices automatically since this sections by construction
commutes with face embeddings in K. So prismatic bundle – the pair (e(Q), t((Q)) is defined.
The balls ba,s looks like "prisms" and structure homomorphisms of prismatic bundle respects
this prismatic cellular structure, this was a starting point for [4].

0.2.4 Vector bundle associated to combinatorial vector bundle

The cellular fiber bundle e(Q) has a canonical triangulation as (Sn, ∗) fiber bundle, where the
marked section is contained in the interior of the marked prism t(Q)(σ) for any simplex of K.
This section is not included in T (Q) as a subcomplex, but it virtually exist in some canonical
subdivision. This section we will consider as a zero section. Consider subcomplex T∞(Q) ⊂ T (Q)
which is formed by all but all but marked prisms in T (Q), i.e. T∞(Q) = T (Q) \ ∪σ∈Kt(Q)(σ).
The total polyhedron of |T∞(Q)| is a subpolyhedron of |T (Q)| which is a complementary to
the union of the interiors of all marked prisms.

According to theory of Quiper and Lashof [3] the subcomplex T∞(Q) contains in its interior
as a retract yet one more section of the bundle e(Q) (we will consider it as a virtual "∞"-
section) of e(Q). So our bundle we can consider as fiberwise compactification by virtual ∞
section of an Rn-bundle e′(Q) with a virtual zero section. The freedom in the choices of these
two sections preserves isomorphism class of e′(Q).

0.2.5 Combinatorial vector bundle associated with triangulated (Sn, ∗)-bundle
here we present a canonical construction of cvb on first barycentric subdivision of the base of
triangulated (Sn, ∗)-bundle. We use [2] for this. The construction is illustrated by Figure 3.

0.2.6 Tangent combinatorial vector bundle of a combinatorial manifold

Here we reproduce [5]

5



Figure 3: Transforming triangulated (S1, ∗)-bundle from Fig. 1 into cvb

Figure 4: Thom class of prismatic bundle

0.3 Thom space and Thom class of combinatorial vector bundle

What follows from the discussion in §0.2.4: The CW complex T (Q)/T∞(Q) is a cellular Thom
space of the vector bundle e′(Q).

Let T•(Q)
e(Q)−−→ K• and T•(Q)

e∗(Q)←−−− K• be the morphisms of cellular chain and cochain
complexes associated to e(Q). Choose a special n-dimensional cochain U(Q) ∈ Tn(Q). Cochain
U(Q) assigns value 1 to every marked n-ball t(Q)(v), v ∈ K0 with the orientation induced from
the orientation of the bundle (see Fig. 4). Cochain U(Q) is a cellular n-cocycle in T•(Q). One
can see this because the only n + 1-prisms of T (Q) which contains a marked ball t(Q)(v) are
the n + 1-dimensional marked prisms t(Q)([v, w]) for all 1-dimensional simplices [v, w] ∈ K1,
containing vertex v. For any [v, w] ∈ K1 the orientations of t(Q)(v) and t(Q)(w) induced from
the orientation of the bundle induces opposite orientations of t(Q)([v, u]). Hence d∗(U) = 0 in
the cellular cochain complex T•(Q). The map c 7→ e∗(Q)(c) ` U induces Thom isomorphism
H•(K) ≈ H•+n(T(Q), T∞(Q)). This means that cochain U represents Thom class of the vector
bundle e′(Q).
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0.4 Electric homotopy operator

Here we consider classical electrostatic Kirchhoff problem of computation currents in a "linear"
(i.e. only with resistors) electric circuit by a distribution of charges at the nodes together with
its generalization to higher dimensional complexes of "conducting meshes". This is a subject
of elementary combinatorial Hodge theory and it exists in literature in zillions reincarnations.

Consider finite dimensional acyclic chain complex Y over Q, Yk is a vector space k-chains,
Yk

d−→ Yk−1. Fix a nondegenerate scalar product on each Yk and consider dual acyclic cochain
complex Yk−1

d∗−→ Yk. where the codifferential operator d∗i is adjoint to di. We are in situation of
combinatorial Hodge theory. Consider Laplace operator L = d∗d + dd∗ : Y −→ Y . According to
Hodge theory the kernel of L is equal to homology of Y . The complex Y is acyclic, hence the
operator L is invertible. Consider Green operator L−1 and an operator Yk

T−→ Yk+1, T = d∗L−1.
The operator T satisfies identity for a homotopy operator

id = dT + T d (2)

an is a homotopy operator for the retraction Y −→ 0 of Y on its homology - the zero subcomplex.
Let BC = kerd = imd. The operator T has an extremal property: it sends x ∈ BC to the unique
ỹ ∈ Y such that ‖ỹ‖ = min{‖y‖ |y : dy = x}, where ‖ ‖ is a norm in the chosen scalar product.

For us the most useful property of the operator T is that it provides a canonical solution of
the following extension problem. Suppose that Z is enother finite chain complex and we have
a chain map f<k : Z<k −→ Y<k, k > 0 of chain complexes

Z<k =
⊕

i<k

Zi −→ Y<k =
⊕

i<k

Yi.

