N. Mnëv
Combinatorial Fiber bundles

The question: How to encode fiber bundles by pure combinatorial data?

"Good spaces" \leftrightarrow simplicial complexes
"Manifolds" \leftrightarrow Combinatorial Manifolds (or "Brauer manifolds" etc...)
"Fiber Bundles" \leftrightarrow ???
Fiber Bundle $F \to E \to B$ with fiber F over the base space B is a map $E \to B$ which looks locally, in a neighborhood V of any point of B, like a trivial projection $F \times V \overset{\pi_2}{\longrightarrow} V$.
The definition of fiber bundle is not constructive. Any map of good spaces can be triangulated and represented combinatorially by a map of simplicial complexes, but how to ensure the local triviality condition for simplicial maps – no classical good answer. This is a wild problem. The problem was discussed many times in geometric topology – K-theory, characteristic classes... (Whitney, Whitehead, Cohen, Rourke, Hatcher, MacPherson etc.)
Relatively simple encoding of fiber bundles with fiber – compact manifold F and base – compact polyhedron B

1. *Ball complex structures on manifold F.* Ball complex structure on F is a covering of $F = \bigcup_i D_i$ by embedded closed balls of different dimensions such that
 - $\text{relint} D_i \cap \text{relint} D_j = \emptyset$ if $i \neq j$
 - the boundary of every ball D_i is a union of balls of smaller dimension.
The poset of balls of a ball complex defines manifold \(F \). The order complex of this poset is just a combinatorial manifold – a "baricentric subdivision" of the complex.
Let $\mathcal{D}^1 = \{D^1_i\}$ and $\mathcal{D}^2 = \{D^2_j\}$ be two ball complex structures on F. Define "combinatorial assembly morphism" as a map of sets of balls $\mathcal{D}^1 \xrightarrow{\xi} \mathcal{D}^2$ such that \exists a homeomorphism $F \xrightarrow{g} F : \forall i : g(D^1_i) \subseteq \xi(D^1_i)$

The composition of combinatorial assemblies is a combinatorial assembly. So for the manifold F we got a category $\text{Assembly}(F)$ with objects – ball complexes on F and morphisms – combinatorial assemblies.
We claim that fiber bundles with the base – polyhedron B and fiber – compact manifold F are encoded by the "colorings" of B using $\text{Assembly}(F)$.

The coloring of B by $\text{Assembly}(F)$ is a triangulation T of B, $|T| = B +$ assigning for every vertex of T a ball complex from $\text{ObAssembly}(F)$ and for any edge of T a combinatorial assembly from $\text{MorAssembly}(X)$ in such a way that the diagram of assemblies coming from 2-skeleton of T is commutative.
Assembly\((F)\) - coloring of \(B\) is something like a singular combinatorial connection of a bundle which is known only at the vertices of a triangulation of \(B\)

Theorems:

A) Any Assembly\((F)\) - coloring of \(B\) defines canonically triangulated fiber bundle on \(B\) with a fiber \(F\). (L. Anderson, N.M.)

B) Any fiber bundle on \(B\) with a fiber \(F\) comes (up to isomorphism) from some Assembly\((F)\)-coloring of \(B\).

C) Two Assembly\((F)\)-colorings of \(B\) defines isomorphic bundles iff they are concordant.

The compact version of A) B) C) modulo geometric topology nonsense:

Theorem (N.M., 2007)

http://arxiv.org/abs/0708.4039

\[BA_{\text{Assembly}}(F) \approx BPL(F). \]
The construction of the fiber bundle by Assembly\((F)\) coloring uses a simple construction well known in simplicial topology by the names \textit{iterated mapping cone}, \textit{homotopy colimit}, \textit{Grothendieck construction}, \textit{double bar-construction}. Consider a poset \(P\) considered as a category and a functor \(P \xrightarrow{A} \text{Posets}\) to the category of all posets and poset maps. Then form a new poset
\[
hocolim A = \{(p, x) | p \in P, x \in A(p)\}, (p, x) \leq (q, y) \text{ iff } p \leq q \text{ and } A(p \leq q)(x) \leq A(q) y.
\]
Projection on the first component gives a canonical poset map \(hocolim A \xrightarrow{\pi_1} P\).
Passing to simplicial order complexes \(\Delta()\) of the posets we will get a simplicial map
\[
\Delta(hocolim A) \xrightarrow{\Delta(\pi_1)} \Delta(P)
\]
The Assembly\((F)\)coloring of some triangulation \(T\) of the polyhedron \(B\) induces a linear order on the vertices of any \(k\)-simplex \(\sigma\) of \(T\) and a functor \([k] \xrightarrow{\mathcal{A}_\sigma} \text{Posets}\) sending vertices to posets of balls of corresponding ball complex on \(F\) and edges to assembly morphisms as a poset morphisms. Passing to simplicial maps \(\Delta(\text{hocolim} \mathcal{A}_\sigma) \xrightarrow{\Delta(\pi_1)} \Delta([k]) = \sigma\) we got a simplicial map for every simplex, which are naturally pasted together into canonical simplicial map \(E \xrightarrow{T} \text{constructed by coloring}\). The fact that this map is a fiber bundle with fiber \(F\) is just an intensive application of Alexander trick.
\mathbb{R}^n - bundles

There is a problem with the most classical bundles – real vector bundles since \mathbb{R}^n is non-compact and has no finite ball complex structure. But one can easily compactify \mathbb{R}^n by a point at infinity. There is a theory by that states than one can correctly fiber-wise compactify entire \mathbb{R}^n fiber bundles. So that the isomorphism classes of \mathbb{R}^n fiber bundles are in one-to one correspondence with S^n fiber bundles having one distinguished section (∞-section) or having two everywhere different distinguished sections (∞ and 0-sections).
Consider the category \textbf{Assembly}_n with objects – ball complexes on S^n with distinguished n-dimensional ball and morphism – combinatorial assemblies sending the distinguished ball to the distinguished ball.

\begin{center}
\includegraphics[width=0.2\textwidth]{diagram.png}
\end{center}

Theorems:

A) Any \textbf{Assembly}_n - coloring of polyhedron B defines canonically triangulated fiber S^n-bundle on B with distinguished section.

B) Any vector bundle on B with a fiber R^n comes (up to isomorphism) from some \textbf{Assembly}_n-coloring of B.

C) Two \textbf{Assembly}_n-colorings of B defines isomorphic bundles iff they are concordant.

The compact version of A) B) C) modulo geometric topology nonsense: $B\textbf{Assembly}_n \approx BPL_n$. Mention that for $n = 1, 2, 3, 4$ $BPL_n \approx BO(n)$.
tangent bundle of a combinatorial manifold

Consider n-dimensional combinatorial manifold M let M' be a first barycentric subdivision of M. Then we can canonically associate a Assembly_n coloring Assembly_n of M'. Vertices of M' are numbered by simplices of M. We associate to $v_{\sigma} \in M'$ the star of σ in M with attached by bounding $n - 1$ sphere a new distinguished n-ball. When we walk by edges of M' – the natural assembly happens.
Theorem

The Assembly_n- coloring Assembly_n of M' defines canonically triangulated Kuiper-Lashoff compactification of tangent bundle on M. The total space of this bundle is a combinatorial manifold.
A fiber of the tangent bundle on a 2-manifold