Our purpose is to extend this map to a chain map f = f<k+1 : Z<k+1 −→ Y<k+1, in a canonical
way. Such extensions are always exist since Y is acyclic, and they form some linear space. But
we want to make a definite canonical choice. This choice is: put

fk+1 = T fkd (3)

The electric meaning of the operator T is following. One can consider a directed graph Γ as
a linear electric circuit with resistance equal 1 on each arc. Consider a distribution of positive
and negative charges on the nodes of graph such that the sum of charges is zero. Then the
current flow on the arcs of graph induced by charges is TΓ(charges), where operator TΓ is built
by reduced cellular chain complex of the graph .

0.5 Local formula for Euler class of combinatorial vector bundles

The Euler class of a vector bundle Rn −→ E
π−→ B is a value of Thom class s∗(U) ∈ Hn(B), where

U ∈ Hn(E) is a Thom class and B
s−→ E is any section of π. To obtain a cochain E(Q) ∈ Kn

representing the Euler class for our vector bundle e′(Q) form the combinatorial data of e(Q) it is

sufficient to build a homology section K•
s−→ T•(Q) of the morphism of complexes T•(Q)

e(Q)−−→ K,
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e(Q)s = id, which is zero on the cells which has interiour in the interiour of T∞(Q). Then we
can put E(Q) = s∗(U(Q)) ∈ Kn. By additivity of all construction

E(Q) = s∗(U(Q)) =
∑

σ∈Kn

s∗|σ(U(Q|σ))σ (4)

So, to get a local formula for Euler class in the form (1) it is sufficient to get a universal

local homology section s(P) of the morphism T•(P)
e(P)−−→ Nk for a combinatorial vector bundle

Nk
1

P−→ ΓR+
n on a simplex. Without loss of generality we will suppose that P is acyclic on Nk

and creates an order v0, ..., vk on the vertices. This order creates distinguished orientation of
Nk. Let δi(P) denote restriction of P on the i-th face (formed by vertices with numbers 1, .., i−
1, i + 1, ..., k) of Nk. We have prismatic bundle T (P)

e(P)−−→ Nk and the section Nk t(P)−−→ T (P)
sending the face of simplex to the marked prism. We have induced morphism of cellular chain
complexes T•(P)

e(P)−−→ (Nk)• We have distingushed acyclic chain subcomplex h•(P) ↪→ T•(P).
The complex h•(P) corresponds to the maximal marked prism t(Q)(∆k). We denote by δi

natural embedding T•(δiP)
δi−→ T•(δiP).

The last and the most important element for our canonical section is the electric homotopy
operator h•(P)

T•(P)−−−→ h•+1(P). In our situation complexes h•(P) are acyclic and hence has in-
vertible combinatorial Laplace operators. And so the Green operator is just the inverse Laplace
operator. So, according to [Gosha] Tk(P) = d∗k−1L−1

k−1, where L• is combinatorial Laplace oper-
ator of h•(P).

Now are able to write down a recursive expression for our section. If k = 0 then P is just
some object of R+

n so it is a ball on oriented Sn complex Q with marked ball q. T(P) is a
cellular chain complex of Q. Let V be the set of vertices of the marked ball q. Define

s0(P) =
∑
v∈V

1

#V
v ∈ h0(P) ⊂ T0(P)

Now define recursion by k

sk(P) = Tk−1(P)(
k∑

i=0

(−1)kδisk−1(δiP))

If k = n and Nn P−→ R+
n the local universal value for Euler class E(P) on oriented by P

simplex Nn is
E(P) = s∗n(P)(U(P))

which is equal to the sum of coefficients of sn(P) numbered by marked n-balls in fibers of

T (P)
e(P)−−→ Nn over the vertices of Nn.

Some first properties of our formula for E(P):

• E(P) = 0 if the diagram R contains combinatorial isomorphism;

• E(P) = −E(−P ) where −P is combinatorially "mirror symmetric" to P relatively to
orientation;

• E(P) = 0 if P has a combinatorial mirror symmetry.
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0.5.1 Example: an electrician way to compute Euler class of an oriented 1-bundle

Here just from symmetry of one dimensional electric circuit which show up we conclude that
we will got always 0 in our formula and hence that Euler class of 1-dimensional oriented bundle
is always 0, which is true.

0.5.2 Euler’s cochain for Euler class of tangent bundle of a combinatorial manifold

For combinatorial tangent bundle of combinatorial manifold it seems that we will get faimous
"Euler’s" local formula, which in dimension 2 looks like

1

2n
− 1

12

0.6 Simplifications for spherical fiber bundles

Here we mention that for spherical bundles everything looks the same but there are simplifi-
cations. At the same time in PL category "vector bundles" and spherical bundles are not the
same thing, and tangent bundle of combinatorial manifold is a "vector bundle" and generally
may be not related to any spherical bundle. But rational classes on these different types of the
input data are the same. So at this time we forced to treat them separately. But generally it
looks that theory works for some Serre bundles, and this will unify the two kinds of bundles.

0.6.1 Kontsevich form for Euler class of polygone bundles

Kontsevich in [6] has an Euler (≡ first Chern in this case) differential 2-form for S1 polygon
bundles. Integratinng this form for polygonal bundle which is canonically associated to our pure
combinatorial S1-bundles seems that gives the same result as our formula.
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